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ABSTRACT Knowledge based logics allow to give generic specifications 
of classes of network protocols. This genericity is combined with methods 
to derive sequentially structured or layered implementations of distributed 
algorithms. Knowledge based logic is used to specify layers in such algo- 
rithms as knowledge transitions. The resulting layered implementations are 
transformed to distributed algorithms by means a transformation rule based 
on the principle of communication closed layers. 
In this way a class of solutions to a problem for different architectures 
can be derived along the same lines simultaneously. This design technique 
for distributed algorithms is applied to a number of examples including 
different versions of the Two-Phase Commit protocol. 

1 Introduction 

The design and analysis of distributed systems is a complicated task. Many 
different processes can be active simultaneously and communicate in a 
seemingly unstructured way, communication protocols are intertwined with 
the basic program, and different system architectures can result in com- 
pletely different algorithms. Over the last few years there have been a 
number of at tempts to solve these problems concerning the specification 
and design of distributed systems. One of the possible approaches is to re- 
move all architectural decisions from the specification language, in order to 
be able to concentrate on the algorithmic aspects. This approach has been 
taken in, for example, action systems or IO-automata [5, 17, 3, 20, 19]. 
A second approach is the use of knowledge-based or episternic logics and 
language constructs [11, 12, 21, 10]. The use of knowledge-based logics al- 
lows to express properties of systems and actions in a more global way, 
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abstracting away from communication structures and architectural deci- 
sions. 
Finally, there has been a considerable amount of attention to  the use of /ay-  
ered methods in the design of distributed systems [8, 27, 28, 6, 18, 15, 31, 13]. 
It  has been observed that  in many protocols in distributed systems the 
logical structure of the system is basically a sequential one, whereas the 
actual structure is distributed and depends very much on the details of the 
implementation architecture. By viewing the algorithm as a sequentially 
structured system, analysis becomes much simpler and is more or less the 
same for larger classes of protocols, instead of being applicable to  a single 
algorithm only. 
In this paper we combine the above observations. We use the fact tha t  
many systems can be designed and analyzed in a layered fashion, plus the 
fact tha t  knowledge-based logics allow for a specification of such layers at 
an appropriate level of abstraction, that  is, as knowledge transitions. 

Knowledge concerns facts that  we associate a location or distribution 
with. Facts can be known to a certain process or set of processes. Knowl- 
edge can exist in different ways: distributed knowledge is knowledge of the 
group of processes as a whole. It concerns facts that  would be known if all 
processes would combine their information. 
The strongest level of knowledge is common knowledge, which informally 
corresponds to facts that  are "publicly known." For example, in systems 
with reliable communication it is common knowledge that  no messages are 
lost. States of knowledge are expressed using a set of modalities, K, D, S, E,  
and C. Let G be a group of processes, or agents as they are usually called in 
this context. The expression Ki~ states that  process i knows the proposi- 
tion ~. SG~o states that  somebody in the group G knows ~, and E a~  gives 
that  everybody in G knows ~. Finally, DG~ states that  it is distributed 
knowledge in G that  ~ holds, which means that  if we combine the knowl- 
edge of every process i E G we can derive ~o, and CG~ that  it is common 
knowledge in G that  ~ holds. In this paper common knowledge will not 
play an important  role and is not  discussed further. 

Protocols, distributed algorithms, and conceptual layers in them can of- 
ten be described as transitions from one state of knowledge to another. A 
transition 

states tha t  if we start  in a state satisfying r  on termination we will be in 
a state satisfying ~.  Therefore, knowledge transitions can be viewed as a 
generalization of Hoare style preconditions and postconditions to knowledge 
based assertions. For example, broadcasting protocols can be specified as a 
transition from a state of knowledge where one process i (the broadcaster) 
knows a fact ~ to a state where all processes in the set G of participating 
processes know the same fact. So it is a transition of the form 
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I f  we do not know the identity of the broadcaster  this would result in 

Solo ",~ Ea~o. 

(In fact, this is a simplification. There must  also be some common knowl- 
edge in the system for this to hold but  this is beyond the scope of this 

vee naao . . . .  and a~o o ~  rl 1] for details.) Often Darts of protocols are paper,  o_ u i . . . .  �9 . . . . .  t ~-J . . . . . . .  . 
used to gather information of all processes to a single coordinating process. 
This means tha t  from a state where every process i knows some fact ~ol, 
the system evolves to a state where a single process c knows all these facts: 

or s ta ted differently: 

Da(AiEoqoi) ~ Kc(AiEoqoi). 

Larger protocols can often also be specified in such a manner.  Take for 
example atomic commit protocols for distributed databases (see Bernstein, 
Hadzilacos and Goodman  [4] for an overview of this field). Informally speak- 
ing, the protocol has to make a decision for a set of part icipating processes, 
based on the internal s tate  of those processes. Every process Pi can de- 
cide locally whether or not it can make the changes made  in a transaction 
permanent .  The protocol decides to commit if[ all processes can do so. If  
one or more processes cannot, it should decide to abor t  in order to keep 
the da ta  a t  the different processes consistent. The decision should be made 
known to all processes which will then take the appropriate  actions. The 
internal s tate is reflected in a vote YES or NO for every process i, such tha t  
votei = YES iff changes can be made permanent.  Such a protocol can be 
specified as the following knowledge transition. Let total_vote ~- ~ES iff 
^iEG?)otei -~ YES. 

A Kivotei ~ A Ki(total_vote ^ (decl = COMMIT r total_vote = Y E S ) ) .  

lEG IEG 

Here, Kivotei means tha t  i knows the value of vote~. This in fact abbrevi- 
ates Ki(votel = Y~s) V Ki(votei = NO). 

