
Layers as Knowledge
Transitions in the Design of
Distr ibuted
WU Janssen*t

ABSTRACT Knowledge based logics allow to give generic specifications
of classes of network protocols. This genericity is combined with methods
to derive sequentially structured or layered implementations of distributed
algorithms. Knowledge based logic is used to specify layers in such algo-
rithms as knowledge transitions. The resulting layered implementations are
transformed to distributed algorithms by means a transformation rule based
on the principle of communication closed layers.
In this way a class of solutions to a problem for different architectures
can be derived along the same lines simultaneously. This design technique
for distributed algorithms is applied to a number of examples including
different versions of the Two-Phase Commit protocol.

1 Introduction

The design and analysis of distributed systems is a complicated task. Many
different processes can be active simultaneously and communicate in a
seemingly unstructured way, communication protocols are intertwined with
the basic program, and different system architectures can result in com-
pletely different algorithms. Over the last few years there have been a
number of at tempts to solve these problems concerning the specification
and design of distributed systems. One of the possible approaches is to re-
move all architectural decisions from the specification language, in order to
be able to concentrate on the algorithmic aspects. This approach has been
taken in, for example, action systems or IO-automata [5, 17, 3, 20, 19].
A second approach is the use of knowledge-based or episternic logics and
language constructs [11, 12, 21, 10]. The use of knowledge-based logics al-
lows to express properties of systems and actions in a more global way,

*This work has partially been supported by F, sprit/BRA Project 6021 (REACT).
tMost of the work reported on was done when the author was working at the Uni-

versity of Twente.
gUniversity of Oldenburg, Fachbereich Informatik, Postfach 2503, D-26111 Old-

enburg, Germany. Phone: + 49 441 7982362; F-mail: Wil.Janssen~informatik.uni-
oldenburg.de.

Layers as Knowledge Transitions in the Design of Distributed Systems 239

abstracting away from communication structures and architectural deci-
sions.
Finally, there has been a considerable amount of attention to the use of /ay-
ered methods in the design of distributed systems [8, 27, 28, 6, 18, 15, 31, 13].
It has been observed that in many protocols in distributed systems the
logical structure of the system is basically a sequential one, whereas the
actual structure is distributed and depends very much on the details of the
implementation architecture. By viewing the algorithm as a sequentially
structured system, analysis becomes much simpler and is more or less the
same for larger classes of protocols, instead of being applicable to a single
algorithm only.
In this paper we combine the above observations. We use the fact tha t
many systems can be designed and analyzed in a layered fashion, plus the
fact tha t knowledge-based logics allow for a specification of such layers at
an appropriate level of abstraction, that is, as knowledge transitions.

Knowledge concerns facts that we associate a location or distribution
with. Facts can be known to a certain process or set of processes. Knowl-
edge can exist in different ways: distributed knowledge is knowledge of the
group of processes as a whole. It concerns facts that would be known if all
processes would combine their information.
The strongest level of knowledge is common knowledge, which informally
corresponds to facts that are "publicly known." For example, in systems
with reliable communication it is common knowledge that no messages are
lost. States of knowledge are expressed using a set of modalities, K, D, S, E,
and C. Let G be a group of processes, or agents as they are usually called in
this context. The expression Ki~ states that process i knows the proposi-
tion ~. SG~o states that somebody in the group G knows ~, and E a~ gives
that everybody in G knows ~. Finally, DG~ states that it is distributed
knowledge in G that ~ holds, which means that if we combine the knowl-
edge of every process i E G we can derive ~o, and CG~ that it is common
knowledge in G that ~ holds. In this paper common knowledge will not
play an important role and is not discussed further.

Protocols, distributed algorithms, and conceptual layers in them can of-
ten be described as transitions from one state of knowledge to another. A
transition

states tha t if we start in a state satisfying r on termination we will be in
a state satisfying ~. Therefore, knowledge transitions can be viewed as a
generalization of Hoare style preconditions and postconditions to knowledge
based assertions. For example, broadcasting protocols can be specified as a
transition from a state of knowledge where one process i (the broadcaster)
knows a fact ~ to a state where all processes in the set G of participating
processes know the same fact. So it is a transition of the form

240 Wil Janssen

I f we do not know the identity of the broadcaster this would result in

Solo ",~ Ea~o.

(In fact, this is a simplification. There must also be some common knowl-
edge in the system for this to hold but this is beyond the scope of this

vee naao and a~o o ~ rl 1] for details.) Often Darts of protocols are paper, o_ u i �9 t ~-J
used to gather information of all processes to a single coordinating process.
This means tha t from a state where every process i knows some fact ~ol,
the system evolves to a state where a single process c knows all these facts:

or s ta ted differently:

Da(AiEoqoi) ~ Kc(AiEoqoi).

Larger protocols can often also be specified in such a manner. Take for
example atomic commit protocols for distributed databases (see Bernstein,
Hadzilacos and Goodman [4] for an overview of this field). Informally speak-
ing, the protocol has to make a decision for a set of part icipating processes,
based on the internal s tate of those processes. Every process Pi can de-
cide locally whether or not it can make the changes made in a transaction
permanent . The protocol decides to commit if[all processes can do so. If
one or more processes cannot, it should decide to abor t in order to keep
the da ta a t the different processes consistent. The decision should be made
known to all processes which will then take the appropriate actions. The
internal s tate is reflected in a vote YES or NO for every process i, such tha t
votei = YES iff changes can be made permanent. Such a protocol can be
specified as the following knowledge transition. Let total_vote ~- ~ES iff
^iEG?)otei -~ YES.

A Kivotei ~ A Ki(total_vote ^ (decl = COMMIT r total_vote = Y E S)) .

lEG IEG

Here, Kivotei means tha t i knows the value of vote~. This in fact abbrevi-
ates Ki(votel = Y~s) V Ki(votei = NO).

