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ABSTRACT In this paper we present a novel approach for solving Boolean 
equation systems with nested minimal and maximal fixpoints. The method 
works by successively eliminating variables and reducing a Boolean equa- 
tion system similar to Gaufl elimination for linear equation systems. It does 
not require backtracking techniques. Within one framework we suggest a 
global and a local algorithm. In the context of model checking in the modal 
#-calculus the local algorithm is related to the tableau methods, but has a 
better worst case complexity. 

1 Introduction 

The modal #-calculus [Koz83, Sti92] is a powerful logic. It is particu- 
larly useful for expressing properties of parallel processes with finite (or 
even infinite) state spaces; it finds application in process algebra [Wa189] 
and in Petri nets [Bra92]. Proving whether a property expressed in the 
modal #-caiculus holds for particular states of a process is called model 
checking [CE81, CES861. Various algorithms are available. The main ap- 
proaches are model checkers based on the fixpoint approximation [EmL86, 
CDS92, And92, BCMDH92, LBCJM941 and tableau based model checkers 
[StW89, Cleg0, Lar92, Mad92]. One important technique consists of the 
transformation of a property and a model to a (Boolean) equation system 
[AC88, And92, CDS92, Lar92, VeL92]. Then model checking is equivalent 
to the computation of a certain fixpoint. In fact, various correctness prob- 
lems may be represented in this way. 
In this paper we present a novel, algebraic approach for solving Boolean 
equation systems. It does not use approximation techniques and therefore 
does not require backtracking. The method works straightforward by suc- 
cessively eliminating variables and reducing the Boolean equation system, 
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similar to Gaufl elimination for linear equation systems. Homogeneous, hi- 
erarchical and alternating fixpoints are treated uniformly. Contrary to other 
techniques Gaufl elimination leads to both a global and a local model check- 
ing algorithm within one framework. 
The elimination of a variable is based on a simple observation: the equation 
X = A ( X )  (with monotone A) has the least fixpoint A(false) and the 
greatest fixpoint A(true). The reduction of a Boolean equation system is 
done by syntactical substitution of variables by expressions. 
The difference between the global version of Gaufl elimination and the lo- 
cal one can be characterized as follows: The global version solves the whole 
equation system, whereas the local version only takes a subset of equa- 
tions into account which is necessary to determine the variable of interest. 
The selection of a suitable subset of equations is demand-driven. Whereas 
the global version is more of theoretical interest (approximation techniques 
have better worst case complexity), the local version has advantages in the 
context of model checking. It is closely related to the tableau methods, and 
can be interpreted as a combination of top-down strategy of the tableau 
method and bottom-up evaluation which avoids redundancy caused by re- 
computation of subtableaux. Therefore its worst case complexity is only 
exponential, in contrast to double exponential worst case of tableau based 
algorithms. 
Section 2 introduces Boolean equation systems and their solution. Gaufl 
elimination for Boolean equation systems is presented in section 3. Sec- 
tion 4 contains a short introduction into the modal p-calculus, and the 
transformation of the model checking problem into a equation solving prob- 
lem. Comparison with other work is discussed in section 5. Examples are 
in section 6. Section 7 is the conclusion. The appendix contains correctness 
proofs. 

2 Boolean Equation Systems 

In this section we define Boolean equation systems and what we regard as 
solution of a Boolean equation system. 

Def in i t ion  1 Let X = { X 1 , . . . , X n }  be a set of Boolean variables, < a 
linear order on X ,  and { A 1 , . . . , A n }  a set of negation free Boolean ex- 
pressions containing variables from X .  Then the set of labeled equations 
Ei : Xi  ~_4 Ai,  where al E {#, v}, is a Boolean equation system. 