The approach we introduce in this paper  is the following. Given a spec- 
ification of a problem (using knowledge modalities), we refine this spec- 
ification to a sequence of knowledge transitions. For example, the above 
transit ion can be split into three simpler transitions are follows: 

A Kivote~ ..~ Kctotal_vote 
lEG 

"~ EGtotal-vote 

.,z A Kitotal_vote A (deci = COMMIT r total_vote = Y~s). 
IEG 
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These knowledge transitions are then instantiated with protocol layers 
that are suited for the architecture under consideration and implement 
the knowledge transitions specified. The result of this is an algorithm that 
consists of a sequence of layers. 
Such an algorithm can then be transformed to a parallel or distributed 
algorithm, using the techniques developed by Janssen, Poel and Zwiers as 
discussed in, for example, [16, 25, 31, 13]. This transformation is based on 
the principle of communication closed layers as introduced by Elrad and 
Francez [8], translated to an algebraic setting. After some optimizations the 
transformed system results in an algorithm that solves the original problem 
and is tailored to a certain implementation architecture. 
In order to be able to take this approach, we give a classification of knowl- 
edge transitions, mad of the ways such transitions can be implemented for 
different architectures. As such, the knowledge transitions serve as a ve- 
hicle for the abstract specification of protocol layers. By taking different 
refinements of the problem specification using different transitions, different 
implementations of the problem can be obtained along the same lines, thus 
emphasizing the similarities and characteristics of the implementations. 
The applicability of such layered approaches in general (not particularly 
using knowledge transitions) has been shown by numerous examples, such 
as distributed minimum weight spanning tree algorithms, parallel parsing, 
parts of a caching algorithm, pipelining, real-time mutual exclusion, and 
minimal distance algorithms. 

The outline of this paper is as follows. We first discuss our process lan- 
guage and knowledge based logic with their semantics, and a transforma- 
tion principle for programs. Thereafter we introduce knowledge transitions 
and classify well-known communication structures for different networks 
as knowledge transitions. Finally we explain how to derive algorithms as 
sequences of knowledge transitions and apply this to different versions of 
the Two-Phase Commit protocol and to so-called waves. 

2 Programs, communication closedness and 
knowledge 

Many protocols and distributed algorithms are given in a setting of asyn- 
chronous message passing. In this paper we restrict ourselves to this form 
of communication, in order to simplify technical details that would divert 
the attention from the main issues of this paper. We use a normal process 
language with choice, sequential composition and parallel composition, and 
asynchronous message passing. This language is extended with the notions 
of layers and layer composition. 

Systems consist of a number of components with local variables that 
communicate using send(c, e) and receive(c, x) actions, where c is a chan- 
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nel, e is an expression and x is a variable. Channels connect two unique 
processes and are unidirectional. Often a channel is therefore represented 
as a pair (v,v ~ of nodes or processes. Channels are viewed as single place 
buffers. 
Besides communication actions and assignments x := e to local variables, 
our programming language includes conditionals of the form i f  b t h e n  
S else T ft. If T is omitted it is assumed to be sk ip  (do nothing). Actions 
can be composed by means of parallel composition "11" and sequential com- 
position " ; " 

Any process that  is composed out of the constructs above is called a 
layer. Layers can be composed by means of layer composition " .  ". Infor- 
mally speaking, when we compose two layers S and T by means of layer 
composition the resulting process S �9 T executes actions a of S before ac- 
tions b of T i f f  a and b are dependent. Two actions are dependent, denoted 
by a *-~ b, iff they access the same (local) variables, or access the same 
channel. So layer composition can be seen as an intermediate between se= 
quential composition, where full ordering between S and T would be spec- 
ified, and parallel composition, where ordering between dependent actions 
of S and T can be in an arbitrary direction, not necessarily from S to T. 
As such, layer composition cannot directly be translated into well-known 
program constructs, but it serves as a specification construct in the initial 
and intermediate design stages. Moreover, layer composition has nice al- 
gebraic properties that  make it well-suited for a transformational style of 
program derivation. Please refer to the work by Janssen, Poel and Zwiers, 
for example [15, 31, 13], for detailed discussions thereof. 

Layered programs and communication closed layers 

One of the most important algebraic properties that  relies on the use of 
layer composition is the so-called communication closed layers law CCL. It 
is based on the principle of communication closed layers as introduced by 
FArad and Francez [8]. This law states that  under a certain side condition, 
a layered or sequentially structured system (P II R) �9 (Q II S) behave the 
same (has the same semantics) as the parallel system (P �9 Q) II (R �9 S). 
The side condition is that  there exist no "cross-dependencies" between 
components in different layers. Formally, assume for processes P,  Q, R, 
and S, that  P and S are independent, and that  Q and R are independent 
(P  ~ ,  S and Q ~/~ R). Under this assumption we have 

(P II R) �9 (Q II s) -- ( P .  Q) II (R �9 S) (ca[,) 

This law can be generalized to more processes and more layers of course. 
The idea is to derive layered implementations that  satisfy this side condi- 

tion, and to transform these to distributed implementations. In general this 
side condition does not hold for systems consisting of a number of layers, as 
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different layers can have common channels leading to cross-dependendes. 
In order to circumvent these problems, we temporarily introduce virtual 
channels per layer, for example by replacing ever), channel C in layer I by 
a channel Cz. The resulting process is equivalent to the original one. There- 
after the cct, law trivially applies, as all dependencies are either within a 
single layer or between different layers but within the same process. 
After transforming the renamed system to a parallel system, we can replace 
the layer composition by sequential composition and replace the virtual 
channels by again a single channel per edge by means of multiplexing tech- 
niques (see [13, 31]), These multiplexing techniques do not always apply. 
In this setting a sufficient condition is to ensure that in every layer every 
send is matched by a receive action for the same channel for every possible 
evaluation of conditionals. Informally speaking this implies that channels 
are empty at the end of a layer, and therefore receive actions in other 
layers will read the values sent in the layer they belong to. Multiplexing 
and replacing layer composition by sequential composition do not preserve 
semantic equality. They do however preserve the input/output behavior of 
systems, that is, if viewed as pairs of initial and final states the systems 
are the same. This is called IO-equivalence. 

The combined result of the above steps is summarized by the following 
transformation principle. 