The approach we introduce in this paper is the following. Given a spec-
ification of a problem (using knowledge modalities), we refine this spec-
ification to a sequence of knowledge transitions. For example, the above
transit ion can be split into three simpler transitions are follows:

A Kivote~ ..~ Kctotal_vote
lEG

"~ EGtotal-vote

.,z A Kitotal_vote A (deci = COMMIT r total_vote = Y~s).
IEG

Layers as Knowledge Transitions in the Design of Distributed Systems 241

These knowledge transitions are then instantiated with protocol layers
that are suited for the architecture under consideration and implement
the knowledge transitions specified. The result of this is an algorithm that
consists of a sequence of layers.
Such an algorithm can then be transformed to a parallel or distributed
algorithm, using the techniques developed by Janssen, Poel and Zwiers as
discussed in, for example, [16, 25, 31, 13]. This transformation is based on
the principle of communication closed layers as introduced by Elrad and
Francez [8], translated to an algebraic setting. After some optimizations the
transformed system results in an algorithm that solves the original problem
and is tailored to a certain implementation architecture.
In order to be able to take this approach, we give a classification of knowl-
edge transitions, mad of the ways such transitions can be implemented for
different architectures. As such, the knowledge transitions serve as a ve-
hicle for the abstract specification of protocol layers. By taking different
refinements of the problem specification using different transitions, different
implementations of the problem can be obtained along the same lines, thus
emphasizing the similarities and characteristics of the implementations.
The applicability of such layered approaches in general (not particularly
using knowledge transitions) has been shown by numerous examples, such
as distributed minimum weight spanning tree algorithms, parallel parsing,
parts of a caching algorithm, pipelining, real-time mutual exclusion, and
minimal distance algorithms.

The outline of this paper is as follows. We first discuss our process lan-
guage and knowledge based logic with their semantics, and a transforma-
tion principle for programs. Thereafter we introduce knowledge transitions
and classify well-known communication structures for different networks
as knowledge transitions. Finally we explain how to derive algorithms as
sequences of knowledge transitions and apply this to different versions of
the Two-Phase Commit protocol and to so-called waves.

2 Programs, communication closedness and
knowledge

Many protocols and distributed algorithms are given in a setting of asyn-
chronous message passing. In this paper we restrict ourselves to this form
of communication, in order to simplify technical details that would divert
the attention from the main issues of this paper. We use a normal process
language with choice, sequential composition and parallel composition, and
asynchronous message passing. This language is extended with the notions
of layers and layer composition.

Systems consist of a number of components with local variables that
communicate using send(c, e) and receive(c, x) actions, where c is a chan-

242 Wil Janssen

nel, e is an expression and x is a variable. Channels connect two unique
processes and are unidirectional. Often a channel is therefore represented
as a pair (v,v ~ of nodes or processes. Channels are viewed as single place
buffers.
Besides communication actions and assignments x := e to local variables,
our programming language includes conditionals of the form i f b t h e n
S else T ft. If T is omitted it is assumed to be sk ip (do nothing). Actions
can be composed by means of parallel composition "11" and sequential com-
position " ; "

Any process that is composed out of the constructs above is called a
layer. Layers can be composed by means of layer composition " . ". Infor-
mally speaking, when we compose two layers S and T by means of layer
composition the resulting process S �9 T executes actions a of S before ac-
tions b of T i f f a and b are dependent. Two actions are dependent, denoted
by a *-~ b, iff they access the same (local) variables, or access the same
channel. So layer composition can be seen as an intermediate between se=
quential composition, where full ordering between S and T would be spec-
ified, and parallel composition, where ordering between dependent actions
of S and T can be in an arbitrary direction, not necessarily from S to T.
As such, layer composition cannot directly be translated into well-known
program constructs, but it serves as a specification construct in the initial
and intermediate design stages. Moreover, layer composition has nice al-
gebraic properties that make it well-suited for a transformational style of
program derivation. Please refer to the work by Janssen, Poel and Zwiers,
for example [15, 31, 13], for detailed discussions thereof.

Layered programs and communication closed layers

One of the most important algebraic properties that relies on the use of
layer composition is the so-called communication closed layers law CCL. It
is based on the principle of communication closed layers as introduced by
FArad and Francez [8]. This law states that under a certain side condition,
a layered or sequentially structured system (P II R) �9 (Q II S) behave the
same (has the same semantics) as the parallel system (P �9 Q) II (R �9 S).
The side condition is that there exist no "cross-dependencies" between
components in different layers. Formally, assume for processes P, Q, R,
and S, that P and S are independent, and that Q and R are independent
(P ~ , S and Q ~/~ R). Under this assumption we have

(P II R) �9 (Q II s) -- (P . Q) II (R �9 S) (ca[,)

This law can be generalized to more processes and more layers of course.
The idea is to derive layered implementations that satisfy this side condi-

tion, and to transform these to distributed implementations. In general this
side condition does not hold for systems consisting of a number of layers, as

Layers as Knowledge Transitions in the Design of Distributed Systems 243

different layers can have common channels leading to cross-dependendes.
In order to circumvent these problems, we temporarily introduce virtual
channels per layer, for example by replacing ever), channel C in layer I by
a channel Cz. The resulting process is equivalent to the original one. There-
after the cct, law trivially applies, as all dependencies are either within a
single layer or between different layers but within the same process.
After transforming the renamed system to a parallel system, we can replace
the layer composition by sequential composition and replace the virtual
channels by again a single channel per edge by means of multiplexing tech-
niques (see [13, 31]), These multiplexing techniques do not always apply.
In this setting a sufficient condition is to ensure that in every layer every
send is matched by a receive action for the same channel for every possible
evaluation of conditionals. Informally speaking this implies that channels
are empty at the end of a layer, and therefore receive actions in other
layers will read the values sent in the layer they belong to. Multiplexing
and replacing layer composition by sequential composition do not preserve
semantic equality. They do however preserve the input/output behavior of
systems, that is, if viewed as pairs of initial and final states the systems
are the same. This is called IO-equivalence.

The combined result of the above steps is summarized by the following
transformation principle.

Let S be a system consisting of a number of layers

S ~ L (0) , L (1) , . . - �9 L(n),

where every layer is of the form

L(I) a_ for i E G par P(i, l) rof,

with every send action matched by a receive action, for all
possible evaluations of the conditionals. Assume all
components communicate by means of asynchronous message
passing only. Then S is IO-equivalent to the system S ~

S I __a foriEGparP(i) rof,

where
P(i) ~= P(i, O) ; P(i, 1) ; -.. ; P(i,n).