In the following we assume that the order on the variables is according to 
their indices. 
As the Boolean expressions are negation free and therefore monotone the 
equation system (the plain one without order and labels) has a set of fix- 
points. In the context here we are interested in a distinguished fixpoint 
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which we call the solution of the Boolean equation system. Below we give 
the definition of the solution. 
We introduce some notation first. The vector (X1, . . . ,  Xn) of Boolean vari- 
ables will be abbreviated by X; analogously a.q., A and E denote the vectors 
of labels, expressions and equations respectively. A Boolean equation sys- 
tem can now be written as: E: X__ a___ A(X_.). Further abbreviations will be 
used. y_(0 stands for the i-th rest (Yi,.. �9 Yn) of the Boolean vector __Y, and 
again analogously a (1), A (i) , and E (i) denote the/- the rests of the related 
vectors. By E(i)[~'~XjTwe mean~he equation system E (i) where all un- 
bound occurrences of Xj  are substituted by Yj. E (1) ~/X_J is an abbreviation 
for E_ Y./x,]. 
Let <~ on B for a E {#, v} be such that false <u true and true <~ false. 

Definit ion 2 Let Y , Y :  E 13 n, a_ E {#,u}". The vectors Y_,Y_' are ordered 
lexicographicaUy, Y <~ Y._~, iff 3i, 1 < i < n : Yi <~, Yi' and Vj, 1 < j < i : 

= 

Definit ion 3 y(i) E 13 n-i+] is the solution of the Boolean equation system 
E (i) [Y/X],  iff for i = n y(i) is wrt. <a, the least fizpoint of E (i) [Y/X],  
and for i < n y(O is wrt. <a_(~) the least one of those fixpoint~ of E(i)[Y/X] 

which satisfy the following property: y_(i+a) is solution of E(i+~)[Y] X]. 

There exist several algorithms to determine the set of fixpoints of a Boolean 
equation system; for examples see [Rud74]. However, even if the set of 
fixpoints is given, it is not trivial to select the one fixpoint which satisfies the 
definition of the solution above. This indicates that the existing equation 
solving methods do not help in our case. We will illustrate this by two small 
examples. 
The first example shows that the solution is not the lexicographic least 
fixpoint. The equation system X2 u_ X2 has two fixpoints true and false. 
With respect to the order <u false is the least one. Now consider the equa- 
tion system X1 ~ X2, X2 =~ X2, where X] < X2. The lexicographic least 
fixpoint is (true, true), whereas (false, false) is the solution as indicated by 
the first equation system and as defined above. 
In the following example two Boolean equation systems are given, both 
having the same set of fixpoints and the same labels on the equations, 
but different solutions. The equation system X] ~ )(2, X2 _u X2, where 
Xx < X2, has the fixpoints (true, true) and (false, false). The solution is 
(false, false) as in the previous example. 
The equation system X1 ~ X2, X2 -~ X1, where X1 < X2, also has the 
fix-points (true, true) and (false, false), but the solution here is (true, true). 
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In this section we present two algorithms which determine the solution of 
a Boolean equation system as in definition 3. In contrast to other methods 
we do riot make use of approximation and backtracking techniques�9 Instead 
we stepwise reduce a Boolean equation system to a Boolean equation sys- 
temconsisting one equation and one variable less. The steps of eliminating 
a variable from an expression and of substituting variables by expressions 
remind very much to Ganfl elimination for linear equation systems. 
The following propositions are the basis for the Gaul3 elimination�9 Proofs 
are contained in the appendix. 

P r o p o s i t i o n  1 For the solution Y of the equation system X a__ A(X)  con- 
sisting of one single equation it holds: 

A(false) i r a  = # 

Y = A(t rue) if a = u. 

Proposition 1 can be extended to expressions and equation systems. It 
allows a representation of the Boolean expression Ai with no occurrence of 
Xi. In the algorithm we will call this the GauB division step. 

P r o p o s i t i o n  2 Y__ is the solution of the Boolean equation system E_ of the 
form X a_ A_(X), i f fY  also is the solution of the modified Boolean equation 
system F, where the equations are of the following form: 

X1 qA AI(X1, ... , X , )  

Xi ~r..~ Ai(X1, . . .  ,X i - l ,b i ,  Xi+l , . . .  ,Xn) 

Xn '~"= An(X,,  ... ,Xn) 

true i f a i = u  f o r l < i <  
where bi = false if ai = p n .  

