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1 Introduction 

FDR (Failures-Divergence Refinement) [6] is a model-checking tool for C S P  

[10]. Except for the recent addition of determinism checking [20, 22] (pri- 
marily for checking security properties) its method of verifying specifica- 
tions is to test for the refinement of a process representing the specification 
by the target process. The presently released version (FDR 1) uses only 
explicit model-checking techniques: it fully expands the state-space of its 
processes and visits each state in turn. Though it is very efficient in doing 
this and can deal with processes with approximately 107 states in about 4 
hours on a typical workstation, the exponential growth of state-space with 
the number of parallel processes in a network represents a significant limit 
on its utility. A new version of the tool (FDR 2) is at an advanced stage of 
development at the time of writing (February 1995) which will offer vari- 
ous enhancements over FDR 1. In particular, it has the ability to build up 
a system gradually, at each stage compressing the subsystems to find an 
equivalent process with (hopefully) many less states. By doing this it can 
check systems which are sometimes exponentially larger than FDR 1 can 
- such as a network of 102o (or even 101~176176 dining philosophers. 

This is one of the ways (and the only one which is expected to be re- 
leased in the immediate future) in which we anticipate adding direct im- 
plicit model-checking capabilities to FDR. By these means we can certainly 
rival the sizes of systems analysed by BDD's (see [2], for example) though, 
like the latter, our implicit methods will certainly be sensitive to what ex- 
ample they are applied to and how skillfully they are used. Hopefully the 

*Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford 
tFormal Systems (Europe) Ltd,3 Alfred Street, Oxford 



134 A.W. Roscoe et al 

examples later in this paper will illustrate this. 
The idea of compressing systems as they are constructed is not new, and 

indeed it has been used in a much more restricted sense in FDR for several 
years (applying bisimulation at the boundary between its low and high- 
level processes). The novelty of this paper consists in several of the specific 
compressions described and in their use in the context of FDR which differs 
from most other _^a^ l  ~L_~I.-__ ,^^1~ �9 t~ ~ ; ~  h ~ A  on C ~p &~d t;;~ 
being a refinement checker which compares two CSP processes rather  than 
having the specification written in a different language such as #-calculus 
or temporal  logic. 

The ideas presented in this paper are closely related to those of [8] (whose 
interface specifications - restrictions based on contexts - translate very 
naturally and usefully to the context of CSP), and also of [3] since we will 
make considerable use of optimisations resulting from restrictions to the 
sub-alphabet of interest (which in the important  case of deadlock turns 
out to be the empty set). Most of the literature relates to compressions 
with respect to strong equivalences such as observational equivalence and 
bisimuIation. The most similar work to our own, because it relates to the 
weaker, CSP style, equivalences is that of Valmari, for example [12, 25]. 

The main ideas behind FDR were introduced in a paper in the Hoare 
Festschrif t  [19] as, indeed, was part of the theory behind this compression. 

In this paper we will introduce the main compression techniques used by 
FDB.2 and give some early indications of their efficiency and usefulness. 

2 Two views of CSP 

The theory of CSP has classically been based on mathematical models 
remote from the language itself. These models have been based on observ- 
able behaviours of processes such as traces, failures and divergences, rather 
than at tempting to capture a full operational picture of how the process 
progresses. 

On the other hand CSP can be given an operational semantics in terms 
of labelled transition systems. This operational semantics can be related to 
the mathematical  models based on behaviour by defining abstraction func- 
tions tha t  'observe' what behaviours the transition system can produce. 
Suppose �9 is the abstraction function to one of these models. An abstract 
operator  op and the corresponding concrete/operational version op  are con- 
gruent if, for all operational processes P ,  we have ~ ( o p ( P ) )  = op(~(P)) .  
The operational and denotational semantics of a language are congruent if 
all constructs in the language have this property, which implies that  the 
behaviours predicted for any term by the denotational semantics are al- 
ways the same as those that  can be observed of its operational semantics. 
That  the standard semantics of CSP are congruent to a natural operational 
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semantics is shown in, for example, [18]. 
Given that  each of our models represents a process by the set of its 

possible behaviours, it is natural to represent refinement as the reduction 
of these options: the reverse containment of the set of behaviours. If  P 
refines Q we write Q E P,  sometimes subscripting E to indicate which 
model the refinement it is respect to: 

In this paper we will consider three different models - which are the three 
that  FDR supports. These are 

The traces model: a process is represented by the set of finite se- 
quences of communications it can perform, traces (P) is the set of P ' s  
(finite) traces. 

The stable ]allures model: a process is represented by its set of traces 
as above and also by its stable failures (s, X) pairs where s is a finite 
trace of the process and X is a set of events it can refuse after s 
which (operationally) means coming into a state where it can do no 
internal action and no action from the set X. failures(P) is the set of 
P ' s  stable failures in this sense. (This model is relatively new; it is 
introduced in Ill]. The concepts behind it will, however, be familiar 
to anyone wellwersed in CSP. It differs from those of [12] in that  it 
entirely ignores divergence.) 