Let S be a system consisting of a number of layers 

S ~ L ( 0 ) , L ( 1 ) , . . -  �9 L(n), 

where every layer is of the form 

L(I) a_ for i E G par P(i, l) rof,  

with every send action matched by a receive action, for all 
possible evaluations of the conditionals. Assume all 
components communicate by means of asynchronous message 
passing only. Then S is IO-equivalent to the system S ~ 

S I __a foriEGparP(i) rof, 

where 
P(i) ~= P(i, O) ; P(i, 1) ; -.. ; P(i,n). 

Knowledge based logic 

Knowledge based or epistemic logic [11, 10, 21] is a class of modal logics 
that allow to add some notion of locality to formulae. We cannot only say 
that ~ holds, but also that ~o holds for a process or agent i, or is a fact that 
holds for the combined states of a group G of processes, so-called distributed 
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or group knowledge. 
The basic modality is K ,  which stands for knowledge. The formula Kilo 

states tha t  process i knows ~o. Ki~0 holds in a states s such that  the local 
state par t  si of s for process i satisfies ~o. Knowledge of different processes 
can be combined. We say that  ~o is distributed knowledge for a group of 
processes G iff ~o holds for the combined states of all processes i E G. For 
example, if Kix = 1 and Kjy  = 2, then D{ij}y = x + 1. 
Formally speaking, we use the following logic. Assume a given non-empty 
set P of propositional constants and let A be a finite set of agents or 
processes. The set LA(P) of epistemic formulae ~o, r  is the smallest set 
closed under 

�9 I f p  E P t h e n p  E LA(P); 

�9 If ~o,r E LA(P), then ~A r E LA(P) and -~r E LA(P); 

�9 If G C A,i  E A,~o �9 LA(P), then Kilo �9 LA(P),Dacp �9 LA(P). 

As usual, we define implication "=~" and disjunction "V" as abbreviations. 
Also, true and false abbreviate P0 V ~p0 and p0 A -~Po for some constant 
Po �9 P respectively. Finally the modalities "E" and "S" are defined as 
abbreviations as well. The modality Eo  states that  everybody in G knows 
a certain proposition, and the modality SG states that  somebody in G knows 
a certain proposition. They are defined as 

iEG 

Sa~ - V K~.  
IEG 

The basic modalities are characterized by a number of axioms and rules. 
(See, for example, Meyer, van der Hoek and Vreeswijk [21] or Fagin et al. 
[10] for detailed discussions.) 

Do~o =~ ~o 

( K ~  A g~(~ ~ r ~ g~r 
(Dora A Da(~o =~ r =~ Doe  

K ~  ~ ~ K ~  
Da~ =~ DaDa~ 

~Doqo :~ D o ~ D o ~  

knowledge axioms 

consequence closure 

positive introspection 

negative introspection 
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K ~ ,  DG~ knowledge generalization 

In the following we use a number  of  properties of the logic. Let i E G, 
and let G be a subset of G' .  Then 

K~o ~ DGcp, 
Ki~  =~ SG~, 

EG,~ =*" EG~, 
EG~ ~ SG~, 

K~(~ v r ~- K ~  v K~r 

Note tha t  the lat ter  implication is not an equivalence. As a counter exam- 
ple tha t  Kitrue, which obviously holds. However, K ~  Y K i - ~  is not a 
tautology. Process i need not know whether ~ holds or whether its negation 
holds. 

We use Kix  to state tha t  i knows the value of x, which abbreviates  
Vvevaz K~x = v, i f x  takes its value from Val. 

In the next  two paragraphs we define the semantics of processes and the 
semantics of the logic. Knowledge thereof is not needed to understand what  
follows and they can be skipped on first reading. 

S e m a n t i c s  o f  processes 

Any run h of the system can be represented as a partially ordered set of 
events h = (V, -~), where events are different occurrences of actions. Every  
event e has as an at t r ibute  its process identity Id(e). Furthermore,  events 
have a read set R(e) and a write set W(e),  consisting of the variables read 
and wri t ten plus their values respectively. Two events e, e' are dependent, 
denoted by e ~ e', iff one event writes a variable the other accesses as 
well. 
Every run should be dependency closed, tha t  is, for events e ,e '  E V, if 
e ~ e I then either e --~ e' or e' ~ e. Cycles in the ordering are not  
allowed, as (V, ~ )  is an (irreflexive) partial  order. 

Channels also fit into this framework: A channel e is modeled by a pair  
(e.flag, c.val), where c.flag is a boolean variable, and c.val is a variable of 
the same type as the messages to be sent. A send send(c, e) of message e 
along channel e and a receive(e, x) can be defined as abbreviations of  the 
following (guarded) assignments. 

send( c, f ) ~- a w a i t  -~e.flag do  e.flag , c. val := true, f ,  

receive(c,x) ~-- a w a i t  c.flag do c.flag, x := false, c.val. 
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In this paper we do not take deadlock into account. Moreover we give only 
a short overview of the semantics. For a detailed account see [13, 31]. 

The semantics of processes is given by a function [ . ]  : S ~ 7/, where 
7t is the domain of sets of partially ordered event sets. The skip  action 
results in the empty run (0, 0), also denoted as "•". Therefore 

_ rl~4 e _ 

[ skip [[ ~-~-" (Q}. 

The semantics of (guarded) assignments is the set of runs {({e), 0)} where 
e is an event tha t  reads the variables in the guards and the expression such 
that  the guard evaluates to true, and writes the variables in the assignment. 
As an example, events e corresponding to receive(c, x) have 

R(e) = ((c.pag, true), (c.val, n)},  

and 
W(e) = {(c.flag,la~e), (~,n)}, 

for some value of n. Obviously, events accessing the same channel are de- 
pendent. Conditionals i f  b t h e n  S else T fl result in a choice between 
either b ; S or -~b ; T,  where b is an empty assignment guarded by b. 

Sequential composition of two runs is obtained by taking the disjoint 
union of the sets of events, and augmenting the order correspondingly. 

(Y0,--~0) ; (V l , - -~1)  de..f ( y  0 ~j y l  ' --~01-~ -~1 [-~ (Y0 x Y l ) ) .  