The next proposition shows that  an occurrence of a variable Xj  in an 
expression Ai may be substituted by the expression Aj, if i < j .  This is 
the basis for the Gaul] elimination step. 

Proposition 3 The Boolean vector Y_ is the solution of the equation sys- 
tem E, iff it is the solution of the equation system G_, where G__ is the 
modified equation system: 

a l  X1 --= AI(XI,  . .- ,Xn) 

x~ ~--' A~(X1 , . . . ,X j_ I ,A~(X~ , . . . ,X , ) ,X j+~ , . . . ,X , )  

~n 
x ,  = A , ( x ~ ,  . . .  , x . )  
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where 1 < i < j < n. 

Based on these two Gaufl steps we now propose two algorithms to deter '  
mine the solution of a Boolean equation system. One algorithm operates 
on the whole equation system; this is the global version of Gaufl elimina- 
tion. The basic idea is that  a Boolean equation system can be reduced to a 
Boolean equation system with the same ~um~on, ouL u.~ ~ q u ~ u .  ~oo. ~,~ 
reduction is performed by an elimination step, where in the last equation, 
say Xj ~-j A j (X1 , . . . ,  Xj), all occurrences of Xj on the right hand side are 
instantiated by bj = true or bj = false depending on aj ,  and a substitution 
step, where in all other equations each occurrence of Xj is substituted by 
the expression Aj ( X 1 , . . . ,  Xj-1,  bj). The result is an equation system with 
no free occurrence of Xj.  Now the same reduction can be applied to the 
equation system consisting of the first j - 1 equations and so on. In the 
end we get a variable free expression for the variable X1. 

Assume X a_ A(X__) as input; 

i := n; 

w h i l e  n o t  (A1 = true o r  A1 = false) 

d o  

Instantiate Xi in Ai to {true. false}; 

Substitute Ai for Xi in A1 , . . .  ,A~_I; 

A1 :=Eval(A1); . . .  ; A~-l:=Eval(Ai-1) 

i := i - 1; 

o d  

(Gaufi-division) 

(Elimination step) 

(Evaluation step) 

FIGURE 1. Global Version of Gaufl Elimination 

In most contexts we are only interested in the first component of the so- 
lution, i.e. Whether X1 is true or false. Therefore the algorithm in figure 1 
stops, if the solution of X1 (A1) is determined. If we are interested in 
the whole solution the Gaufl division step and elimination step have to 
be applied n times giving an expression for every Xi where the variables 
X i , . . , ,  Xn do not occur. A straight backward substitution leads to the 
whole solution. 
If only the first variable is of interest, it suffices to consider only the subset of 
equations which is necessary to determine the solution for X1. The relevant 
subset of equations is selected in a top-down manner. This observation 
leads to the local version of Ganfi elimination given in figure 2. The idea 
is as follows. We start  with the equation system E '  consisting only of the 

f f l  
equation X1 = AI(X1, . . .  ,Xj) .  As long as X1 is not evaluated to true or 
false we select a free variable from A1, insert its equation in E__ ~, apply the 
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Create E1 and let E1 be E.~; 

Instantiate X1 in A]; (Gaufl-division) 

A1 := Eval(A]); (Evaluation step) 

w h i l e  n o t  (A1 = true or A1 = false) 

do  

Select Xj, where j is such that  Ej 9~E'; 

Create Ej,  insert Ej in E '  

and extend the order on E_' to Ej; 

Apply Ganfl-elimination on E'  

od  

FIGURE 2. Local Model Checking Algorithm 
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global version of Ganfl elimination, and continue in the same way with the 
modified equation system E'.  

