
Hierarchical Compression for Model-
Checking CSP or How to Check 1 0 20
Dining Philosophers
for Deadlock

A . W . Roscoe *t, P .H.B. Gardiner t,
M.H. Goldsmith t, J.R. Hulance t,
D .M. Jacksont J.B. Scat tergood *t

1 Introduction

FDR (Failures-Divergence Refinement) [6] is a model-checking tool for C S P

[10]. Except for the recent addition of determinism checking [20, 22] (pri-
marily for checking security properties) its method of verifying specifica-
tions is to test for the refinement of a process representing the specification
by the target process. The presently released version (FDR 1) uses only
explicit model-checking techniques: it fully expands the state-space of its
processes and visits each state in turn. Though it is very efficient in doing
this and can deal with processes with approximately 107 states in about 4
hours on a typical workstation, the exponential growth of state-space with
the number of parallel processes in a network represents a significant limit
on its utility. A new version of the tool (FDR 2) is at an advanced stage of
development at the time of writing (February 1995) which will offer vari-
ous enhancements over FDR 1. In particular, it has the ability to build up
a system gradually, at each stage compressing the subsystems to find an
equivalent process with (hopefully) many less states. By doing this it can
check systems which are sometimes exponentially larger than FDR 1 can
- such as a network of 102o (or even 101~176176 dining philosophers.

This is one of the ways (and the only one which is expected to be re-
leased in the immediate future) in which we anticipate adding direct im-
plicit model-checking capabilities to FDR. By these means we can certainly
rival the sizes of systems analysed by BDD's (see [2], for example) though,
like the latter, our implicit methods will certainly be sensitive to what ex-
ample they are applied to and how skillfully they are used. Hopefully the

*Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford
tFormal Systems (Europe) Ltd,3 Alfred Street, Oxford

134 A.W. Roscoe et al

examples later in this paper will illustrate this.
The idea of compressing systems as they are constructed is not new, and

indeed it has been used in a much more restricted sense in FDR for several
years (applying bisimulation at the boundary between its low and high-
level processes). The novelty of this paper consists in several of the specific
compressions described and in their use in the context of FDR which differs
from most other _^a^ l ~L_~I.-__ ,^^1~ �9 t~ ~ ; ~ h ~ A on C ~p &~d t;;~
being a refinement checker which compares two CSP processes rather than
having the specification written in a different language such as #-calculus
or temporal logic.

The ideas presented in this paper are closely related to those of [8] (whose
interface specifications - restrictions based on contexts - translate very
naturally and usefully to the context of CSP), and also of [3] since we will
make considerable use of optimisations resulting from restrictions to the
sub-alphabet of interest (which in the important case of deadlock turns
out to be the empty set). Most of the literature relates to compressions
with respect to strong equivalences such as observational equivalence and
bisimuIation. The most similar work to our own, because it relates to the
weaker, CSP style, equivalences is that of Valmari, for example [12, 25].

The main ideas behind FDR were introduced in a paper in the Hoare
Festschrif t [19] as, indeed, was part of the theory behind this compression.

In this paper we will introduce the main compression techniques used by
FDB.2 and give some early indications of their efficiency and usefulness.

2 Two views of CSP

The theory of CSP has classically been based on mathematical models
remote from the language itself. These models have been based on observ-
able behaviours of processes such as traces, failures and divergences, rather
than at tempting to capture a full operational picture of how the process
progresses.

On the other hand CSP can be given an operational semantics in terms
of labelled transition systems. This operational semantics can be related to
the mathematical models based on behaviour by defining abstraction func-
tions tha t 'observe' what behaviours the transition system can produce.
Suppose �9 is the abstraction function to one of these models. An abstract
operator op and the corresponding concrete/operational version op are con-
gruent if, for all operational processes P , we have ~ (o p (P)) = op(~(P)) .
The operational and denotational semantics of a language are congruent if
all constructs in the language have this property, which implies that the
behaviours predicted for any term by the denotational semantics are al-
ways the same as those that can be observed of its operational semantics.
That the standard semantics of CSP are congruent to a natural operational

Hierarchical compression for model-checking CSP 135

semantics is shown in, for example, [18].
Given that each of our models represents a process by the set of its

possible behaviours, it is natural to represent refinement as the reduction
of these options: the reverse containment of the set of behaviours. If P
refines Q we write Q E P, sometimes subscripting E to indicate which
model the refinement it is respect to:

In this paper we will consider three different models - which are the three
that FDR supports. These are

The traces model: a process is represented by the set of finite se-
quences of communications it can perform, traces (P) is the set of P ' s
(finite) traces.

The stable]allures model: a process is represented by its set of traces
as above and also by its stable failures (s, X) pairs where s is a finite
trace of the process and X is a set of events it can refuse after s
which (operationally) means coming into a state where it can do no
internal action and no action from the set X. failures(P) is the set of
P ' s stable failures in this sense. (This model is relatively new; it is
introduced in Ill]. The concepts behind it will, however, be familiar
to anyone wellwersed in CSP. It differs from those of [12] in that it
entirely ignores divergence.)