The sequential composition of two sets of runs is obtained by pointwise 
extension. Therefore the semantics of a sequentially composed term is ob- 
tained by the sequential composition of the semantics of the components. 
Note that  we do not require that  the states of the corresponding runs match 
in some sense. This  in order to allow events from other components to "in- 
terfere". 
For layer composition only minimal order to obtain dependency closedness 
is added. 

(Vo, ~ 0 )  �9 (yl , -~1)  de__f (Y0 �9 Yl,-~o ~ -~1 ~ ((Y0 • Yl) n ~)). 

Parallel composition is similar to layer composition in tha t  is requires min- 
imal extension of ordering only, but  ordering can be chosen arbitrarily. 
Therefore it results in a set of runs. 

For closed systems, tha t  is, systems without any processes running in 
its environment, we require that  they are state consistent. This means that  
any event should read the last value that  was written before it for any 
variable x, and that  all initial reads should be consistent as well. Note that  
events writing into the same variable are dependent and therefore ordered. 
Thus the last written value is well-defined. Let 

[ S I s  de__f {h e I S ]  [h  is state consistent }. 
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With  any process i we associate a set of variables Vari consisting of the 
local variables of i and the channels it is connected to. Let Vat be the set 
of all variables and channels. A state s is a mapping from Var to values. 
I t  can be represented as a tuple (sl, s2 , . . . ,  sn) of local states of processes, 
where we require tha t  if c G Vari N Varj, then si(e) = sj(c), tha t  is, the 
local states are consistent for shared variables. (In this case, the only vari- 
ables shared are the channels.) 
Wi th  any state-consistent run h we can associate a final state, given an 
initial global s ta te  s tha t  is consistent with h. This is represented by 
state(s, h). Informally speaking, this states gives the final values read or 
writ ten in h, or the value a variable has in the initial s ta te  s if it is not 
accessed in h. 

Semantics of the logic 
The semantics we give in this section is a straightforward adapta t ion  of the 
semantics given by, for example, Fagin et al. in [10], to our partial  order 
framework. 

As basic assertions (~ we use are first order formulae over Var. We could 
extend this with propositions of the form "i received a value from j "  
etcetera, but in the context of this paper  this is not needed. The only 
special assertions we use are full(c) and val(c), denoting tha t  channel c 
stores a message and the value of that  message, respectively. These can be 
viewed as abbreviations of basic assertions, as channels are implemented 
as pairs of shared variables. We assume a given interpretation 7r mapping  
states plus assertions to {true,false}. 

Let S be a system with ~S~s = H.  Given H and ~r we define an 
equivalence relation "~,i" on states for every process i as follows 

s ~ s '  iff si = s~, 

where we view s and s * as tuples. This equivalence parti t ions the states of 
the processes in classes such that  two states are in the same class iff process 
i cannot distinguish between them. 
We now define the semantics of the logic inductively. Formally speaking, 
the equivalence relations " ~ "  will act as the accessibility relations K:i in a 
Kripke Structure 

(S,  ~,  ~:1, �9 - �9 ~:n), 

where 8 is the set of states of the system. Let p G r  and let s be a global 
state. 

( ( H , ~ ) , 8 )  ~ v  deal 

((H, zr s) ~ gicp de f 

~(s)(p), 
Vh E H, s ~ consistent with h. 

state(s' ,h) "~i s =*z ((H,~r),state(s' ,h)) ~ ~, 
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((H, r), s) ~ DG9 de..f Vh E H, s' consistent with h. 

(Vie  G. state(s', h) ~i  s) =~ 
((H,.), state(s', h)) ~ ~. 

As usual, let (H, r) ~ ~ be defined as 

vs. ((H,.), s) ~ ~, 

and ~ ~ de2 V(H, ~). (H,~) p ~. 

3 K n o w l e d g e  trans i t ions  and c o m m u n i c a t i o n  
s tructures  

We have discussed our process language and knowledge based logic. In the 
introduction we have argued informally that  protocols or protocol layers can 
sometimes be viewed as transitions from one state of knowledge to another. 
In this section we give an overview of possible knowledge transitions and 
classify well-known communication structures as knowledge transitions. 

Not all knowledge transitions make equally much sense. The transition 
Ki~  ~ EG~ intuitively corresponds a broadcast-like protocol where ~o is 
sent to all processes. A transition such as Ki~a -,z Dv%o however makes less 
sense: if i E G this is immediately fulfilled without any communication. 
In table .1 the transitions are summarized. Every entry in the table gives 
the relation between ~o and r for which that  knowledge transition makes 
sense for different relations between i, j ,  G and G'. In the general case, pro- 
tocol layers can also lead to an increase in knowledge due to the fact that ,  
for example, a process knows from whom it has received messages. This 
increase in knowledge is not reflected in this table, only the way %o directly 
relates to r is given. Transitions that  have a non-trivial implementation are 
named in this table. The entry "skip" means that  the transition is trivially 
satisfied by doing nothing. 

The roles of AKi and of EG are often similar, due to the similarities 
in their definitions. Furthermore, there is a correspondence between DG 
and AKI, as we can observe in the table. We can roughly distinguish four 
different types of transitions: 

�9 Broadcast, distribute or notify transitions. These distribute informa- 
tion that  is known for a certain process or set of processes to a larger 
set of processes. 

�9 Centralize or search transitions. In this case information from dif- 
ferent processes is gathered to a single process or different set of 
processes. 
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i = j : ~ : : r  
skip 

K~o i # j : ~O ~ r 
notify 

search 

centralize 

EG~ 

j 6 G :  

skip 

notify 

~ =~- r 
D G '~ centralize 

so,,  I A,,, I 
i E G '  : 

sMp 

GCG' : 

skip 

elect 

skip 
GnG"=~: 

notify 

elect 

~=~ ~ ,  
broadcast 

~=~ r 
broadcast 

GC_G': 
(A~) =~ ~ ,  

confer 
G' C_G: 

skip 
G ' q = G :  
~p :~ r 

distribute 

G C G ' :  
~p ::~ r 

confer 

~ = ~ r  
broadcast 

GCG' : 
~=~ r 

broadcast 
G C _ G ' :  
( ^ ~ )  ~ r 

confer 
G'CG: 
~=~r 
skip 

G ' ~ G :  
~ =::~ r 

distribute 

confer 

Du, 

i 6 G ' :  

skip 

G C G ' :  

skip 
G C _ G ' :  
( ^~0  ~ r 

skip 

Gf~G'  # O :  
~o =*, r 

skip 

GC_G': 

skip 
G~G': 
~ ,  

centralize 

TABLE .1. Knowledge transitions 

�9 E l e c t  transitions. In this case again distributed information is gath- 
ered, but resulting not towards a certain process or set of processes, 
but leading to an in general unknown "winner." 