4 The Modal/,-Calculus and Model Checking 

This section gives a brief introduction to the modal/~-calculus. For details 
see [Sti92]. 
The syntax of the modal p-calculus is defined with respect to a set Q 
of atomic propositions including true and false, a denumerable set Z of 
propositional variables and a finite set L: of action labels. The set #M of 
modal p-calculus assertions is determined by the following grammar: 

r ::= z I 0 $ r ^ '~ I v v r I [ale $ (a)r  I u z . r  I , , z . r  

M denotes the set of variable and fixpoint free assertions, i.e., the expres- 
sions of the p r o p o s i t i o n a l  m o d a l  logic ,  1710 denotes the set of fixpoint 
t~ee assertions, M C II0. In the following an expression of the form aZ.&, 
where a E {#, v}, is called a f l xpo in t  expres s ion .  Formulae of the modal 
#-calculus with the set L: of action labels are interpreted relative to a la- 
b e l e d  t r a n s i t i o n  s y s t e m  T -- (S, {2+ I a e s where S is a finite set of 
states and -~ C S x S for every a E s is a binary relation on states. A val- 
u a t i o n  f u n c t i o n  V assigns to every propositional variable Z and atomic 
proposition Q a set of states ])(Z) _c S and V(Q) c S. Let V[S'/Z] be the 
valuation such that  V[S'/Z](Z) = S', and otherwise as V. The pair T and 
V is called a m o d e l  of the #-calculus. The semantics of each p-calculus 
formula �9 is the set of states I1~11T defined inductively as follows: 
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IlZlv T = 

Iql  = 

I1'~, v ~ l v  T = 

^ = 

I I [a]~l  T = 

I ~ , Z . ~ l v  T = 

I ~ Z . ~ l v  T = 

v ( z )  

v(o)  

~111T u I,~21v T 

[a] "r I,~lvT,where [a]'rS'={sl Vs' e S. if sAts'then s' eS'} 

((a)) T II~llv T, where ((a))TS ' .= {s [3s' e S'.s At #} 

n{s '  c s s'} 

U{s'  c_ s IS' c_l~llv~ts,/~} 
Given a model A4 = (T, 1)) model checking is to examine the question 
whether a certain expression q~ holds for the initial state s E 8 of the 
transition system T, i.e., whether s E[@[~. We transform the model check- 
ing problem into the problem of solving a Boolean equation system. This 
was already done by several authors, e.g. see [AC88, And92, Lar92, C1S91, 
CDS92, VeL92]. In contrary to their approaches here arbitrary negation free 
expressions are considered as right hand sides of the equations (no restric- 
tion to simple expressions). Furthermore we create one Boolean equation 
system for the whole problem with a partial order defined on its variables 
and equations. 
B.oughly the transformation is performed by the following steps: a fixpoint 
expression can be represented by an equation system with an additional 
ordering on the equations. On the semantic part we interpret the equation 
system with respect to a model, i.e., a fixpoint equation of modal logic 
becomes a fixpoint equation over the powerset of a state space. An isomor- 
phic representation of a powerset of states is a Boolean vector space. This 
allows us to derive a Boolean equation system from the original fixpoint 
expression and its model. 
A modal/J-caiculus formula can be represented as an ordered equation sys- 
tem. For example the fixpoint expression vZl.[a]lJg2.[b]((Z1 A Q) v Z2) is 
equivalent to the equation system E: Z1 -~ [a]Z2, Z2 ~ [b]((Zl A Q) v Z2), 
where the variables are ordered by Z1 < Z2. Note that in general here the 
order on the variables is a partial order in contrast to the variable ordering 
as in definition 1. 
The transformation is as follows: Recall that M is the set of variable and 
fixpoint free expressions of the modal #-calculus, i.e., the expressions of 
the propositional modal logic. The equivalence classes of M together with 
the implication ordering form a lattice ( M / ~ ,  ~).  The powerset of the 
state space S = {s l , . . . ,  sn} with the inclusion order forms a complete 
lattice (7)(8), C_). The evaluation function II lit : M -~ 7)(8) is monotone 
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true 8 

false 0 

l 

( t rue, , . . ,  true) 

(false,. . . ,  false) 