The failures~divergences model [1]: a process P diverges when it
performs an infinite unbroken sequence of internal actions. The set
divergences(P) is those traces after or during which the process can
diverge (this set is always suffix closed). In this model a process is
represented by divergences(P) and a modified set of failures in which
after any divergence the set of failures is extended so that we do not
care how the process behaves

faaures • (P) = failures(P) U {(s, X) I s e divergences(P)}

This is done both because one can argue that a divergent process
looks from the outside rather like a deadlocked one (i.e., refusing
everything) and because the technical problems of modelling what
happens past divergence are not worth the effort.

We will also only deal with the case where the overall alphabet of possible
actions is finite, since this makes the model a little more straightforward,
and is an obvious prerequisite to model-checking.

All three of these models have the obvious congruence theorem with
the standard operational semantics of CSP. In fact FDR works chiefly in
the operational world: it computes how a process behaves by applying the
rules of the operational semantics to expand it into a transition system. The
congruence theorem are thus vital in supporting all its work: it can only

136 A.W. Roscoe et al

claim to prove things about the abstractly-defined semantics of a process
because we happen to know that this equals the set of behaviours of the
operational process FDR works with.

The congruence theorems are also fundamental in supporting the hierar-
chical compression which is the main topic of this paper. For we know that ,
if C[.] is any CSP context, then the value in one of our semantic models
^r ,,-,f~ ,,~,,,~ value / ' - ,k~ ^,~ , k . u, ~ t~ j depends only on ,k^ ~,. ~.~ same mod~,j of P, not on ~,,~
precise way it is implemented. Therefore, if P is represented as a member
of a transition system, and we intend to compute the value of C[P] by ex-
panding it as a transition system also, it may greatly be to our advantage
to find another representation of P with fewer states. If, for example, we
are combining processes P and Q in parallel and each has 1000 states, but
can be compressed to 100, the compressed composition can have no more
than 10,000 states while the uncompressed one may have up to i,000,000.

3 Generalised Transition Systems

A labelled transition system is usually deemed to be a set of (effectively)
structureless nodes which have visible or v transitions to other nodes.
~.From the point of view of compression in the stable failures and fail-
ures/divergences models, it is useful to enrich nodes by a set of minimal
acceptance sets and a divergence labelling. We will therefore assume that
there are functions that map the nodes of a generalised labelled transition
system (GLTS) as follows:

minaccs (P) is a (possibly empty) set of incomparable (under subset)
subsets of U (the set of all events). X E minaccs(P) if and only if
P can stably accept the set X, refusing all other events, and can
similarly accept no smaller set. Since one of these nodes is represent-
ing more than one 'state ' the process can get into, it can have more
than one minimal acceptance. It can also have v actions in addition
to minimal acceptances (with the implicit understanding that the vs
are not possible when a minimal acceptance is). However if there is no
~- action then there must be at least one minimal acceptance, and in
any case all minimal acceptances are subsets of the visible transitions
the state can perform.

minaccs(P) represents the stable acceptances P can make itsel]. If
it has ~- actions then these might bring it into a state where the
process can have other acceptances (and the environment has no way
of seeing that the ~" has happened), but since these are not performed
by the node P but by a successor, these minimal acceptances are not
included among those of the node P .

Hierarchical compression for model-checking CSP 137

div(P) is either true or false. If it is true it means tha t P can diverge
- possibly as the result of an infinite sequence of implicit v-actions
within P. I t is as though P has a v-action to itself. This allows us to
represent divergence in transit ion systems from which all explicit r ' s
have been removed.

A node P in a GLTS can have multiple actions with the same label, just
as in a s tandard transition system.

A GLTS combines the features of a s tandard labelled transition system
and those of the normal form transition systems used in FDR 1 to represent
specification processes [19]. These have the two sorts of labelling discussed
above, but are (apart from the nondeterminism coded in the labellings)
deterministic in tha t there are no r actions and each node has at most one
successor under each a E ~.

The structures of a GLTS allow us to compress the behaviour of all the
nodes reachable from a single P under r actions into one node:

�9 The new node's visible actions are just the visible transitions (with
the same result state) possible for any Q such that P ~ ~ *Q.

�9 Its minimal acceptances are the smallest sets of visible actions ac-
cepted by any stable Q such that P-Y-~ *Q.

�9 I t is labelled divergent if, and only if, there is an infinite v-path
(invariably containing a loop in a finite graph) from P.

�9 The new node has no r actions.

I t is this tha t makes them useful for our purposes. Two things should be
pointed out immediately

. While the above transformation is valid for all the s tandard CSP
equivalences, it is not for most stronger equivalences such as refusal
testing and observational/bisimulation equivalence. To deal with one
of these either a richer structure of node, or less compression, would
be needed.

. I t is no good simply carrying out the above transformation on each
node in a transition system. I t will result in a v-free GLTS, but one
which probably has as many (and more complex) nodes than the

old one. Jus t because P ~) *Q and Q's behaviour has been included
in the compressed version of P, this does not mean we can dvoid
including a compressed version of Q as well: there may well be a
visible transit ion tha t leads directly to Q. One of the main strategies
discussed below - diamond elimination - is designed to analyse which
of these Q's can, in fact, be avoided.

138 A.W. Roscoe et al

FDB.2 is designed to be highly flexible about what sort of transition systems
it can work on. We will assume, however, that it is always working with
GLTS ones which essentially generalise them all. The operational semantics
of CSP have to be extended to deal with the labellings on nodes: it is
straightforward to construct the rules that allow us to infer the labelling
on a combination of nodes (under some CSP construct) from the labellings
on the individual ones.