�9 C o n f e r  transitions. For confer transitions distributed information is 
made known to all or to a larger set of processes. 

We would like to give instantiations of all non-trivial knowledge transi- 
tions with layers that implement that transition for a certain architecture. 
Some transitions are more difficult to implement than others for certain 
architectures. Take, for example, the transition K~7~ ~-* EG~. In a fully 
connected network a single round of send actions suffices. In an arbitrary 
network one needs message diffusion or other more complicated algorithms. 
Also, some knowledge transitions can be built up from other transitions. In 
order to confer one can, for example, combine a centralizing phase with a 
distribution phase. Here we restrict ourselves to a few characteristic tran- 
sitions, needed in the examples. 

From the literature many communication structures are known. Broad- 
casts, waves, phases, heartbeats, logic pulsing, rooted tree communication, 
message diffusion all correspond to certain types of protocols for different 
network architectures. (See Raynal and Helary [26] and Andrews [1] for 
overviews.) Such protocols or protocol layers correspond to (sequences of) 
knowledge transitions. We give a classification of such layers for different 
architectures: This classification is by no means complete; not all commu- 
nication structures are discussed. It should however be possible to classify 
other communication structures along the same lines. A proof rules for 
doing so is given at the end of this section. 



250 Wil Janssen 

~ )  ..................................... 

FIGUBI~, 1. Levels of nodes in a tree structured network 

We discuss two different types of network architectures: rooted trees or 
sets of rooted trees, and connected graphs. Other architectures, such as 
linear lists or fully connected graphs, are special cases of these two. 
Assume we have a finite set of nodes V, and a subset Root C_ V of root 
nodes. Let root(v) = v E Root. Every node v has a set of directed downward 
edges down(v), and a set of successor nodes S(v) ,  and every non-root node 
v has an upward edge up(v) pointing towards its root  node. Every node in 
a tree is at a certain level, that  is, it has a certain distance to its root. The 
set L(l)  is the set of nodes at level I (see figure 1). 
A graph ~ is represented as a pair ~ = (V, E),  where V is the set of nodes 

and E is a set of undirected edges. For every edge j E E we assume two 
directed unidirectional channels. For any node v E V let out(v) denote the 
set of edges incident to v, tha t  is, 

o tCv) ds { (v,u) e E}. 

Furthermore, let adj(v) be the set of nodes adjacent to v. We have the 
following generic instantiations of knowledge transitions, going from top- 
left to bottom-right in the table. 

Kd~0 ~ Kj~0. This is the most elementary transition. A process d notifies 
some process j of a certain fact known to i. If / and j are adjacent, 
it can be implemented by a pair of communication actions. If not, 
some kind of relaying or forwarding protocol is to be used. We omit 
details. 
In general, this transition can be implemented abstractly by a so- 
called noti~ action as proposed by Moses and Kislev [22]. An action 
notify(j, ~o) by process i ensures tha t  eventually j knows ~o. 

K~o  ~ Ev~0. This coincides with K~0 ~ AK~r for ~o =~ r Under 
this category fall broadcast protocols for arbitrary graphs, and simple 
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direct distribution layers for fully connected graphs and two-level 
trees  with a single root. Broadcast algorithms in general are more 
complicated. See Cristian et al. [7] or Mullender [23] for more details. 

-,~ K~o.  As an example of this category we have search algorithms 
such as, for example, employed in the termination protocol of the 
Two-Phase Commit algorithm. A node that  recovers or times out 
asks all other nodes for the answer, and (at least) one of them can 
give the answer. 

sG~ ",~ E c ~ .  This transition can be implemented as a combination of the 
above two: first collect the information to a single node and thereafter 
broadcast the result. 
A simpler solution can be given is the case of a fully connected net- 
work: the node that  knows ~o sends the value to all other nodes. Other 
nodes can either send a default message or do nothing, depending on 
the context of the algorithm. 

/~G Kiwi "~ Kir  Centralizers captured by the transition above occur fre- 
quently in protocols. Information that  is located at different nodes 
is to be gathered to a single node. For tree-structured networks this 
can be done by means of the so-called wave concept. (See Raynal and 
Helary, [26].) The root node initiates a request wave down the tree, 
which is returned from the leaves upwards, gathering the informa- 
tion. If all nodes know that  the information is to be sent, the request 
part  can be omitted. The downward part,  upward part,  and the full 
wave are given in figure 2. We assume that  A ~  =~ r Fully connected 
networks can handled similarly, as if they were two-level trees. 

AG Kiwi ~ Ear This transition can be implemented by adding the down- 
ward part  of a wave to a full wave for tree-structured networks. For 
fully connected graphs this can be implemented much simpler: every 
node sends its information to every other node. This is, for example, 
used in decentralized Two-Phase Commit algorithms. 