The failures~divergences model [1]: a process P diverges when it 
performs an infinite unbroken sequence of internal actions. The set 
divergences(P) is those traces after or during which the process can 
diverge (this set is always suffix closed). In this model a process is 
represented by divergences(P) and a modified set of failures in which 
after any divergence the set of failures is extended so that  we do not 
care how the process behaves 

faaures • ( P) = failures(P) U {(s, X) I s e divergences(P)} 

This is done both because one can argue that  a divergent process 
looks from the outside rather like a deadlocked one (i.e., refusing 
everything) and because the technical problems of modelling what 
happens past divergence are not worth the effort. 

We will also only deal with the case where the overall alphabet of possible 
actions is finite, since this makes the model a little more straightforward, 
and is an obvious prerequisite to model-checking. 

All three of these models have the obvious congruence theorem with 
the standard operational semantics of CSP. In fact FDR works chiefly in 
the operational world: it computes how a process behaves by applying the 
rules of the operational semantics to expand it into a transition system. The 
congruence theorem are thus vital in supporting all its work: it can only 
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claim to prove things about the abstractly-defined semantics of a process 
because we happen to know that  this equals the set of behaviours of the 
operational process FDR works with. 

The congruence theorems are also fundamental in supporting the hierar- 
chical compression which is the main topic of this paper. For we know that ,  
if C[.] is any CSP context, then the value in one of our semantic models 
^r ,,-,f~ ,,~,,,~ value / ' -  ,k~ ^,~ , k .  u, ~ t~ j depends only on ,k^ ~,. ~.~ same mod~,j of P,  not on ~,,~ 
precise way it is implemented. Therefore, if P is represented as a member 
of a transition system, and we intend to compute the value of C[P] by ex- 
panding it as a transition system also, it may greatly be to our advantage 
to find another representation of P with fewer states. If, for example, we 
are combining processes P and Q in parallel and each has 1000 states, but  
can be compressed to 100, the compressed composition can have no more 
than 10,000 states while the uncompressed one may have up to i,000,000. 

3 Generalised Transition Systems 

A labelled transition system is usually deemed to be a set of (effectively) 
structureless nodes which have visible or v transitions to other nodes. 
~.From the point of view of compression in the stable failures and fail- 
ures/divergences models, it is useful to enrich nodes by a set of minimal 
acceptance sets and a divergence labelling. We will therefore assume that  
there are functions that  map the nodes of a generalised labelled transition 
system (GLTS) as follows: 

minaccs (P) is a (possibly empty) set of incomparable (under subset) 
subsets of U (the set of all events). X E minaccs(P) if  and only if 
P can stably accept the set X,  refusing all other events, and can 
similarly accept no smaller set. Since one of these nodes is represent- 
ing more than one 'state '  the process can get into, it can have more 
than one minimal acceptance. It can also have v actions in addition 
to minimal acceptances (with the implicit understanding that  the vs 
are not possible when a minimal acceptance is). However if there is no 
~- action then there must be at least one minimal acceptance, and in 
any case all minimal acceptances are subsets of the visible transitions 
the state can perform. 

minaccs(P) represents the stable acceptances P can make itsel]. If 
it has ~- actions then these might bring it into a state where the 
process can have other acceptances (and the environment has no way 
of seeing that  the ~" has happened), but  since these are not performed 
by the node P but  by a successor, these minimal acceptances are not 
included among those of the node P .  
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div(P) is either true or false. If  it is true it means tha t  P can diverge 
- possibly as the result of an infinite sequence of implicit v-actions 
within P.  I t  is as though P has a v-action to itself. This allows us to 
represent divergence in transit ion systems from which all explicit r ' s  
have been removed. 

A node P in a GLTS can have multiple actions with the same label, just  
as in a s tandard transition system. 

A GLTS combines the features of a s tandard labelled transition system 
and those of the normal form transition systems used in FDR 1 to represent 
specification processes [19]. These have the two sorts of labelling discussed 
above, but  are (apart  from the nondeterminism coded in the labellings) 
deterministic in tha t  there are no r actions and each node has at  most  one 
successor under each a E ~. 

The structures of a GLTS allow us to  compress the behaviour of all the 
nodes reachable from a single P under r actions into one node: 

�9 The new node's  visible actions are just  the visible transitions (with 
the same result state) possible for any Q such that  P ~ ~ *Q. 

�9 Its  minimal acceptances are the smallest sets of visible actions ac- 
cepted by  any stable Q such that  P-Y-~ *Q. 

�9 I t  is labelled divergent if, and only if, there is an infinite v-path  
(invariably containing a loop in a finite graph) from P. 

�9 The new node has no r actions. 