Our concept of a GLTS has been discussed before in [19], and is similar
to an "acceptance graph" from [4], though the latter is to all intents the
same as the normal form graphs used in FDR1 and discussed in [19, 6].

4 Methods of compression

FDR2 uses at least five different methods of taking one GLTS and attempt-
ing to compress it into a smaller one.

.

.

.

.

.

Strong, node-labelled, bisimulation: the standard notion enriched (as
discussed in [19] and the same as l'I-bisimulations in [4]) by the min-
imal acceptance and divergence labelling of the nodes. This is com-
puted by iteration starting from the equivalence induced by equal
labelling. This was used in FDR1 for the final stage of normalising
specifications.

r-loop elimination: since a process may choose automatically to follow
a r-action, it follows that all the processes on a r-loop (or, more
properly, a strongly connected component under r-reachability) are
equivalent.

Diamond elimination: this carries out the node-compression discussed
in the last section systematically, so as to include as few nodes as
possible in the output graph.

Normalisation: discussed extensively elsewhere, this can give signifi-
cant gains, but it suffers from the disadvantage that by going through
powerspace nodes it can be expensive and leacl to expansion.

Factoring by semantic equivalence: the compositional models of CSP
we are using all represent much weaker congruences than bisimula-
tion. Therefore if we can afford to compute the semantic equivalence
relation over states it will give better compression than bisimulation
to factor by this equivalence relation.

There is no need here to describe either bisimulation, normalisation,
or the algorithms used to compute them. Efficient ways of computing the
strongly connected components of a directed graph (for r-loop elimination)

Hierarchical compression for model-checking CSP 139

can be found in many textbooks on algorithm design (e.g., [16]). Therefore
we shall concentrate on the other two methods discussed above, and ap-
propriate ways of combining the five.

Before doing this we will show how to factor a GLTS by an equivalence
relation on its nodes (something needed both for v-loop elimination and for
factoring by a semantic equivalence). If T = (T, -~, r) is a GLTS (r being
its root) and ~ is an equivalence relation over it, then the nodes of T~ ~-
are the equivalence classes g for n E T, with root Y. The actions are as
follows:

If a ~ v, then
tha t m ~ a ~n ~.

~ if and only if there are m ~ E ~ and n ~ E ~ such

�9 If ~ ~ ~, then ~ _ L + ~ if and only if there are m ~ E ~ and n ~ E
such tha t m ~--~n ~.

I f ~ = ~, then ~ rfl~ but (if we are concerned about divergence)
the new node is marked divergent if and only if there is an infinite
v-path amongst the members of ~ , or one of the m ~ E ~ is already
marked divergent.

The minimal acceptance marking of ~ is just the union of those of its
members, with non-minimal sets removed.

4.1 Computing semantic equivalence

Two nodes tha t are identified by strong node-labelled bisimulation are al-
ways semantically equivalent in each of our models. The models do, how-
ever, represent much weaker equivalences and there may well be advan-
tages in factoring the transition system by the appropriate one. The only
disadvantage is tha t the computat ion of these weaker equivalences is more
expensive: it requires an expensive form of normalisation, so

�9 there may be systems where it is impractical, or too expensive, to
compute semantic equivalence, and

�9 when computing semantic equivalence, it will probably be to our ad-
vantage to reduce the number of states using other compression tech-
niques first - see a later section.

To compute the semantic equivalence relation we require the entire nor-
mal form of the input GLTS T. This is the normal form tha t includes a
node equivalent to each node of the original system, with a function from
the original system which exhibits this equivalence (the map need neither
be injective - because it will identify nodes with the same semantic value

- nor surjective - because the normal form sometimes contains nodes tha t
are not equivalent to any single node of the original transition system).

140 A.W. Roscoe et al

Calculating the entire normal form is more time-consuming that ordinary
normalisation. The latter begins its normalisation search with a single set
(the Y-closure v* (r) of T ' s root) ,but for the entire normal form it has to
be seeded with {v*(n) [n E T} - usually I as many sets as there are
nodes in T. As with ordinary normalisation, there are two phases: the first
(pre-normalisation) computing the subsets of T that are reachable under
any trace (of visible actions) from any of the seed nodes, with a unique-
branching transition structure over it. Because of this unique branching
structure, the second phase, which is simply a strong node-labelled bisim-
ulation over it, guarantees to compute a normal form where all the nodes
have distinct semantic values. We distinguish between the three semantic
models as follows:

�9 For the traces model, neither minimal acceptance nor divergence la-
belling is used for the bisimulation.

�9 For the stable failures model, only minimal acceptance labelling is
used.

�9 For the failures/divergences model, both sorts of labelling are used
and in the pre-normalisation phase there is no need to search beyond
a divergent node.

The map from T to the normal form is then just the composition of that
which takes n to the pre-normal form node v* (n) and the final bisimulation.

The equivalence relation is then simply that induced by the map: two
nodes are equivalent if and only if they are mapped to the same node in
the normal form. The compressed transition system is that produced by
factoring out this equivalence using the rules discussed earlier. To prove
that the compressed form is equivalent to the original (in the sense that ,
in the chosen model, every node m is equivalent to ~ in the new one) one
can use the following lemma and induction, based on the fact tha t each
equivalence class of nodes under semantic equivalence is trivially Y-convex
as required by the lemma.