Knowledge based logic

Knowledge based or epistemic logic [11, 10, 21] is a class of modal logics
that allow to add some notion of locality to formulae. We cannot only say
that ~ holds, but also that ~o holds for a process or agent i, or is a fact that
holds for the combined states of a group G of processes, so-called distributed

244 Wil Janssen

or group knowledge.
The basic modality is K , which stands for knowledge. The formula Kilo

states tha t process i knows ~o. Ki~0 holds in a states s such that the local
state par t si of s for process i satisfies ~o. Knowledge of different processes
can be combined. We say that ~o is distributed knowledge for a group of
processes G iff ~o holds for the combined states of all processes i E G. For
example, if Kix = 1 and Kjy = 2, then D{ij}y = x + 1.
Formally speaking, we use the following logic. Assume a given non-empty
set P of propositional constants and let A be a finite set of agents or
processes. The set LA(P) of epistemic formulae ~o, r is the smallest set
closed under

�9 I f p E P t h e n p E LA(P);

�9 If ~o,r E LA(P), then ~A r E LA(P) and -~r E LA(P);

�9 If G C A,i E A,~o �9 LA(P), then Kilo �9 LA(P),Dacp �9 LA(P).

As usual, we define implication "=~" and disjunction "V" as abbreviations.
Also, true and false abbreviate P0 V ~p0 and p0 A -~Po for some constant
Po �9 P respectively. Finally the modalities "E" and "S" are defined as
abbreviations as well. The modality Eo states that everybody in G knows
a certain proposition, and the modality SG states that somebody in G knows
a certain proposition. They are defined as

iEG

Sa~ - V K~.
IEG

The basic modalities are characterized by a number of axioms and rules.
(See, for example, Meyer, van der Hoek and Vreeswijk [21] or Fagin et al.
[10] for detailed discussions.)

Do~o =~ ~o

(K ~ A g~(~ ~ r ~ g~r
(Dora A Da(~o =~ r =~ Doe

K ~ ~ ~ K ~
Da~ =~ DaDa~

~Doqo :~ D o ~ D o ~

knowledge axioms

consequence closure

positive introspection

negative introspection

Layers as Knowledge Transitions in the Design of Distributed Systems 245

K ~ , DG~ knowledge generalization

In the following we use a number of properties of the logic. Let i E G,
and let G be a subset of G' . Then

K~o ~ DGcp,
Ki~ =~ SG~,

EG,~ =*" EG~,
EG~ ~ SG~,

K~(~ v r ~- K ~ v K~r

Note tha t the lat ter implication is not an equivalence. As a counter exam-
ple tha t Kitrue, which obviously holds. However, K ~ Y K i - ~ is not a
tautology. Process i need not know whether ~ holds or whether its negation
holds.

We use Kix to state tha t i knows the value of x, which abbreviates
Vvevaz K~x = v, i f x takes its value from Val.

In the next two paragraphs we define the semantics of processes and the
semantics of the logic. Knowledge thereof is not needed to understand what
follows and they can be skipped on first reading.

S e m a n t i c s o f processes

Any run h of the system can be represented as a partially ordered set of
events h = (V, -~), where events are different occurrences of actions. Every
event e has as an at t r ibute its process identity Id(e). Furthermore, events
have a read set R(e) and a write set W(e), consisting of the variables read
and wri t ten plus their values respectively. Two events e, e' are dependent,
denoted by e ~ e', iff one event writes a variable the other accesses as
well.
Every run should be dependency closed, tha t is, for events e ,e ' E V, if
e ~ e I then either e --~ e' or e' ~ e. Cycles in the ordering are not
allowed, as (V, ~) is an (irreflexive) partial order.

Channels also fit into this framework: A channel e is modeled by a pair
(e.flag, c.val), where c.flag is a boolean variable, and c.val is a variable of
the same type as the messages to be sent. A send send(c, e) of message e
along channel e and a receive(e, x) can be defined as abbreviations of the
following (guarded) assignments.

send(c, f) ~- a w a i t -~e.flag do e.flag , c. val := true, f ,

receive(c,x) ~-- a w a i t c.flag do c.flag, x := false, c.val.

246 Wil Janssen

In this paper we do not take deadlock into account. Moreover we give only
a short overview of the semantics. For a detailed account see [13, 31].

The semantics of processes is given by a function [.] : S ~ 7/, where
7t is the domain of sets of partially ordered event sets. The skip action
results in the empty run (0, 0), also denoted as "•". Therefore

_ rl~4 e _

[skip [[~-~-" (Q}.

The semantics of (guarded) assignments is the set of runs {({e), 0)} where
e is an event tha t reads the variables in the guards and the expression such
that the guard evaluates to true, and writes the variables in the assignment.
As an example, events e corresponding to receive(c, x) have

R(e) = ((c.pag, true), (c.val, n)},

and
W(e) = {(c.flag,la~e), (~,n)},

for some value of n. Obviously, events accessing the same channel are de-
pendent. Conditionals i f b t h e n S else T fl result in a choice between
either b ; S or -~b ; T, where b is an empty assignment guarded by b.

Sequential composition of two runs is obtained by taking the disjoint
union of the sets of events, and augmenting the order correspondingly.

(Y0,--~0) ; (V l , - -~1) de..f (y 0 ~j y l ' --~01-~ -~1 [-~ (Y0 x Y l)) .

The sequential composition of two sets of runs is obtained by pointwise
extension. Therefore the semantics of a sequentially composed term is ob-
tained by the sequential composition of the semantics of the components.
Note that we do not require that the states of the corresponding runs match
in some sense. This in order to allow events from other components to "in-
terfere".
For layer composition only minimal order to obtain dependency closedness
is added.

(Vo, ~ 0) �9 (yl , -~1) de__f (Y0 �9 Yl,-~o ~ -~1 ~ ((Y0 • Yl) n ~)).

Parallel composition is similar to layer composition in tha t is requires min-
imal extension of ordering only, but ordering can be chosen arbitrarily.
Therefore it results in a set of runs.

For closed systems, tha t is, systems without any processes running in
its environment, we require that they are state consistent. This means that
any event should read the last value that was written before it for any
variable x, and that all initial reads should be consistent as well. Note that
events writing into the same variable are dependent and therefore ordered.
Thus the last written value is well-defined. Let

[S I s de__f {h e I S] [h is state consistent }.

Layers as Knowledge Transitions in the Design of Distributed Systems 247

With any process i we associate a set of variables Vari consisting of the
local variables of i and the channels it is connected to. Let Vat be the set
of all variables and channels. A state s is a mapping from Var to values.
I t can be represented as a tuple (sl, s2 , . . . , sn) of local states of processes,
where we require tha t if c G Vari N Varj, then si(e) = sj(c), tha t is, the
local states are consistent for shared variables. (In this case, the only vari-
ables shared are the channels.)
Wi th any state-consistent run h we can associate a final state, given an
initial global s ta te s tha t is consistent with h. This is represented by
state(s, h). Informally speaking, this states gives the final values read or
writ ten in h, or the value a variable has in the initial s ta te s if it is not
accessed in h.