FIGURE 3. The lattices and the mappings 

(and continuous). The extension of the evaluation function from M to 
fixpoint equations over M maps modal operators [a], (a) to set operators 
[a] T, ((a)) T, modal variables to set variables and the logical operators A, V 
to the set operators n, U. Thus we get an equation system over the powerset 
of the state space. The labels {v, #} and the partial order on the equations 
remain the same as in the original equation system. Defining false < true 
the Boolean lattice (n31sl _<lSl) with pointwise ordering is isomorphic to 
(P(S),  C). The last step leads from a vector valued equation system in 
13 n to a Boolean equation system; every vector equation is split into n 
equations and the operators [a] 7-, ((a)) 7" are evaluated. 
Altogether a/z-calculus equation Z ~ ~ is mapped inductively to the (not 
ordered) set of n Boolean equations | z ( s  D ~ Ir for 1 < i < n, 
where 

I Q ( s )  = t r u e ,  i f  s e IIQII T 

][Q(s) = false, i f  s • IIQII~ 
Iz(s) = X z , ,  

Ir162 ---- I~,(s) AIr 

-- A 
8-~8 I 

8 ~ 8  t 

Note that the Boolean equations derived in this way do not contain nega- 
tions or modal operators. A/z-calculus equation system of the size k deter- 
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mines a Boolean equation system of size k �9 181. There is a partial order on 
the Boolean equations inherited from the partial order on the p-calculus 
equations. Two Boolean equations derived from one vector equation are not 
ordered. Thus the tree-like order on the set equations becomes an acyclic 
order on the Boolean equations. 
We now show that the two algorithms proposed in the previous section can 
be applied to the Boolean equation systems derived from a modal p-calculus 
equation system and a model. There are remaining two open questions: 
first, whether the partial order on the Boolean equations here matches the 
linear order on the Boolean equations and variables as in definition 1, and 
second, whether the solution of a Boolean equation system coincides with 
the semantics of the modal p-calculus. 

Proposition 4 Given a p-calculus expression and a transition system let 
A be the corresponding Boolean equation system. On its equations a partial 
order <z is defined. For each two extensions of <g to linear orders <t, <t' 
it holds: Y__ is the solution of A with the order <t, iff Y__ is the solution of 
A with the order <t,. 

Proof: (Sketch) For unnested fixpoints an order of equations is not relevant 
for the solution (see [Bek84]). The order of the nested fixpoints is preserved 
by each extension of the partial order <~ to a linear order. [] 

Proposition 5 Given a flxpoint expression '~ of the modal p-calculus and 
a transition system 7- with the initial state s, let A be the corresponding 
Boolean equation system. For the solution Y__ of A holds: Yr = true, iff 
holds at s. 

Proof: It is easy to see that the algorithm of Emerson and Lei [EmL86] 
calculates the solution as in Definition 2. [] 