LEMMA 1
Suppose T be any GLTS and let M be any set of nodes in T with the
following two properties

�9 All members of M are equivalent in one of our three models C.

�9 M is convex under v (i.e., if m , m ~ E M and m" are such that
m r~ ,m,,__y_~ , m ~ then m" E M.

Then let T ' be the GLTS T / - , where - is the equivalence relation which
identifies all members of M but no other distinct nodes in T. m is semanti-

1 If and only if there are no ~--loops.

Hierarchical compression for model-checking CSP 141

cally equivalent in the chosen model to ~ (the corresponding node in T ') .

PROOF

It is elementary to show that each behaviour (trace or failure or divergence)
is one of ~ (this does not depend on the nature of -).

Any behaviour of a node ~ of 7 -~ corresponds to a sequence a of actions

m : m o x l ~ x~) m2. . .

either going on for ever (with all but finitely many xl v's), or terminat-
ing and perhaps depending on either a minimal acceptance or divergence
marking in the final state. Without loss of generality we can assume tha t

such that m r x r) i the m r are chosen so tha t there is, for each r, mr+ a mr+ 1
and tha t (if appropriate) the final mr possesses the divergence or minimal
acceptance which the sequence demonstrates. Set ra~ = m, the node which
we wish to demonstrate has the same behaviour exemplified by a.

For any relevant s, define a ~ s to be the final paxt of a s tar t ing at m-~s:

~ ms+a x.+~ m s + 2 . . .

I f M, the only non-trivial equivalence class appears more than once in
the final (v-only) segment of an infinite demonstrat ion of a divergence, then
all intermediate classes must be the same (by the v-convexity of M). But
this is impossible since an equivalence class never has a v action to itself
(by the construction of T~ -) .

Hence, a can only use this non-trivial class finitely often. If it appears
no times then the behaviour we have in T ~ is trivially one in T. Otherwise
it must appear some last t ime in a, as m'-'7, say. Wha t we will prove, by

' (and hence m rn~) induction for s from r down to 0, is tha t the node ms ---
possesses the same behaviour demonstra ted by the sequence a 1" s in 7-'.

If the special node M in T ' becomes marked by a divergence or minimal
acceptance (where relevant to C) through the factoring then it is trivial
tha t some member of the equivalence class has tha t behaviour and hence
(in the relevant models) all the members of M do (though perhaps after
some v actions) since they are equivalent in C. I t follows that if ~ r is the
final s tate in a, then our inductive claim holds.

Suppose s < r is not final in a and tha t the inductive claim has been
established for all i with s < i < r. Then the node ms is easily seen to
possess in T the behaviour of a 1" s. If the equivalence class of ms is not

and there is nothing else to prove. If it is M then since M then ms = ms
~ has the behaviour, it follows tha t rn8 and m s are equivalent in C and m 8

does also. This completes the proof of the lemma. ms

4.2 Diamond elimination

This procedure assumes tha t the relation of v-reachability is a part ial order
on nodes. If the input transition system is known to be divergence free

142 A.W. Roscoe et al

then this is true, otherwise v-loop elimination is required first (since this
procedure guarantees to achieve the desired state).

Under this assumption, diamond reduction can be described as follows,
where the input state-machine is S (in which nodes can be marked with
information such as minimal acceptances), and we are creating a new state-
machine T from all nodes explored in the search:

�9 Begin a search through the nodes of S starting from its root No. At
any time there will be a set of unexplored nodes of ~q; the search is
complete when this is empty.

�9 To explore node N, collect the following information:

- The set r* (N) of all nodes reachable from N under a (possibly
empty) sequence of r actions.

- Where relevant (based on the equivalence being used), diver-
gence and minimal acceptance information for N: it is divergent
if any member of r* (N) is either marked as divergent or has
a r to itself. The minimal acceptances are the union of those
of the members of r* iN), with non-minimal sets removed. This
information is used to mark N in T.

- The set V(N) of initial visible actions: the union of the set of
all non-r actions possible for any member of r* (N).

- For each a �9 V(N), the set Na = N after a of all nodes reachable
under a from any member of r* iN).

- For each a �9 V(N) , the set min(Na) which is the set of all
v-minimal elements of Na.

�9 A transition (labelled a) is added to T from N to each N ~ in min(Na),
for all a �9 V(N). Any nodes not already explored are added to the
search.

This creates a transition system where there are no r-actions but where
there can be ambiguous branching under visible actions, and where nodes
might be labelled as divergent. The reason why this compresses is that we
do not include in the search nodes where there is another node similarly
reachable but demonstrably at least as nondeterministic: for if M �9 r* (N)
then N is always at least as nondeterministic as M. The hope is that
the completed search will tend to include only those nodes that are r -
minimal: not reachable under r from any other. Notice that the behaviours
of the nodes not included from Na are nevertheless taken account of, since
their divergences and minimal acceptances are included when some node
of min(Na) is explored.

It seems counter-intuitive that we should work hard not to unwind r ' s
rather than doing so eagerly, The reason why we cannot simply unwind r ' s

Hierarchical compression for model-checking CSP 143

as far as possible (i.e., collecting the v-maximal points reachable under a
given action) is that there will probably be visible actions possible from
the unstable nodes we are trying to bypass. It is impossible to guarantee
that these actions can be ignored.