EG~".z EG, 7~. For G C_ G ~ this transition models tha t  knowledge is dis- 
t r ibuted to a larger set of nodes. The transition K ~  ~,z EG,~ is a 
special case. Such transitions (conceptually) occur in tree-structured 
networks where the information is distributed f~om nodes at one level 
to nodes at the next level, or in networks that  use message diffusion 
to broadcast messages over an arbitrary connected network (see, for 
example, Cristian et al. [7]). 
In fact, message diffusion and downward wave parts can be viewed 
as sequences of transitions of this type themselves. We come back to 
this later. 
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Downward a 

for v E V par 
i f  -.root(v) t h e n  receive(up(v), reqv) fl ; 
for j E down(v) par  send(j,  req~) rof  

rof ,  

Upward a 
for v E V pa r  

for j = (v, v') E down(v) par  receive(j, ~ ,  ) ro f  ; 
"Compute Cv from Av'~s(v) ~ '  A ~v" ; 
if -,root(v) t hen  send(up(v), Cv) fl 

rof ,  

Wave a_ 
for v E V pa r  

if -.root(v) t h en  receive(up(v), reqv) fl ; 
for j E down(v) par  send(j, req~) rof  ; 
for j ~- (v, v I) E down(v) par  receive(j, ~ ,  ) r o f  ; 
'~Compute r from Av0es(~) ~v' A ~ "  ; 
if -~root(v) t hen  send(up(v), Cv) fl 

rof .  

FIGURE 2. Waves in tree-structured networks 

DG~ "~ Kj~0. This transition is a special case of the centralizer transition 
AGKi~o~ ",~ K j r  if ~ is the information of node i to compute ~. It 
should therefore be known in what way the information to compute 
~p is distributed over the nodes. 

DG~ "~ EG~. Again this case is similar to the case for ^ G K i ~  "~ EGr 

DGCp ...z DG,~.  For G' C G this can correspond to a level transition in the 
upward part  of a wave. When the information from one level is gather 
to a higher level, only the information of the higher levels is needed to 
compute the over all result. So again, an upward wave can be viewed 
as a sequence of these transitions. 

This list is by no means complete. It simply presents a number of generic 
implementations of knowledge transitions for two types of networks. 

How to classi]y layers? 

Above we have given a classification of certain layers as knowledge transi- 
tions. An intuitive explanation has been given of why those layers belong 
to tha t  transition class. In principle we have to prove tha t  an algorithm 
satisfies a certain specification or knowledge transition. 
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To give such a prove we would like stay as much as possible within the limits 
of well-known proof systems for parallel algorithms, such as Owicki-Gries 
style proofs [24, 2]. The programs we use in this paper can be treated as pro- 
grams with an awai t  construct to implement send and receive actions, and 
channels plus disjoint sets of variables. Thus we can give (non-knowledge 
based) proof outlines for programs in the usual way (see Apt and Olderog 
[2] for a extensive overview). In order to be able to prove knowledge based 
properties of programs we add the following rule, based on proof outlines for 
parallel programs, the rule for knowledge generalization, and the definition 
of K~o. Let ~i and r be basic assertions, not using the knowledge modal- 
ities, and let S }- �9 ~-* �9 denote that  program S satisfies the knowledge 
transition r --~ q). We have the following proof rule. 

{~i}Si{r for all 1 < i < n, 
There exist valid proof outlines { ~i } St  {r } that  
are interference free, 

Sl I I ' ' "  II & I- hi<i<,  gi~oi ~ hl< i<n  Kir 

Using rules for disjunction and conjunction, and the properties of our 
modalities, we can give derived rules for the other modalities, such as D a  
and SG. Soundness of the knowledge based rule follows in a rather  straight- 
forward way from the soundness of the Owicki/Gries rule for parallelism 
and the definition of validity of Ki (see [14] for a proof). 

4 Deriving distributed algorithms 

In this section we give a number of examples of derivations using the ap- 
proach sketched above. We start with a class of Two-Phase Commit imple- 
mentations and end with waves. The same derivation style can be applied 
to other systems that  have an underlying logical structure that  is layered. 
In [14] some other examples are discussed as well, such as a distributed 
algorithm for computing minimal distances in networks. 

4.1 Two-Phase  C o m m i t  

The Two-Phase Commit protocol is an example of atomic commit proto- 
cols tha t  are used in distributed databases to guarantee consistency of the 
database. A distributed database consists of a number of sites connected by 
some network, where every site has a local database. Data  are distributed 
over a number of sites. In such a distributed database system transactions, 
consisting of a series of read and write actions, are executed. Reading and 
writing database items is be done by forwarding the action to the site 
where the item is stored. Terminating the transaction however involves all 
sites accessed in the transaction, as all sites must agree on the decision 
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to be  taken--which  is either to commit or to abort--in order to guarantee 
consistency. In the case of an abor t  all changes made by the transaction 
are discarded, in the case of a commit  they are made permanent .  A proto- 
col tha t  guarantees such consistency is called an atomic commit  protocol 
(ACP). We refer to Bernstein, Hadzilacos and Goodman [4] for more de- 
tails. 
in an ACP every part icipating process has one vote: YES or NO, and ev- 
ery process can reach one out of two decisions: COMMIT or ABORT. Here we 
do not take into account the possibility of communication failures or site 
failures, tha t  is, we assume tha t  every message sent is eventually delivered 
and tha t  sites are working correctly. 

First  of all we should give a specification of the atomic commit prob- 
lem as a knowledge transition. Thereafter we refine this transition to a 
sequence of (simpler) transitions. As we do not take failures into account 
the requirements can be phrased as follows: Given the votes of everypar- 
ticipating process, each process should decide to COMMIT i f f  every process 
has voted YES. This is represented by the following knowledge transition. 
Let G be the set of part icipating processes and define total_vote = YES iff 
AiEGvotei ---- YES. SO total_vote is not a variable but  represents the com- 
bined values of all local variables votel. 

A Kivote~ ~,~ A K~(total_vote A (dec4 = COMMIT ~:~ total_vote = YES)). 
iEG iEG 

Using the definitions of DG and total_vote (given the distribution of the 
variables over the processes) this can be rewrit ten to 

DGtotal_vote ~.* A Ki(total_vote A (dec / =  COMMIT ~ total_vote = YES)). 
lEG 

Deriving layered implementations 

To derive implementat ions for knowledge transitions the following strategy 
is employed. We first check whether the transit ion under consideration has 
an immediate  implementat ion for a certain network architecture. If  this 
is the case, we're done. I f  not so we split the transition into two or more 
smaller transitions and continue with them. This "transition splitting" is in 
fact a real design step which can have consequences for the eventual imple- 
mentation.  The resulting layered algorithm is thereafter t ransformed to a 
distributed system using the transformation principle discussed in section 2. 