Semantics of the logic
The semantics we give in this section is a straightforward adapta t ion of the
semantics given by, for example, Fagin et al. in [10], to our partial order
framework.

As basic assertions (~ we use are first order formulae over Var. We could
extend this with propositions of the form "i received a value from j "
etcetera, but in the context of this paper this is not needed. The only
special assertions we use are full(c) and val(c), denoting tha t channel c
stores a message and the value of that message, respectively. These can be
viewed as abbreviations of basic assertions, as channels are implemented
as pairs of shared variables. We assume a given interpretation 7r mapping
states plus assertions to {true,false}.

Let S be a system with ~S~s = H. Given H and ~r we define an
equivalence relation "~,i" on states for every process i as follows

s ~ s ' iff si = s~,

where we view s and s * as tuples. This equivalence parti t ions the states of
the processes in classes such that two states are in the same class iff process
i cannot distinguish between them.
We now define the semantics of the logic inductively. Formally speaking,
the equivalence relations " ~ " will act as the accessibility relations K:i in a
Kripke Structure

(S, ~, ~:1, �9 - �9 ~:n),

where 8 is the set of states of the system. Let p G r and let s be a global
state.

((H , ~) , 8) ~ v deal

((H, zr s) ~ gicp de f

~(s)(p),
Vh E H, s ~ consistent with h.

state(s' ,h) "~i s =*z ((H,~r),state(s' ,h)) ~ ~,

248 Wil .Ianssen

((H, r), s) ~ DG9 de..f Vh E H, s' consistent with h.

(Vie G. state(s', h) ~i s) =~
((H,.), state(s', h)) ~ ~.

As usual, let (H, r) ~ ~ be defined as

vs. ((H,.), s) ~ ~,

and ~ ~ de2 V(H, ~). (H,~) p ~.

3 K n o w l e d g e trans i t ions and c o m m u n i c a t i o n
s tructures

We have discussed our process language and knowledge based logic. In the
introduction we have argued informally that protocols or protocol layers can
sometimes be viewed as transitions from one state of knowledge to another.
In this section we give an overview of possible knowledge transitions and
classify well-known communication structures as knowledge transitions.

Not all knowledge transitions make equally much sense. The transition
Ki~ ~ EG~ intuitively corresponds a broadcast-like protocol where ~o is
sent to all processes. A transition such as Ki~a -,z Dv%o however makes less
sense: if i E G this is immediately fulfilled without any communication.
In table .1 the transitions are summarized. Every entry in the table gives
the relation between ~o and r for which that knowledge transition makes
sense for different relations between i, j , G and G'. In the general case, pro-
tocol layers can also lead to an increase in knowledge due to the fact that ,
for example, a process knows from whom it has received messages. This
increase in knowledge is not reflected in this table, only the way %o directly
relates to r is given. Transitions that have a non-trivial implementation are
named in this table. The entry "skip" means that the transition is trivially
satisfied by doing nothing.

The roles of AKi and of EG are often similar, due to the similarities
in their definitions. Furthermore, there is a correspondence between DG
and AKI, as we can observe in the table. We can roughly distinguish four
different types of transitions:

�9 Broadcast, distribute or notify transitions. These distribute informa-
tion that is known for a certain process or set of processes to a larger
set of processes.

�9 Centralize or search transitions. In this case information from dif-
ferent processes is gathered to a single process or different set of
processes.

Layers as Knowledge Transitions in the Design of Distributed Systems 249

i = j : ~ : : r
skip

K~o i # j : ~O ~ r
notify

search

centralize

EG~

j 6 G :

skip

notify

~ =~- r
D G '~ centralize

so,, I A,,, I
i E G ' :

sMp

GCG' :

skip

elect

skip
GnG"=~:

notify

elect

~=~ ~ ,
broadcast

~=~ r
broadcast

GC_G':
(A~) =~ ~ ,

confer
G' C_G:

skip
G ' q = G :
~p :~ r

distribute

G C G ' :
~p ::~ r

confer

~ = ~ r
broadcast

GCG' :
~=~ r

broadcast
G C _ G ' :
(^ ~) ~ r

confer
G'CG:
~=~r
skip

G ' ~ G :
~ =::~ r

distribute

confer

Du,

i 6 G ' :

skip

G C G ' :

skip
G C _ G ' :
(^~0 ~ r

skip

Gf~G' # O :
~o =*, r

skip

GC_G':

skip
G~G':
~ ,

centralize

TABLE .1. Knowledge transitions

�9 E l e c t transitions. In this case again distributed information is gath-
ered, but resulting not towards a certain process or set of processes,
but leading to an in general unknown "winner."

�9 C o n f e r transitions. For confer transitions distributed information is
made known to all or to a larger set of processes.

We would like to give instantiations of all non-trivial knowledge transi-
tions with layers that implement that transition for a certain architecture.
Some transitions are more difficult to implement than others for certain
architectures. Take, for example, the transition K~7~ ~-* EG~. In a fully
connected network a single round of send actions suffices. In an arbitrary
network one needs message diffusion or other more complicated algorithms.
Also, some knowledge transitions can be built up from other transitions. In
order to confer one can, for example, combine a centralizing phase with a
distribution phase. Here we restrict ourselves to a few characteristic tran-
sitions, needed in the examples.

From the literature many communication structures are known. Broad-
casts, waves, phases, heartbeats, logic pulsing, rooted tree communication,
message diffusion all correspond to certain types of protocols for different
network architectures. (See Raynal and Helary [26] and Andrews [1] for
overviews.) Such protocols or protocol layers correspond to (sequences of)
knowledge transitions. We give a classification of such layers for different
architectures: This classification is by no means complete; not all commu-
nication structures are discussed. It should however be possible to classify
other communication structures along the same lines. A proof rules for
doing so is given at the end of this section.