The reason we have called this compression diamond elimination is be-
cause what it does is to (at tempt to) remove nodes based on the diamond-
shaped transition arrangement where we have four nodes P, pt, Q, Q, and
p r ~p~, Q__~Q~, p ja ~Q and P~ a ~Q~. Starting Lfrom P, diamond elim-
ination will seek to remove the nodes P~ and Q~. The only way in which
this might fall is if some further node in the search forces one or both to
be considered.

The lemma that shows why diamond reduction works is the following.

LEMMA 2

Suppose N is any node in S, s E Z* and No = ~ N (i.e., there is a sequence
of nodes M0 --- No, M1, ..., Mk = N and actions x l , ...,xk such that Mi
Mm+a for all i and s = (xi I i = 1, . . ,n, xi ~ r)) . Then there is a node N'
in T such that No =:~ N' in T and N E r* (N').

PROOF

This is by induction on the length if s. If s is empty the result is obvious
(as No E T always), so assume it holds of s * and s = s~(a), with No = ~ N.
Then by definition of ~ , there exist nodes N~ and N2 of S such that

No ~ Na, N1 - -~ N2 and N E r*(N2).
8 S

By induction there thus exists NI in T such that No ~ NI in 7-
and N1 E T*(N~). Since N~ E T it has been explored in constructing
T. Clearly a e V(N~) and N2 E (N~)a. Therefore there exists a member
N ' of rnin((N~)a) (a subset of the nodes of T) such that N2 E v*(N') .
Then, by construction of T and since N E v*(N2) we have No = ~ N ~ and
N E q'*(N *) as required, completing the induction.

This lemma shows that every behaviour displayed by a node of S is
(thanks to the way we mark each node of T with the minimal acceptances
and divergence of its v-closure) displayed by a node of T.

Lemma 2 shows that the following two types of node are certain to be
included in T:

�9 The initial node No.

�9 So, the set of all r-minimal nodes (ones not reachable under v from
any other).

Let us call So U {No} the core of S. The obvious criteria for judging whether
to t ry diamond reduction at all, and of how successful it has been once tried,
will be based on the core. For since the only nodes we can hope to get rid
of are the complement of the core, we might decide not to bother if there
are not enough of these as a proportion of the whole. And after carrying

144 A.W. Roscoe et al

out the reduction, we can give a success rating in terms of the percentage
of non-core nodes eliminated.

Experimentation over a wide range of example CSP processes has demon-
strated that diamond elimination is a highly effective compression tech-
nique, with success ratings usually at or close to 100% on most natural
systems. To illustrate how diamond elimination works, consider one of the
most hackneyed CSP networks: N one-place buffer processes chained to-
gether.

C O P Y >> C O P Y >> . . . C O P Y >> C O P Y

Here, C O P Y = left?x ; right!x ----r C O P Y . If the underlying type has k
members then C O P Y has k + 1 states and the network has (k + 1) N. Since
all of the internal communications (the movement of data from one C O P Y
to the next) become r actions, this is an excellent target for diamond
elimination. And in fact we get 100% success: the only nodes retained are
those that are not v-reachable from any other. These are the ones in which
all of the data is as far to the left as it can be: there are no empty CO PY ' s
to the left of a full one. If k = 1 this means there are now N + 1 nodes
rather than 2 N, and if k = 2 it gives 2 N+I - 1 rather than 3 jr.

4.3 Combining techniques
The objective of compression is to reduce the number of states in the tar-
get system as much as possible, with the secondary objectives of keeping
the number of transitions and the complexity of any minimal acceptance
marking as low as possible.

There are essentially two possibilities for the best compression of a given
system: either its normal form or the result of applying some combination of
the other techniques. For whatever equivalence-preserving transformation
is performed on a transition system, the normal form (from its root node)
must be invariant; and all of the other techniques leave any normal form
system unchanged. In many cases (such as the chain of C O P Y s above) the
two will be the same size (for the diamond elimination immediately finds a
system equivalent to the normal form, as does equivalence f~toring), but
there are certainly cases where each is better.

The relative speeds (and memory use) of the various techniques vary
substantially from example to example, but broadly speaking the relative
efficiencies are (in decreasing order) r-loop elimination (except in rare com-
plex cases), bisimulation, diamond elimination, normalisation and equiva-
lence factoring. The last two can, of course, be done together since the
entire normal form contains the usual normal form within it. Diamond
elimination is an extremely useful strategy to carry out before either sort
of normalisation, both because it reduces the size of the system on which
the normal form is computed (and the number of seed nodes for the en-
tire normal form) and because it eliminates the need for searching through

Hierarchical compression for model-checking CSP 145

chains of r actions which forms a large part of the normalisation process.
One should note that all our compression techniques guarantee to do no

worse than leave the number of states unchanged, with the exception of
normalisation which in the worst case can expand the number of states
exponentially[19, 13]. Cases of expanding normal forms are very rare in
practical systems. Only very recently, after nearly four years, have we en-
countered a class of practically important processes whose normalisation
behaviour is pathological. These are the "spy" processes used to seek errors
in security protocols [21].

At the time of writing all of the compression techniques discussed have
been implemented and many experiments performed using them. Ulti-
mately we expect that FDR2's compression processing will be automated
according to a strategy based on a combination of these techniques, with
the additional possibility of user intervention.