5 Comparison to Other Work and Complexity 

The model checking problem encoded as equation system was already 
treated by several authors [AC88, And92, CDS92, Lar92]. The method 
presented here differs from these approaches. Roughly speaking, the dif- 
ference is that they get the solution by approximating sets. This approach 
was introduced by Emerson and Lei [EmL86] and continued for example by 
Cleaveland, Dreimiiller and Steffen [CDS92]. In land92] Andersen gives an 
algorithm based on Boolean equations. However, by representing a Boolean 
equation system as a graph his basic algorithm applies only for unnested 
fixpoints. The extension of the global version of his algorithm to the full 
calculus is due to the fixpoint approximation technique of Emerson and 
Lei. Also Larsen's algorithm [Lar92] deals with unnested fixpoints. 
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The Gaufl elimination for model checking in its local version is more closely 
related to the tableau method of Stirling and Walker [StW89] and Cleave- 
land [Cleg0]. In a Boolean equation system a variable i s  introduced for 
each pair of a state and a fixpoint formula. Each node in a tableau is la- 
beled by a sequent consisting of a pair of a state and a formula. Hence 
a Boolean equation can be seen like a reduced form of a subtableau con- 
raining only sequents with fixpoint formulae, which is the only relevant 
part for the structure of the tableau. The top-down construction of the 
tableau can also be found in the local version of the Gau~ elimination. 
While constructing a tableau the decision which path should be extended 
is equivalent to the selection of a variable from the top equation and cre- 
ating the related equation. The condition for a leaf in the tableau of being 
successful or not corresponds to the Gaufl division step: a cycle with a 
minimal fixpoint is regarded as unsuccessful (false), a cycle with a maxi- 
mal fixpoint is regarded as successful (true). The advantage of the Gaufl 
elimination over the tableau method has its roots in the bottom-up evalu- 
ation. On one hand it spares the introduction of different constants for the 
same fixpoint expression, on the other hand there is no redundant evalua- 
tion of identical subexpressions (subtrees). Altogether the local version of 
the Gaufl elimination for model checking can be regarded as a combination 
of the top-down strategy of the tableau allowing to explore only the relevant 
part of the state space, and a bottom-up strategy which avoids recompu- 
tation of identical subtrees. The maximal size of a tableau is bounded by 
O(b (lr where b is the maximal branching degree of the transition 
system, IS[ the number of states, [&[ the size of the formula and f ( r  the 
number of fixpoint operators in @. For the Gaufl elimination the number 
of derived equations is determined by the size of the state space and the 
number of fixpoint operators in ~. Substituting Boolean expressions leads 
to expressions exponential in the number of equations. The maximal size of 
the Boolean equation system constructed by the Gaufl elimination is bound 
by O((b a(r * I(~1) 2 * 21sl*f(r where additional to the abbreviations above 
a(r is the maximal nesting depth of modal operators in the formula @. 
Hence it is a natural idea to use the local version of the Gaufl elimination 
for an implementation of the tableau method. 

6 Examples 

The aim of this section is to demonstrate the possible advantage of the 
local version of GauB elimination over a tableau based model checker. 
The first both examples are academic ones, without a special meaning. 
They do not show the advantage of local model checking, because the 
whole state space has to be traversed. However, they show how our algo- 
rithm avoids recomputation of subexpressions, or subtrees resp., whereas 
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the tableau method does not. 
In the third example we prove a fairness property for the mutual exclusion 
algorithm of Peterson. 
A prototype of the local version of Gaufl elimination was implemented in 
C-l-+ using BDDs [Bry92] as data structure for Boolean expressions. In 
the examples here we compared our implementation with a tableau-based 
model checker as in [StW89] and with the tabiean-based model checker 
incorporated in the Concurrency Workbench (CWB), which uses tech- 
niques for avoiding some recomputations. All implementations run on a 
SUN SPARC2. 
We wish to determine whether s l  ~A4 uX.[a](b)X (every a-successor has 
a b-successor and this recursively) holds in the transition system given in 
figure 4 

FIGURE 4. example: scalable transition system 

The example consists of a scalable (n, k)-spindle where the final state is 
again identified with the start state. It has kn + k states. 
The local Gaufl elimination creates k equations, each of the form: X~ _v 
Aj=l..n Xi+l ,nod k for 1 < i < k which can be reduced to X~ ~ Xi+l ,nod ~. 
It takes k elimination steps to determine the solution. The tableau based 
model checker as in [StW89] builds a tree with 1 + 2n + 2n 2 + . . .  + 2n k 
sequents. For this property the number of equations is thus linear in the 
variable k of the in, k)-spindle, whereas the size of the tableau is exponential 
in the variable k. 
Does the following sl  ~M uZl.(a)pZ2.(a)(a)Z2 V (a)(a)Z1 hold in (all 
transitions labeled with a): 
This property was proved by our new local model checker with the following 
results: It created 6 equations and took one second time for the whole 
procedure. The tableau based model checker was interrupted after having 
generated more than 22 million (!) tableau sequents. 
The model checker of the Concurrency Workbench could cope well with 
both examples: it "quickly" returned the result. The techniques for avoid- 
ing recomputation came in useful. This was not the case in the following 
example. 
We considered the two process mutual exclusion algorithm of Peterson, 
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FIGURE 5. example: transition system 

given in [Wa189]. The property we proved is: "As long as process I proceeds, 
after a request it eventually enters the critical section." In order to detect 
progress we added "tick" and "tack" dummy actions which alternate each 
other when process 1 performs some action. Then the property to prove can 
be formulated as: "if a request comes, then along all paths where ticks and 
tacks alternate each other, eventually an enter will follow". The #-calculus 
formula representing this property is: 

vZI.([-]Z1 A pZ2.( vZ3.([\enter](((tick)tt V 
vZ4.([\enter](((tack)tt V Z~) A Z4)) A Za))))) 