250 Wil Janssen

~)

FIGUBI~, 1. Levels of nodes in a tree structured network

We discuss two different types of network architectures: rooted trees or
sets of rooted trees, and connected graphs. Other architectures, such as
linear lists or fully connected graphs, are special cases of these two.
Assume we have a finite set of nodes V, and a subset Root C_ V of root
nodes. Let root(v) = v E Root. Every node v has a set of directed downward
edges down(v), and a set of successor nodes S(v) , and every non-root node
v has an upward edge up(v) pointing towards its root node. Every node in
a tree is at a certain level, that is, it has a certain distance to its root. The
set L(l) is the set of nodes at level I (see figure 1).
A graph ~ is represented as a pair ~ = (V, E), where V is the set of nodes

and E is a set of undirected edges. For every edge j E E we assume two
directed unidirectional channels. For any node v E V let out(v) denote the
set of edges incident to v, tha t is,

o tCv) ds { (v,u) e E}.

Furthermore, let adj(v) be the set of nodes adjacent to v. We have the
following generic instantiations of knowledge transitions, going from top-
left to bottom-right in the table.

Kd~0 ~ Kj~0. This is the most elementary transition. A process d notifies
some process j of a certain fact known to i. If / and j are adjacent,
it can be implemented by a pair of communication actions. If not,
some kind of relaying or forwarding protocol is to be used. We omit
details.
In general, this transition can be implemented abstractly by a so-
called noti~ action as proposed by Moses and Kislev [22]. An action
notify(j, ~o) by process i ensures tha t eventually j knows ~o.

K~o ~ Ev~0. This coincides with K~0 ~ AK~r for ~o =~ r Under
this category fall broadcast protocols for arbitrary graphs, and simple

Layers as Knowledge Transitions in the Design of Distributed Systems 251

direct distribution layers for fully connected graphs and two-level
trees with a single root. Broadcast algorithms in general are more
complicated. See Cristian et al. [7] or Mullender [23] for more details.

-,~ K~o. As an example of this category we have search algorithms
such as, for example, employed in the termination protocol of the
Two-Phase Commit algorithm. A node that recovers or times out
asks all other nodes for the answer, and (at least) one of them can
give the answer.

sG~ ",~ E c ~ . This transition can be implemented as a combination of the
above two: first collect the information to a single node and thereafter
broadcast the result.
A simpler solution can be given is the case of a fully connected net-
work: the node that knows ~o sends the value to all other nodes. Other
nodes can either send a default message or do nothing, depending on
the context of the algorithm.

/~G Kiwi "~ Kir Centralizers captured by the transition above occur fre-
quently in protocols. Information that is located at different nodes
is to be gathered to a single node. For tree-structured networks this
can be done by means of the so-called wave concept. (See Raynal and
Helary, [26].) The root node initiates a request wave down the tree,
which is returned from the leaves upwards, gathering the informa-
tion. If all nodes know that the information is to be sent, the request
part can be omitted. The downward part, upward part, and the full
wave are given in figure 2. We assume that A ~ =~ r Fully connected
networks can handled similarly, as if they were two-level trees.

AG Kiwi ~ Ear This transition can be implemented by adding the down-
ward part of a wave to a full wave for tree-structured networks. For
fully connected graphs this can be implemented much simpler: every
node sends its information to every other node. This is, for example,
used in decentralized Two-Phase Commit algorithms.

EG~".z EG, 7~. For G C_ G ~ this transition models tha t knowledge is dis-
t r ibuted to a larger set of nodes. The transition K ~ ~,z EG,~ is a
special case. Such transitions (conceptually) occur in tree-structured
networks where the information is distributed f~om nodes at one level
to nodes at the next level, or in networks that use message diffusion
to broadcast messages over an arbitrary connected network (see, for
example, Cristian et al. [7]).
In fact, message diffusion and downward wave parts can be viewed
as sequences of transitions of this type themselves. We come back to
this later.

252 Wil Janssen

Downward a

for v E V par
i f -.root(v) t h e n receive(up(v), reqv) fl ;
for j E down(v) par send(j, req~) rof

rof ,

Upward a
for v E V pa r

for j = (v, v') E down(v) par receive(j, ~ ,) ro f ;
"Compute Cv from Av'~s(v) ~ ' A ~v" ;
if -,root(v) t hen send(up(v), Cv) fl

rof ,

Wave a_
for v E V pa r

if -.root(v) t h en receive(up(v), reqv) fl ;
for j E down(v) par send(j, req~) rof ;
for j ~- (v, v I) E down(v) par receive(j, ~ ,) r o f ;
'~Compute r from Av0es(~) ~v' A ~ " ;
if -~root(v) t hen send(up(v), Cv) fl

rof .

FIGURE 2. Waves in tree-structured networks

DG~ "~ Kj~0. This transition is a special case of the centralizer transition
AGKi~o~ ",~ K j r if ~ is the information of node i to compute ~. It
should therefore be known in what way the information to compute
~p is distributed over the nodes.

DG~ "~ EG~. Again this case is similar to the case for ^ G K i ~ "~ EGr

DGCp ...z DG,~. For G' C G this can correspond to a level transition in the
upward part of a wave. When the information from one level is gather
to a higher level, only the information of the higher levels is needed to
compute the over all result. So again, an upward wave can be viewed
as a sequence of these transitions.

This list is by no means complete. It simply presents a number of generic
implementations of knowledge transitions for two types of networks.

How to classi]y layers?

Above we have given a classification of certain layers as knowledge transi-
tions. An intuitive explanation has been given of why those layers belong
to tha t transition class. In principle we have to prove tha t an algorithm
satisfies a certain specification or knowledge transition.

Layers as Knowledge Transitions in the Design of Distributed Systems 253

To give such a prove we would like stay as much as possible within the limits
of well-known proof systems for parallel algorithms, such as Owicki-Gries
style proofs [24, 2]. The programs we use in this paper can be treated as pro-
grams with an awai t construct to implement send and receive actions, and
channels plus disjoint sets of variables. Thus we can give (non-knowledge
based) proof outlines for programs in the usual way (see Apt and Olderog
[2] for a extensive overview). In order to be able to prove knowledge based
properties of programs we add the following rule, based on proof outlines for
parallel programs, the rule for knowledge generalization, and the definition
of K~o. Let ~i and r be basic assertions, not using the knowledge modal-
ities, and let S }- �9 ~-* �9 denote that program S satisfies the knowledge
transition r --~ q). We have the following proof rule.

{~i}Si{r for all 1 < i < n,
There exist valid proof outlines { ~i } St {r } that
are interference free,

Sl I I ' ' " II & I- hi<i<, gi~oi ~ hl< i<n Kir

Using rules for disjunction and conjunction, and the properties of our
modalities, we can give derived rules for the other modalities, such as D a
and SG. Soundness of the knowledge based rule follows in a rather straight-
forward way from the soundness of the Owicki/Gries rule for parallelism
and the definition of validity of Ki (see [14] for a proof).