5 Compression in context

FDR2 will take a complex CSP description and build it up in stages, com-
pressing the resulting process each time. Ultimately we expect these deci-
sions to be at least partly automated, but in early versions the compression
directives will be included in the syntax of the target process.

One of the most interesting and challenging things when incorporating
these ideas is preserving the debugging functionality of the system. The
debugging process becomes hierarchical: at the top level we will find erro-
neous behaviours of compressed parts of the system; we will then have to
debug the pre-compressed forms for the appropriate behaviour, and so on
down. On very large systems (such as that discussed in the next section)
it will not be practical to complete this process for all parts of the system.
Therefore we expect the debugging facility initially to work out subsys-
tem behaviours down as far as the highest level compressed processes, and
only to investigate more deeply when directed by the user (through the X
Windows debugging facility of FDR).

The way a system is composed together can have an enormous influence
on the effectiveness of hierarchical compression. The following principles
should generally be followed:

. Put together processes which communicate with each other together
early. For example, in the dining philosophers, you should build up the
system out of consecutive fork/philosopher pairs rather than putting
the philosophers all together, the forks all together and then putting
these two processes together at the highest level.

2. Hide all events at as low a level as is possible. The laws of CSP allow
the movement of hiding inside and outside a parallel operator as long

146 A,W. Roscoe et al

as its synchronisations are not interfered with. In general therefore,
any event that is to be hidden should be hidden the first time (in
building up the process) that it no longer has to be synchronised at a
higher level. The reason for this is that the compression techniques all
tend to work much more effectively on systems with many v actions.

3. Hide all events that are lrremvan~ (in the sense u ,~uo~d k~^_.~ ,^
the specification you are trying to prove.

Hiding can introduce divergence, and thereby invalidate many failures/
divergences model specifications. However in the traces model it does not
alter the sequence of unhidden events, and in the stable failures model
does not alter refusals which contain every hidden event. Therefore if only
trying to prove a property in one of these models - or if it has already been
established by whatever method that one's substantive system is divergence
free - the improved compression we get by hiding extra events makes it
worthwhile doing so.

We will give two examples of this, one based on the COPY chain example
we saw above and one on the dining philosophers. The first is probably
typical of the gains we can make with compression and hiding; the second
is atypically good.

5.1 Hiding and safety properties

If the underlying datatype T of the COPY processes is large, then chaining
N of them together will lead to unmanageably large state-spaces whatever
sort of compression is applied to the entire system. For it really does have
a lot of distinct states: one for each possible contents the resulting N-place
buffer might have. Of course there are analytic techniques that can be
applied to this simple example that pin down its behaviour, but we will
ignore these and illustrate a general technique that can be used to prove
simple safety properties of complex networks. Suppose x is one member of
the type T; an obviously desirable (and true) property of the COPY chain
is that the number of x's input on channel left is always greater than or
equal to the number output on right, but no greater than the latter plus
N. Since the truth or falsity of this property is unaffected by the system's
communications in the rest of its alphabet (left.y, right.y I Y E E \ (x})
we can hide this set and build the network up a process at a time from
left to right. At the intermediate stages you have to leave the right-hand
communications unhidden (because these still have to be synchronised with
processes yet to be built in)but nevertheless, in the traces model, the state
space of the intermediate stages grows more slowly with n than without
the hiding. In fact, with n COPY processes the hidden version compresses
to exactly 2 n states whatever the size of T (assuming that this is at least
2).

Hierarchical compression for model-checking CSP 147

This is a substantial reduction, but is perhaps not as good as one might
ideally hope for. By hiding all inputs other than the chosen one, we are
ignoring what the contents of the systems are apart from x, but because
we are still going to compose the process with one which will take all of
our outputs, these have to remain visible, and the number of states mainly
reflects the number of different ways the outputs of objects other than x
can be affected by the order of inputting and outputt ing x. The point is
tha t we do not know (in the method) that the outputs other than x are
ultimately going to be irrelevant to the specification, for we are not making
any assumptions about the process we will be connected to.

Since the size of system we can compress is always likely to be one or
two orders of magnitude smaller than the number of explicit states in the
final refinement check, it would actually be advantageous to build this
system not in one direction as indicated above, but from both ends and
finally compose the two halves together. (The partially-composed system
of n right-hand processes also has 2 N states.) Nothing useful would (in this
example) be achieved by building up further pieces in the middle, since
we only get the simplifying benefit of the hiding from the two ends of the
system.

If the (albeit slower) exponential growth of states even after hiding and
compressing the actual system is unacceptable, there is one further option:
find a network with either less states, or better compression behaviour,
tha t the actual one refines, but which can still be shown to satisfy the
specification. In the example above this is easy: simply replace COPY with

C~ = (#p.lejft.x ~ right.x --~ p) I~ CHAOS(Z \ {le~t.x, right.x})

the process which acts like a reliable one-place buffer for the value x, but
can input and output as it chooses one other members of T. It is easy to
show that COPY refines this, and a chain of n C~'s compresses to n § 1
states (even without hiding irrelevant external communications).

In a sense the Cx processes capture the essential reason why the chain
of COPY's satisfy the x-counting specification. By being clever we have
managed to automate the proof for much larger networks than following
the 'dumb' approach, but of course it is not ideal tha t we have had to be
clever in this way.