This modal p-calculus formula is of alternation depth 2 and nesting depth 
3. Unfortunately the full discussion of this example exceeds the aim of the 
paper. 
This property, together with our extended Peterson-2 algorithm, was fed to 
the model checker, with the following result: The model checker came back 
with a positive result after slightly more than 10 minutes of CPU time. The 
CWB model checker on the other hand could not compute an answer for 
the same input within 24 hours elapsed time. During execution our model 
checker created 156 out of a possible 240 Boolean equations. This example 
is typical of the results we got from an extensive investigation into several 
mutual exclusion algorithms with different liveness properties. 

7 Conclusion 

We presented a novel, algebraic approach for solving Boolean equation sys- 
tems. As main application model checking in the full modal #-calculus 
was intended. In contrast to other approaches using equation systems our 
method is not based on approximation techniques and backtracking. The 
method works straightforward by successively eliminating variables and re- 
ducing the Boolean equation system, similar to Gaufl elimination for linear 
equation systems. Homogeneous, hierarchical and alternating fixpoints are 
treated uniformly. Contrary to other techniques Gaut3 elimination leads to 
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both a global and a local model checking algorithm within one framework. 
The local version is closely related to the tableau methods, but has a bet- 
ter worst case complexity. An extension to model checking for infinite state 
spaces is in work. 
There exists a prototype implementation of the GauB elimination using 
BDDs for the representation of Boolean expressions. Several examples (e.g. 
fairness properties for mutex algorithms) showed that the local version of 
our algorithm beats existing tableau methods. 
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1 Appendix: Proofs 

Proposition 1 For the solution Y of the equation system X ~= A(X) con- 
sisting of one single equation it holds: 

A(false) ira = l~ 
Y =  A(true) i f a = v  

Proof: The essential idea is, that there exist only three different monotone 
Boolean functions in one variable: the both constant functions true and 
false and the identity. 
For a =/~ there are three cases: 

1) A(X)  = true, i.e. the evaluation of the expression A is independent of 
the valuation of the free variable X. Then the solution is Y = true. 

2) A(X)  = false, i.e. the evaluation of the expression A is independent 
of the valuation of the free ~Zariable X. Then the solution is Y = false. 

3) In the remaining case because of monotonicity of A(X) the following 
holds: A(false) = false and Y = false is the solution. 

Analogously it holds Y = A(true) that is the solution of X ~ A(X). r7 

Often the solution of X a_. A(X)  will be denoted by the expression aX.A(X).  

Proposition 2 Y is the solution of the Boolean equation system E of the 
form X ~ A( X_.), iff Y also is the solution of the modified Boolean equation 
system F, where the equations are of the following form: 

X l  = A1 ( X 1 ,  . . .  , Xn) 

Xi ~'.4_ Ai(X~,..., Xi-1, bi, Xi+l,..., X,) 

Xn a~__ An(X1, . . . .  Xn ) 

true i f a i = u  f o r l < i < n .  where bi = false if al = # 
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Proof: First we show, that for 1 < k <_ n every fixpoint of F ( ~ )  is also a fix- 
point of E ( ~ ) .  Let Z_ (~) be a fixpoint o f F  (~). Then Z (~) fulfills all equations 
Z~ = Ai (Z~ , . . . ,  Zn) for j ~ i. For Zi holds Z~ = A~(Z~,.. . ,  Zi-1, b~, Z~+~, 
. . . ,  Zn). The question now is whether Zi = A~( Z~ , . . . , Zn). 

(1) Zi = bi. Then the equality holds obviously. 