4 Deriving distributed algorithms

In this section we give a number of examples of derivations using the ap-
proach sketched above. We start with a class of Two-Phase Commit imple-
mentations and end with waves. The same derivation style can be applied
to other systems that have an underlying logical structure that is layered.
In [14] some other examples are discussed as well, such as a distributed
algorithm for computing minimal distances in networks.

4.1 Two-Phase C o m m i t

The Two-Phase Commit protocol is an example of atomic commit proto-
cols tha t are used in distributed databases to guarantee consistency of the
database. A distributed database consists of a number of sites connected by
some network, where every site has a local database. Data are distributed
over a number of sites. In such a distributed database system transactions,
consisting of a series of read and write actions, are executed. Reading and
writing database items is be done by forwarding the action to the site
where the item is stored. Terminating the transaction however involves all
sites accessed in the transaction, as all sites must agree on the decision

254 Wil Janssen

to be taken--which is either to commit or to abort--in order to guarantee
consistency. In the case of an abor t all changes made by the transaction
are discarded, in the case of a commit they are made permanent . A proto-
col tha t guarantees such consistency is called an atomic commit protocol
(ACP). We refer to Bernstein, Hadzilacos and Goodman [4] for more de-
tails.
in an ACP every part icipating process has one vote: YES or NO, and ev-
ery process can reach one out of two decisions: COMMIT or ABORT. Here we
do not take into account the possibility of communication failures or site
failures, tha t is, we assume tha t every message sent is eventually delivered
and tha t sites are working correctly.

First of all we should give a specification of the atomic commit prob-
lem as a knowledge transition. Thereafter we refine this transition to a
sequence of (simpler) transitions. As we do not take failures into account
the requirements can be phrased as follows: Given the votes of everypar-
ticipating process, each process should decide to COMMIT i f f every process
has voted YES. This is represented by the following knowledge transition.
Let G be the set of part icipating processes and define total_vote = YES iff
AiEGvotei ---- YES. SO total_vote is not a variable but represents the com-
bined values of all local variables votel.

A Kivote~ ~,~ A K~(total_vote A (dec4 = COMMIT ~:~ total_vote = YES)).
iEG iEG

Using the definitions of DG and total_vote (given the distribution of the
variables over the processes) this can be rewrit ten to

DGtotal_vote ~.* A Ki(total_vote A (dec / = COMMIT ~ total_vote = YES)).
lEG

Deriving layered implementations

To derive implementat ions for knowledge transitions the following strategy
is employed. We first check whether the transit ion under consideration has
an immediate implementat ion for a certain network architecture. If this
is the case, we're done. I f not so we split the transition into two or more
smaller transitions and continue with them. This "transition splitting" is in
fact a real design step which can have consequences for the eventual imple-
mentation. The resulting layered algorithm is thereafter t ransformed to a
distributed system using the transformation principle discussed in section 2.

In order to simplify mat ters , we first split of a transit ion " ~ , " to be
implemented by a final layer TPC2 from the transition specified, where the
decision is "executed," f rom the rest. In this final layer only local changes
need to be performed, so its implementation is straightforward. This results

Layers as Knowledge Transitions in the Design of Distributed Systems 255

in the following two transit ions.

D G total-vote ~ EG total-vote 2
A iea Ki(total_vote A (d e c / = COMMIT ~ ' total_vote = YEs)).

T h e first t ransi t ion is a confer transition (see t a b l e . I) , and can immedia te ly
be implemented for fully connected networks by means of sending the votes
to all o ther nodes, as was ment ioned in the previous section. This would

result in the following layer implementing ,,.~1 .,,

TPC1 a_
{ Dc total_vote }
for i E G par

for i t �9 G - {i} par send((i, it),votel) r o f ;
for i' �9 a - {i} p a r receive((i, it), voteii,) r o f

r o f
{ Ea total_vote }

A second possibility is tha t we do not have a fully connected network,
bu t some kind of tree s t ructured network. In t ha t case there is no apparen t
immedia te solution to the above transit ion. So we split the t ransi t ion again,
and do so in the following way. Let c E G be some par t ic ipat ing process.

D Gtotal_vOte ~ Kctotal-vote ~ EGtotal-vote.

The question now is wha t a sensible choice for c would be. Under the
given assumpt ion tha t we have a tree s t ructured network an obvious choice
is to take for c the root of the tree. There is howeve r - -unde r addit ional
cond i t i ons - - a second possibility. For a linear tree or chain, t ha t is, a tree
where every node has at most one downward edge, we can also take the
(unique) leaf of the tree! We assume t h a t the tree has at least two nodes.
We first discuss the former possibility.
To obta in a Dototal_vote ~.~ Ketotal_vote t ransit ion, which is a centralize
transition, we can use a full wave as discussed in the previous section. This
would result in the following implementat ion.

TPCs a_
{ Da total_vote}
for i E G par

if -~root(i) t h e n receive(up(i), req~) fl ;
for j E down(i) par send(j, reqi) r o f ;
for j = (i, i t) E down(i) par receive(j, voteir) r o f ;
if (Vit ~ i E S(i). voteii, = YES) A votei = YES t h e n repi := YEs

e l se repi := NO fl ;
if ",root(i) t h e n send(up(i), repi) fl

r o f
{Kctotal_vote)

256 Wil Janssen

The value of total_vote is stored in repc.
In the linear case we have the following implementation. Let down(i)

denote the unique edge downward for every node i in this case. For the leaf

of the linear tree this is nil, and send(nil, e) de__f s k i p .

TPC3,
{Do total_vote}
for i s G pa r

if -~root(i) t h e n receive(up(i), vi) fl ;
if (root(i) A votei = YES) V (vi ---~ YES A votei = YES)

t hen send(down(i), YES) else send(down(i), NO) fl
r o f
{K~ total_vote}

The total_vote follows in this case from the values of Vc and votec.
To implement the second transition in this layer, ,,..~4 ,,, we can use a

downward wave for the first case, and an upward wave in the linear case,
as it is a broadcast transition, leading to the following implementations:

TPC4
{ K~ total_vote}
for i E G p a r

if -.root(i) t h e n receive(up(i), repi) fl ;
for j E down(i) par send(j, repi) rof

rof ,
{ Ec total_vote},

TPC4, ~-
{ Kc total_vote}
(if vc = YEs ^ vote~ = YES t h e n repe := YES e l se repe := NO fl ;
send(up(c), rep~)) II

for i e G - {c} p a r
receive(down(i), repi) ;
send(up(i), repi)

ro f
{ Ec total_vote}.