The methods discussed in this section could be used to prove properties
about the reliability of communications between a given pair of nodes in
a complex environment, and similar cases where the full complexity of the
operation of a system is irrelevant to why a particular property is true.

5.2 Hiding and deadlock

In the stable failures model, a system can deadlock if and only if P \ Z can.
In other words, we can hide absolutely all events - and move this hiding
as far into the process as possible using the principles already discussed.

148 A.W. Roscoe et al

Consider the case of the N dining philosophers (in a version, for simplic-
ity, without a Butler process), A na tura l way of building this system up
hierarchically is as progressively longer chains of the form

P H I L o l I F O R K o l I P H I L 1 1 1 . . . I IFORK, n - I I I P H I L m

In analysing the whole system for deadlock, we can hide all those events of
a subsystem that do not synchronise with any process outside the subsys-
tem. Thus in this case we can hide all events other than the interactions
between P H I L o and F O R K N_ I , and between P H I L,n and F O R K , n. The
failures normal form of the subsystem will have very few states (exactly 4).
Thus we can compute the failures normal form of the whole hidden system,
adding a small fixed number of philosopher/fork combinations at a time,
in time proportional to N, even though an explicit model-checker would
find exponentially many states.

We can, in fact, do even bet ter than this. Imagine doing the following:

�9 First, build a single philosopher/fork combination hiding all events
not in its external interface, and compress it. This will (with standard
definitions) have 4 states.

�9 Next, put 10 copies of this process together in parallel, after suitable
renaming to make them into consecutive pairs in a chain of philoso-
phers and forks (the result will have approximately 4000 states) and
compress it to its 4 states.

Now rename this process in 10 different ways so that it looks like 10
adjacent groups of philosophers, compute the results and compress
it.

�9 And repeat this process as often as you like...clearly it will take time
linear in the number of times you do it.

By this method we can produce a model of 10 N philosophers and forks in
a row in time proportional to N. To make them into a ring, all you would
have to do would be to add another row of one or more philosophers and
forks in parallel, synchronising the two at both ends. Depending on how it
was built (such as whether all the philosophers are allowed to act with a
single handedness) you would either find deadlock or prove it absent from
a system with doubly exponential number of states.

On the prototype version of FDR2, we have been able to use this tech-
nique to demonstrate the deadlock of 10 l~176176 philosophers in 15 minutes,
and then to use the debugging tool described earlier to tell you the state
of any individual one of them (though the depth of the parse tree even
of the efficiently constructed system makes this tedious). Viewed through
the eyes of explicit model-checking, this system has perhaps 7 l~176176176 states.
Clearly this simply demonstrates the pointlessness of pure state-counting.

Hierarchical compression for model-checking CSP 149

This example is, of course, extraordinarily well-suited to our methods.
What makes it work are firstly the fact that the networks we build up have
a constant-sized external interface (which could only happen in networks
that were, like this one, chains or nearly so) and have a behaviour that
compresses to a bounded size as the network grows.

On the whole we do not have to prove deadlock freedom of quite such
absurdly large systems. We expect that our methods will also bring great
improvements to the deadlock checking of more usual size ones that are
not necessarily as perfectly suited to them as the example above.

6 Related Work

A wide range of automated systems have been proposed for the analysis of
state-transition systems [5, 7, 14, 17] and it is instructive to examine where
FDR, as an industrial product, falls in the range of possibilities identified
by academic research. The more flexible tools, like the Concurrency Work-
bench of [5], permit a wide range of semantic operations to be carried out
in those formalisms which exhibit less consensus about the central semantic
:models. Choosing an alternative approach, systems constructed to decide
specific questions about suitably constructed finite-state representations
can achieve much greater performance [9, 23].

In designing FDR we make a compromise between these extremes: the
CSP language provides a flexible and powerful basis for describing prob-
lems, yet by concentrating on the standard CSP semantics we are able to
achieve acceptable performance levels. Milner's scheduling problem (used
as a benchmark in [5]) can be reduced to CSP normal form in around 3s for
seven clients and around 45s for ten. (The admittedly somewhat outdated
figure for bisimulation minimization using the Concurrency Workbench is
2000s for seven clients, and the ten client problem was too large to be
considered.) Furthermore, the flexibility of CSP as a specification language
removes much of the need for special-case algorithms to detect deadlock or
termination (such as those proposed as additions to Winston in [15]).

Perhaps the most comparable approach is that taken by the SMV sys-
tem [14], which decides whether CTL logical specifications are satisfied by
systems expressed as state-variable assignments. The BDD representation
used by SMV can encode very large problems efficiently, although as with
any implicit scheme its effectiveness can vary with the manner in which
a system is described: in this regard we hope that identifying candidate
components for compression or abstraction may prove easier in practice
than arranging that state variables respect a regular logical form. Unlike
SMV, a key feature of FDR is its use of a process algebra for both specifi-
cation and design, encouraging step-wise refinement and the combination
of automatic verification with conventional proof. The underlying semantic

150 A.W. Roscoe et al

model, and the extrinsic nature of FDR2 compression can, of course, be
applied to any notation or representation which can be interpreted within
the FDR framework. FDR2 is designed to facilitate such extension.