In order to simplify mat ters ,  we first split of a transit ion " ~ , "  to be 
implemented by a final layer TPC2 from the transition specified, where the 
decision is "executed," f rom the rest. In this final layer only local changes 
need to be performed, so its implementation is straightforward. This results 
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in the  following two transit ions.  

D G total-vote ~ EG total-vote 2 
A iea  Ki(total_vote A ( d e c / =  COMMIT ~ '  total_vote = YEs)). 

T h e  first t ransi t ion is a confer transition (see t a b l e . I ) ,  and  can immedia te ly  
be implemented for fully connected networks by means  of  sending the  votes 
to  all o ther  nodes,  as was ment ioned in the previous section. This  would 

result  in the following layer implementing ,,.~1 .,, 

TPC1 a_ 
{ Dc total_vote } 
for  i E G par  

for  i t �9 G - {i} par  send((i, it),votel) r o f ;  
for  i' �9 a - {i} p a r  receive((i, it), voteii,) r o f  

r o f  
{ Ea total_vote } 

A second possibility is tha t  we do not have a fully connected network,  
bu t  some kind of  tree s t ructured network.  In t ha t  case there is no  apparen t  
immedia te  solution to  the above transit ion. So we split the t ransi t ion again,  
and do so in the following way. Let c E G be some par t ic ipat ing process. 

D Gtotal_vOte ~ Kctotal-vote ~ EGtotal-vote. 

The question now is wha t  a sensible choice for c would be. Under  the  
given assumpt ion  tha t  we have a tree s t ructured network an obvious choice 
is to  take for c the root  of the tree. There  is howeve r - -unde r  addit ional  
cond i t i ons - - a  second possibility. For a linear tree or chain, t ha t  is, a tree 
where every node has at  most  one downward  edge, we can also take the 
(unique) leaf of  the  tree! We assume t h a t  the  tree has at  least two nodes.  
We first discuss the former possibility. 
To obta in  a Dototal_vote ~.~ Ketotal_vote t ransit ion,  which is a centralize 
transition, we can use a full wave as discussed in the previous section. This 
would result  in the  following implementat ion.  

TPCs a_ 
{ Da total_vote} 
for  i E G par  

if -~root(i) t h e n  receive(up(i), req~) fl ; 
for j E down(i) par  send(j, reqi ) r o f  ; 
for  j = (i, i t) E down(i) par receive(j, voteir ) r o f  ; 
if  (Vit ~ i E S(i). voteii, = YES) A votei = YES t h e n  repi :=  YEs 

e l se  repi := NO fl ; 
if  ",root(i) t h e n  send(up(i), repi) fl 

r o f  
{Kctotal_vote) 
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The value of total_vote is stored in repc. 
In the linear case we have the following implementation. Let down(i) 

denote the unique edge downward for every node i in this case. For the leaf 

of  the linear tree this is nil, and send(nil, e) de__f s k i p .  

TPC3, 
{Do total_vote} 
for i s G pa r  

if  -~root(i) t h e n  receive(up(i), vi) fl ; 
if  (root(i) A votei = YES) V (vi  ---~ YES A votei = YES) 

t hen  send(down(i), YES) else send(down(i), NO) fl 
r o f  
{K~ total_vote} 

The total_vote follows in this case from the values of Vc and votec. 
To implement the second transition in this layer, ,,..~4 ,,, we can use a 

downward wave for the first case, and an upward wave in the linear case, 
as it is a broadcast transition, leading to the following implementations: 

TPC4 
{ K~ total_vote} 
for i E G p a r  

if  -.root(i) t h e n  receive(up(i), repi) fl ; 
for  j E down(i) par send(j, repi) rof 

rof ,  
{ Ec total_vote}, 

TPC4, ~- 
{ Kc total_vote} 
(if vc = YEs ^ vote~ = YES t h e n  repe := YES e l se  repe := NO fl ; 
send(up(c), rep~) ) II 

for i e G -  {c} p a r  
receive(down(i), repi) ; 
send(up(i), repi ) 

ro f  
{ Ec total_vote}. 

The first two lines of TPC4, correspond to the process for the leaf node. 
A third possible network configuration is a special case of general networks: 
the ring. In this case we could again take a similar approach as in the 
previous case by appointing one node to gather all votes, and send the 
result through the ring (see [14]). 



Layers as Knowledge Transitions in the Design of Distributed Systems 257 

Transforming sequences of layers to parallel processes 

We have derived a number of layered implementations for the Two-Phase 
Commit protocol consisting of two or three layers, where every layer is a 
parallel composition over all participants. The actual implementation we 
should arrive at must be of the form for  i E G p a r  P ( i ) r o f ,  that  is, a single 
(sequential) process for every participant. The transformation from the 
layered to the distributed structure can be carried out using the CCL law, 
or more precisely, the transformation principle discussed in section 2. Using 
this principle we transform the layered implementations given above. As 
an example take the layered implementation for tree-structured networks. 
This layered implementation is 

TPCt  a__ TPC3 �9 TPC4 �9 TPC2. 

Transforming this system immediately results in the distributed process 
T P C  given below, which is IO-equivalent to the layered implementation. 
Therefore it satisfies the same initial knowledge transition specification. 

TPC a_ 
for i E G par  

if -~root(i) t h en  receive(up(i), req/) fi ; 
for j e down(i) par send(j, reqi ) ro f  ; 
for j = (i, i') E down(i) par  receive(j, vote~i, ) ro f  ; 
i f  (Vi' r i e S ( i ) .  vote / / ,  --~ YES) h vote/= YES t h e n  repl := YES 

e l s e  repi  : =  NO fl  ; 
if  -~root(i) t h e n  send(up(i), repi) fi ; 
if  -~root(i) t h en  receive(up(i), repi) fi ; 
for j e down(i) par  send(j, rep/) ro f  ; 
i f  r e p i  : YES t h e n  dec/:= COMMIT else dec/:= ABORT fi 

rof.  