The first two lines of TPC4, correspond to the process for the leaf node.
A third possible network configuration is a special case of general networks:
the ring. In this case we could again take a similar approach as in the
previous case by appointing one node to gather all votes, and send the
result through the ring (see [14]).

Layers as Knowledge Transitions in the Design of Distributed Systems 257

Transforming sequences of layers to parallel processes

We have derived a number of layered implementations for the Two-Phase
Commit protocol consisting of two or three layers, where every layer is a
parallel composition over all participants. The actual implementation we
should arrive at must be of the form for i E G p a r P (i) r o f , that is, a single
(sequential) process for every participant. The transformation from the
layered to the distributed structure can be carried out using the CCL law,
or more precisely, the transformation principle discussed in section 2. Using
this principle we transform the layered implementations given above. As
an example take the layered implementation for tree-structured networks.
This layered implementation is

TPCt a__ TPC3 �9 TPC4 �9 TPC2.

Transforming this system immediately results in the distributed process
T P C given below, which is IO-equivalent to the layered implementation.
Therefore it satisfies the same initial knowledge transition specification.

TPC a_
for i E G par

if -~root(i) t h en receive(up(i), req/) fi ;
for j e down(i) par send(j, reqi) ro f ;
for j = (i, i') E down(i) par receive(j, vote~i,) ro f ;
i f (Vi' r i e S (i) . vote / / , --~ YES) h vote/= YES t h e n repl := YES

e l s e repi : = NO fl ;
if -~root(i) t h e n send(up(i), repi) fi ;
if -~root(i) t h en receive(up(i), repi) fi ;
for j e down(i) par send(j, rep/) ro f ;
i f r e p i : YES t h e n dec/:= COMMIT else dec/:= ABORT fi

rof.

This algorithm can be optimized by combining the two conditionals in the
sixth and seventh line, but the basic structure remains the above.

Similarly, we can transform the layered implementation of the linear
algorithm TPC~ using the transformation rule to the following distributable
algorithm T P C e.

258 Wil Janssen

TPC' &-- C II for i e G - {c} p a r P(i) rof ,
C &

if ".root(c) t h e n receive(up(c), vc) fl ;
i f vc : YES A votec ---- YES t h e n repc := YES else repc := NO fl ;
se..,ml_(up(c), repc)
i f repc = YES t h e n dec~ := COMMIT e l s e dec~ :---- ABORT f],

P(i)
if -.root(i) t h e n receive(up(i), vi) fl ;
if (root(i) A vote~ = YES) V (v~ = YES A votei = YES)

t h e n send(down(i), YES) e l s e send(down(i), NO) fl ;
receive(down(i), repi) ;
send(up(i), r epi) ;
if repi = YES t h e n dec~ := COMMIT e l s e dec~ := ABOI~T ft.

Note tha t for the networks under consideration, which have a t least two
participants, the first guard (-,root(c)) always evaluates to true and can
therefore be removed.

These protocols correspond to a generalization of the decentralized Two-
Phase Commit and the linear Two-Phase Commit as they are known from
the literature. The result for the fully connected network is known as cen-
tralized Two-Phase Commit.

Finally, we have the case of arbi t rary network structures. To obtain the
knowledge transit ion we can do two things: either we use some broadcast
algorithm for networks, for example based on message diffusion, or we first
construct a spanning tree in one layer and then apply tree based commu-
nication protocols. In the former case this is similar to the fully connected
network case but with broadcast instead of send, and in the lat ter it is the
same as for tree-based networks with an additional layer. We do not discuss
these cases in any detail.

4 . 2 W a v e s as sequences o f layers

The same principles as applied above can be used to derive certain knowl-
edge transitions from more elementary ones. We can, for example, derive
the protocol for (upward or downward) waves as a sequence of layers corre-
sponding to levels in the tree. In a similar way we can derive the protocol
for rings.

Take for example the downward par t of a wave. I t is characterized by
the knowledge transit ion

h h
vE Root vE V

Layers as Knowledge Transitions in the Design of Distributed Systems 259

With every node v E V a level number ! is associated, giving the distance
to the root it belongs to. Recall tha t L(l) is the set of nodes at level l (see

section 3, figure 1). Let Upto(l) de~ U{L(/') I (} < l' < l}, and let n be the
maximal level number of any node. We can now split the above transition

in n transitions " ~ " for 0 < l < n, where

l
EUpto(l) ~ ,x~ EUpto(l+l)W.

As Upto(1) = Root and Upto(n + 1) = V this sequence refines the original

transition. Every transition Evpto(O l , Evpto(t+l) can be implemented as
follows:

Down(i) ~-

for i G L(I) par
for j E down(i) par send(j, ~) ro f

ro f II
for i e L(I + 1) par receive(up(i), 7~) ro f
{Evp~o(l+l)~}

Note that for down(i) = 0 the parallel statement

for j E down(i) p a r . . . r o f

reduces to skip.
This layered system we would like to transform to a distributed system.

At first it seems however that the transformation principle we applied above
does not apply here: the layers are not of the form for v E V p a r P(v) ro f .
But fortunately, we can add skip components for any process that does not
occur in the parallel composition in a layer. Moreover, after transformation
these skip components can be removed, as (P ; sk ip) = (sk ip ; P) =
P.
The result is the following algorithm.

Down
for i E Rnot par

for j G down(i) par send(j, ~) ro f
ro f [[
for i E V - / ? n o t par

receive(up(i), ~o) ;
for j E down(i) par send(j, ~o) ro f

roE.

Merging the code for the root nodes and the non-root nodes using a con-
ditional statement results in the Downward layer given in section 3.

260 Wil ,lanssen

5 Concluding remarks

In this paper we have discussed how to use knowledge based logics in the
layered design of distributed systems. The contribution of this paper is
twofold. First of all we have given a classification scheme for protocol layers
as knowledge transitions. Secondly we have shown how such knowledge
transitions can be used to der i~ layered implementations of protocols.
Thus we have used knowledge based logics to give generic specifications of
program layers and protocols.
We have shown that this design principle applies to a number of algorithms.
In principle, any algorithm that can be viewed as a layered system should fit
in this framework, which concerns a substantial class of algorithms. There
exist however algorithms that cannot be written as layered systems, for
example, highly interactive systems such as memories, or so-called retro-
active systems (see Janssen [13] for a discussion of these problems).