7 Conclusions

We have given details of how FDR2's compression works, and some simple
examples of how it can expand the size of problem we can automatically
check. At the time of writing we have not had time to carry out many eval-
uations of this new functionality on realistic-sized examples, but we have
no reason to doubt that compression will allow comparable improvements
in these.

It is problematic that the successful use of compression apparently takes
somewhat more skill than explicit model-checking. Only by studying its use
in large-scale case studies can we expect to assess the best ways to deal with
this - by automated tactics and transformation, or by design-rule guidance
to the user. In any case much work will be required before we can claim to
understand fully the capabilities and power of the extended tool.

Acknowledgements

As well as our owing him a tremendous debt for his development of CSP,
on which all this work is based, it was a remark by Tony Hoare that led
the first author to realise how our methods could check the exponential
systems of dining philosophers described in this paper.

We would like to thank the referees for some helpful remarks, in partic-
ular for pointing out the need for Lemma 1.

The work of Roscoe and Scattergood was supported in part by a grant
from the US Office of Naval Research.

8 REFERENCES

[1] S.D. Brookes and A.W. Roscoe, An improved failures model/or com-
municating processes, in Proceedings of the Pittsburgh seminar on
concurrency, Springer LNCS 197 (1985), 281-305.

[2] J.R. Burch, E.M. Clarke, D.L. Dill and L.J. Hwang, Symbolic model
checking: 1020 states and beyond, Proc. 5th IEEE Annual Symposium
on Logic in Computer Science, IEEE Press (1990).

[3] E.M. Clarke, D.E. Long and K.L.MacMiUan, Compositional Model
Checker, Proceedings of LICS 1989.

Hierarchical compression for model-checking CSP 151

[4] R. Cleaveland and M.C.B. Hennessy, Testing Equivalence as a Bisim-
ulation Equivalence, FAC 5 (1993) ppl-20.

[5] R. Cleaveland, J. Parrow and B. Steffen, The Concurrency Work-
bench: A semantics-based verification tool for finite state systems,
ACM TOPLAS Vol.15, N.1, 1993, pp.36-72.

[6] Formal Systems (Europe) Ltd., Failures Divergence Refinement User
Manual and Tutorial, version 1.4 1994.

[7] J.-C. Fernandez An implementation of an efficient algorithm for bisim-
ulation equivalence., Science of Computer Programming 13: 219-236,
1989/1990.

[8] S.Graf and B. Steffen, Compositional Minimisation of Finite-State
Systems, Proceedings of CAV1990 (LNCS 531).

[9] J.F. Groote and F. Vaandrager, An efficient algorithm for branching
bisimulation and stuttering equivalence, Proc. 17th ICALP, Springer-
Verlag LNCS 443, 1990.

[10] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall
1985.

[11] L. Jategoankar, A Meyer and A.W. Roscoe, Separating failures from
divergence, in preparation.

[12] R. Kaivola and A Valmari The weakest compositional semantic equiva-
lence preserving nexttime-less linear temporal logic in Proc CONCUR.
'92 (LNCS 630).

[13] P.C. KaneUakis and S.A. Smolka, CCS expressions, Finite state pro-
cesses and three problems of equivalence, Information and Computa-
tion 86, 43-68 (1990).

[14] K.L. McMiUan, Symbolic Model Checking, Kluwer, 1993.

[15] Malhotra, J., Smolka, S.A., Giacalone, A. and Shapiro, R., Winston: A
Tool for Hierarchical Design and Simulation of Concurrent Systems.,
In Proceedings of the Workshop on Specification and Verification of
Concurrent Systems, University of Stirling, Scotland, 1988.

[16] K. Melhorn Graph Algorithms and NP Completeness, EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag 1984.

[17] J. Richier, C. Rodriguez, J. Sifakis and ,]. Voiron, Verification in XE-
SAR of the Sliding Window Protocol, Proc. of the 7th IFIP Symposium
on Protocol Specification, Testing, and Verification, North-Holland,
Amsterdam, 1987.

152 A.W. Roscoe et al

[18] A.W. Roscoe, Unbounded Nondeterminism in CSP, in 'Two Papers on
CSP', PR.G Monograph PR.G-67. Also Journal of Logic and Compu-
tation 3, 2 pp131-172 (1993).

[19] A.W. Roscoe, Model-checking CSP, in A Classical Mind: Essays in
Honour of C.A.R. Hoare, A.W. Roscoe (ed.) Prentice-Hall 1994.

[20] A.W. Roscoe, CSP and determinism in security modelling to ap pear
in the proceedings of 1995 IEEE Symposium on Security and Privacy.

[21] A.W. Roscoe, Modelling and verifying key-exchange protocols using
CSP and FDR, to appear in the proceedings of CSFW8 (1995), IEEE
Press.

[22] A.W. Roscoe, 3.C.P. Woodcock and L. Wulf, Non-inter]erence through
determinism, Proc. ESORICS 94, Springer LNCS 875, pp 33-53.

[23] V. Roy and R. de Simone, Auto/Autograph, In Proc. Computer-Aided
Verification '90, American Mathematical Society, Providence, 1991.

[24] J.B. Scattergood, A basis/or CSP tools, To appear as Oxford Univer-
sity Computing Laboratory technical monograph, 1993.

[25] A. Valmari and M. Tienari An improved failures equivalence forfinite-
state systems with a reduction algorithm, in Protocol Specification,
Testing and Verification XI, North-Holland 1991.