This algorithm can be optimized by combining the two conditionals in the 
sixth and seventh line, but  the basic structure remains the above. 

Similarly, we can transform the layered implementation of the linear 
algorithm TPC~ using the transformation rule to the following distributable 
algorithm T P C  e. 
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TPC' &-- C II for  i e G - {c} p a r  P(i) rof ,  
C &  

if ".root(c) t h e n  receive(up(c), vc) fl ; 
i f  vc : YES A votec ---- YES t h e n  repc := YES else repc := NO fl ; 
se..,ml_( up( c), repc ) 
i f  repc = YES t h e n  dec~ := COMMIT e l s e  dec~ :---- ABORT f], 

P(i) 
if -.root(i) t h e n  receive(up(i), vi) fl ;  
if (root(i) A vote~ = YES) V (v~ = YES A votei = YES) 

t h e n  send(down(i), YES) e l s e  send(down(i), NO) fl ; 
receive(down(i), repi) ; 
send(up(i), r epi ) ; 
if  repi = YES t h e n  dec~ := COMMIT e l s e  dec~ := ABOI~T ft. 

Note tha t  for the networks under consideration, which have a t  least two 
participants,  the first guard (-,root(c)) always evaluates to true and can 
therefore be removed. 

These protocols correspond to a generalization of the decentralized Two- 
Phase Commit  and the linear Two-Phase Commit as they are known from 
the literature. The result for the fully connected network is known as cen- 
tralized Two-Phase Commit. 

Finally, we have the case of arbi t rary network structures. To obtain the 
knowledge transit ion we can do two things: either we use some broadcast  
algorithm for networks, for example based on message diffusion, or we first 
construct a spanning tree in one layer and then apply tree based commu- 
nication protocols. In the former case this is similar to the fully connected 
network case but  with broadcast  instead of send, and in the lat ter  it is the 
same as for tree-based networks with an additional layer. We do not discuss 
these cases in any detail. 

4 . 2  W a v e s  as sequences  o f  layers  

The same principles as applied above can be used to derive certain knowl- 
edge transitions from more elementary ones. We can, for example,  derive 
the protocol for (upward or downward) waves as a sequence of layers corre- 
sponding to levels in the tree. In a similar way we can derive the protocol 
for rings. 

Take for example the downward par t  of a wave. I t  is characterized by 
the knowledge transit ion 

h h 
vE Root vE V 
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With every node v E V a level number ! is associated, giving the distance 
to  the root  it belongs to. Recall tha t  L(l) is the set of nodes at level l (see 

section 3, figure 1). Let Upto(l) de~ U{L(/') I (} < l' < l}, and let n be the 
maximal level number of any node. We can now split the above transition 

in n transitions " ~ "  for 0 < l < n, where 

l 
EUpto(l) ~ ,x~ EUpto(l+l)W. 

As Upto(1) = Root and Upto(n + 1) = V this sequence refines the original 

transition. Every transition Evpto(O l ,  Evpto(t+l) can be implemented as 
follows: 

Down(i) ~- 

for i G L(I) par  
for j E down(i) par send(j, ~) ro f  

ro f  II 
for i e L(I + 1) par  receive(up(i), 7~) ro f  
{Evp~o(l+l)~} 

Note that  for down(i) = 0 the parallel statement 

for  j E down(i) p a r  . . .  r o f  

reduces to skip.  
This layered system we would like to transform to a distributed system. 

At first it seems however that  the transformation principle we applied above 
does not apply here: the layers are not of the form for  v E V p a r  P(v) ro f .  
But fortunately, we can add skip  components for any process that  does not 
occur in the parallel composition in a layer. Moreover, after transformation 
these skip  components can be removed, as (P  ; sk ip  ) = ( sk ip  ; P)  = 
P.  
The result is the following algorithm. 

Down 
for i E Rnot par  

for j G down(i) par  send(j, ~) ro f  
ro f  [[ 
for i E V - / ? n o t  par  

receive(up(i), ~o) ; 
for j E down(i) par  send(j, ~o) ro f  

roE. 

Merging the code for the root nodes and the non-root nodes using a con- 
ditional statement results in the Downward layer given in section 3. 
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5 Concluding remarks 

In this paper we have discussed how to use knowledge based logics in the 
layered design of distributed systems. The contribution of this paper is 
twofold. First of all we have given a classification scheme for protocol layers 
as knowledge transitions. Secondly we have shown how such knowledge 
transitions can be used to der i~  layered implementations of protocols. 
Thus we have used knowledge based logics to give generic specifications of 
program layers and protocols. 
We have shown that this design principle applies to a number of algorithms. 
In principle, any algorithm that can be viewed as a layered system should fit 
in this framework, which concerns a substantial class of algorithms. There 
exist however algorithms that cannot be written as layered systems, for 
example, highly interactive systems such as memories, or so-called retro- 
active systems (see Janssen [13] for a discussion of these problems). 

The role of knowledge based logic has been limited to the specification 
of knowledge transitions. It would be interesting to use that logic to prove 
the layers correct themselves, possible in the style of van Hulst and Meyer 
[29]. Possibly such ideas would allow the approach presented to be extended 
to non-layered systems as well. The advantage of the approach presented 
here however is that the extensions to well-known techniques for program 
verification needed in this approach are rather limited. 
We have used epistemic logic primarily as a logic to express locality of 
information. In [30] Wieczorek proposes a logic with modalities that directly 
express location. This logic however is weaker in the sense that it does not 
allow to combine information of different locations using the properties of 
the knowledge modalities. 

Another interesting approach using knowledge based logics is to use pro- 
gram constructs that allow for the use of knowledge based expressions. 
The notify construct as introduced by Moses and Kislev [22] is an example 
thereof. Furthermore one can use actions guarded by knowledge based ex- 
pressions instead of normal boolean guards. Such programs are discussed 
by Fagin et al. in [10, 9]. One of the difficulties with these programs is 
however that the transition of a knowledge based program to an ordinary 
program has not yet been formalized. Possibly classification schemes as in- 
troduced here combined with layered derivation can be of help to formalize 
this transition. 
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