The role of knowledge based logic has been limited to the specification
of knowledge transitions. It would be interesting to use that logic to prove
the layers correct themselves, possible in the style of van Hulst and Meyer
[29]. Possibly such ideas would allow the approach presented to be extended
to non-layered systems as well. The advantage of the approach presented
here however is that the extensions to well-known techniques for program
verification needed in this approach are rather limited.
We have used epistemic logic primarily as a logic to express locality of
information. In [30] Wieczorek proposes a logic with modalities that directly
express location. This logic however is weaker in the sense that it does not
allow to combine information of different locations using the properties of
the knowledge modalities.

Another interesting approach using knowledge based logics is to use pro-
gram constructs that allow for the use of knowledge based expressions.
The notify construct as introduced by Moses and Kislev [22] is an example
thereof. Furthermore one can use actions guarded by knowledge based ex-
pressions instead of normal boolean guards. Such programs are discussed
by Fagin et al. in [10, 9]. One of the difficulties with these programs is
however that the transition of a knowledge based program to an ordinary
program has not yet been formalized. Possibly classification schemes as in-
troduced here combined with layered derivation can be of help to formalize
this transition.

Acknowledgements . The author would like to thank Mannes Poel for
detailed reading of the manuscript, and Yoram Moses, Wire Koole and
3ohn-Jules Meyer for useful Comments on this work.

6 REFERENCES

[1] G. Andrews. Concurrent Programming - - Principles and Practice.
The Benjamin/Cummings Publishing Company, 1991.

Layers as Knowledge Transitions in the Design of Distributed Systems 261

[2] K. Apt and E.-R. Olderog. Verification of sequential and concurrent
programs. Springer-Verlag, 1991.

[3] R. Back and K. Sere. Stepwise refinement of action systems. Struc-
tured Programming, 12:17-30, 1991.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[5] R. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[6] C. Chou and E. Gafni. Understanding and verifying distributed algo-
rithms using stratified decomposition. In Proceeding 7th ACM Sym-
posium on Principles of Distributed Computing, 1988.

[7] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast:
From simple message diffusion to byzantine agreement. In Proceedings
15th International Symposium on Fault-Tolerant Computing, 1985.

[8] T. FArad and N. Francez. Decomposition of distributed programs
into communication closed layers. Science o] Computer Programming,
2:155-173, 1982.

[9] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Knowledge-based pro-
grams. In Proceedings ACM Symposium on Principles of Distributed
Computing. ACM, 1995.

[10] R. Fagin, 3. Halpern, Y. Moses, and M. Vardi. Reasoning About
Knowledge. MIT Press, 1995. To appear.

[11] J. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM, 37(3):549-587, 1990.

[12] J. Halpern and L. Zuck. A little knowledge goes a long way:
Knowledge-based derivations and correctness proofs for a family of
protocols. ,lournal of the ACM, 39(3):449-478, 1992.

[13] W. Janssen. Layered Design of Parallel Systems. PhD thesis, Univer-
sity of Twente, 1994.

[14] W. Janssen. Layers as knowledge transitions in the design of dis-
tributed systems. Technical Report 94-71, University of Twente, 1994.

[15] W. Janssen, M. Poel, and J. Zwiers. Action systems and action re-
finement in the development of parallel systems. In Proceedings o]
CONCUR '9I, LNCS 527, pages 298-316. Springer-Verlag, 1991.

262 Wil Janssen

[16] W. Janssen and J, Zwiers. Protocol design by layered decomposi-
tion, a compositional approach. In .J. Vytopil, editor, Proceedings For-
mal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 571,
pages 307-326, Springer-Verlag, 1992.

[17] B. Jonsson. Modular verification of asynchronous networks. In Pro-
ceedings 6th A CM Symposium on Principles o.f Distributed Computing,
pages 152-166, 1987.

[18] S. Katz and D, Peled. Verification of distributed programs using rep-
resentative interleaving sequences. Distributed Computing, 6(2), 1992.

[19] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions.
Morgan Kaufman Publishers, 1994.

[20] N. Lynch and M. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings 6th ACM Symposium on Prin-
ciples of Distributed Computing, pages 137-151, 1987.

[21] J.-J. Meyer, W. van der Hock, and G. Vreeswijk. Epistemic logic for
computer science: A tutorial. Bulletin o/the EA TCS, numbers 44 and
45, 1991.

[22] Y. Moses and O. Kislev. Knowledge-oriented programming, (extended
abstract). In Proceedings l~th ACM Symposium on Principles o] Dis-
tributed Computing, pages 261-270. ACM, 1993.

[23] S. Mullender, editor. Distributed Systems. Addison-Wesley, second
edition, 1993.

[24] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Inlormatica, 6:319-340, 1976.

[25] M. Poel and J. Zwiers. Layering techniques for development of parallel
systems. In G. v. Bochmann and D. Probst, editors, Proceedings Com-
puter Aided Verification, LNCS 663, pages 16-29. Springer-Verlag,
1992.

[26] M. Raynal and J.-M. Helary. Synchronization and control of dis-
tributed systems and programs. John Wiley & Sons, 1990.

[27] F. Stomp and W.-P. de Roever. A correctness proof of a distributed
minimum-weight spanning tree algorithm (extended abstract). In Pro-
ceedings of the 7th ICDCS, 1987.

[28] F. Stomp and W.-P. de R.oever. A principle for sequential reasoning
about distributed systems. Formal Aspects of Computing, 6(6):716-
737, 1994.

Layers ~s Knowledge Transitions in the Design of Distributed Systems 263

[29] M. van Hulst and J.-,]. Meyer. An epistemic proof system for parallel
processes. In R. Fagin, editor, Proceedings 5th TARK, pages 243-254.
Morgan Kaufmann, 1994.

[30] M. Wieczorek. Locative Temporal Logic and Distributed Real-Time
Systems. PhD thesis, Catholic University of Nijmegen, 1994.

[31] .1. Zwiers and W. Janssen. Partial order based design of concurrent
systems. In .1. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-
tors, Proceedings of the REX School/Symposium "A Decade of Con-
curreny", Noordwijkerhout, 1993, LNCS 803, pages 622-684. Springer-
Verlag, 1994.