(2) Zi ~ bl. Then, because of monotonicity of A~, A i (Z I , . . . , Z I -1 ,X i ,  
Z~+t, . . . ,  Zn) is independent of Xi and the equality holds. 

Now the proof is done by induction. 
Let Z (j) be the solution of F (j) [y_/X_J, and W (j) the solution of E(J)~_/X__]. 
induction basis: 

i ~ n Then __F(n)[Y_.JR__[] and E(n)[YIX_~ are identical and ob~fiously Z ( n )  = 
w(-). 

i ---- n Then Z (n) --- W___ (n) because of proposition 1. 

induction hypothesis: E (j+ ~ ) [Y/X] and F (j+ 1 ) [ y /X  ] have the same solution 
for all _Y. 

induction step: We know 

(1) Z (j) is fixpoint of_E (j) [Y1/XI, . . . ,  Yj-1/Xj-I] .  

(2) Z (j+l) is the solution of F(J)[Y1/X1, . . ,  Y j -1 /Xj-1 ,  Z j X j ] .  

(3) Z (i+1) is the solution of E (j) [Y1/X1,..., Yj-1/Xj-1 ,  Z j /X i  ] (induc- 
tion hypothesis). 

From (1) and (3) and the definition of the solution follows, that 
(*) W (i) <z(~) Z (~) . 

If W (j) is also a fixpoint of F (j)[_Y/X__j then also Z (j) <z~j) W (j), and 
the solutions must be identical (induction hypothesis and definition of the 
solution). 
If i r j then ]~(J) i~alfills the first equation of F (~) [)[/X] and by indue- 

solution of F (j+l)~v t~- tion hypothesis we know, that W__ (j+l) i s the  _ t~ t / .~ l , . . . ,  
Y~_l/Xi_1, Wj/Xj].  Hence W___ (j) is a fixpoint of F('/)[Y__/X__J. 
If i  = j we have to show, that for W~ := Aj(Y1, . . . ,  I zj-1, bj, Wj+I , . . . ,  Wn) 
holds Wj = W~. Because ofmonotonicity we know: W~ < ~  W~. If Wj = W~ 
we are done, so assume W~ <,~j Wj. But by (*) we know that Wj <~j 
Zj and from W~ <~j Wj we can conclude that Wj = Zj. By induction 

hypothesis we know then, that W (j) = Z (~). - -  [ ]  
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Proposition 3 The Boolean vector Y_. is the solution of the equation sys- 
tem E_., iff it is the solution of the equation system G__, where G_. is the 
modified equation system: 

X1 ~ AI(X1, . . .  ,Xn) 

v "  a-.A A [ " V  V "  . _ A . / "V'_ Y ~ 3 , " . . .  Y 
z x  i - -  ~ - l ~ Z X l , . . . , l x 3 _ l , ~ 3 k J x l , . . . ~ . n l , ~ j - ~ i , . . . , ~ n ]  

X l  "~ An(X1,  . . .  ,Xn) 

where 1 _< i < j <_ n. 

Proof: For I < k < n let Z (k) be the solution of G-(k) [Y_/X], and W___ (k) be 
the solution of E_. (k) [y_/X~. 

(1) Every fixpoint of E (k) ~_/X_.~ is also a fixpoint of G (k) [Y__/X__~. 

(2) Every fixpoint of G (k) [Y_/X__~ is also a fixpoint of E (k) [Y_/X_~. Note, 
that  this property does not hold for j < i. In this case it does not 
hold in general, that  Yj = Aj(Y1, . . .  ,Yk-1, Zk , . . . ,  Zn). 

(3) Proof by induction: 

induction basis: G_ (n) [Y/X_j and E (n)[Y/X_.] have the same solution 
for all Y_Y. 

induction hypothesis: G_.. (k+l) [Y_/X] and E (k+l) [Y_/X_.] have the same 
solution for all Y_y. 

induction step: from (1), (2), the induction hypothesis and the def- 
inition of the solution follows, that  E (k) [Y/X__ 3 and G (k) [Y/X] have 
the same solution for all Y__. 

[] 