I t  is this tha t  makes them useful for our purposes. Two things should be 
pointed out immediately 

. While the above transformation is valid for all the s tandard CSP 
equivalences, it is not for most  stronger equivalences such as refusal 
testing and observational/bisimulation equivalence. To deal with one 
of these either a richer structure of node, or less compression, would 
be needed. 

. I t  is no good simply carrying out the above transformation on each 
node in a transition system. I t  will result in a v-free GLTS, but  one 
which probably  has as many  (and more complex) nodes than  the 

old one. Jus t  because P ~ ) *Q and Q's  behaviour has been included 
in the compressed version of P,  this does not mean we can dvoid 
including a compressed version of Q as well: there may  well be a 
visible transit ion tha t  leads directly to Q. One of the main strategies 
discussed below - diamond elimination - is designed to analyse which 
of these Q's  can, in fact, be avoided. 
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FDB.2 is designed to be highly flexible about what sort of transition systems 
it can work on. We will assume, however, that  it is always working with 
GLTS ones which essentially generalise them all. The operational semantics 
of CSP have to be extended to deal with the labellings on nodes: it is 
straightforward to construct the rules that  allow us to infer the labelling 
on a combination of nodes (under some CSP construct) from the labellings 
on the individual ones. 

Our concept of a GLTS has been discussed before in [19], and is similar 
to an "acceptance graph" from [4], though the latter is to all intents the 
same as the normal form graphs used in FDR1 and discussed in [19, 6]. 

4 Methods of compression 

FDR2 uses at least five different methods of taking one GLTS and attempt- 
ing to compress it into a smaller one. 

. 

. 

. 

. 

. 

Strong, node-labelled, bisimulation: the standard notion enriched (as 
discussed in [19] and the same as l'I-bisimulations in [4]) by the min- 
imal acceptance and divergence labelling of the nodes. This is com- 
puted by iteration starting from the equivalence induced by equal 
labelling. This was used in FDR1 for the final stage of normalising 
specifications. 

r-loop elimination: since a process may choose automatically to follow 
a r-action, it follows that  all the processes on a r-loop (or, more 
properly, a strongly connected component under r-reachability) are 
equivalent. 

Diamond elimination: this carries out the node-compression discussed 
in the last section systematically, so as to include as few nodes as 
possible in the output graph. 

Normalisation: discussed extensively elsewhere, this can give signifi- 
cant gains, but it suffers from the disadvantage that  by going through 
powerspace nodes it can be expensive and leacl to expansion. 

Factoring by semantic equivalence: the compositional models of CSP 
we are using all represent much weaker congruences than bisimula- 
tion. Therefore if we can afford to compute the semantic equivalence 
relation over states it will give better compression than bisimulation 
to factor by this equivalence relation. 

There is no need here to describe either bisimulation, normalisation, 
or the algorithms used to compute them. Efficient ways of computing the 
strongly connected components of a directed graph (for r-loop elimination) 
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can be found in many  textbooks on algorithm design (e.g., [16]). Therefore 
we shall concentrate on the other two methods discussed above, and ap- 
propriate  ways of combining the five. 

Before doing this we will show how to factor a GLTS by an equivalence 
relation on its nodes (something needed both  for v-loop elimination and for 
factoring by a semantic equivalence). If  T = (T, -~, r) is a GLTS (r being 
its root) and ~ is an equivalence relation over it, then the nodes of T~ ~- 
are the equivalence classes g for n E T, with root Y. The actions are as 
follows: 

If  a ~ v, then 
tha t  m ~ a ~n ~. 

~ if and only if there are m ~ E ~ and n ~ E ~ such 

�9 If  ~ ~ ~, then ~ _ L + ~  if and only if there are m ~ E ~ and n ~ E 
such tha t  m ~--~n ~. 

I f  ~ = ~, then ~ rfl~ but (if we are concerned about  divergence) 
the new node is marked divergent if and only if there is an infinite 
v-path  amongst  the members  of ~ ,  or one of the m ~ E ~ is already 
marked divergent. 

The minimal acceptance marking of ~ is just the union of those of its 
members,  with non-minimal sets removed. 

4.1 Computing semantic equivalence 

Two nodes tha t  are identified by strong node-labelled bisimulation are al- 
ways semantically equivalent in each of our models. The models do, how- 
ever, represent much weaker equivalences and there may well be advan- 
tages in factoring the transition system by the appropriate  one. The only 
disadvantage is tha t  the computat ion of these weaker equivalences is more 
expensive: it requires an expensive form of normalisation, so 

�9 there may be systems where it is impractical,  or too expensive, to 
compute semantic equivalence, and 

�9 when computing semantic equivalence, it will probably be to our ad- 
vantage to reduce the number of states using other compression tech- 
niques first - see a later section. 

To compute the semantic equivalence relation we require the entire nor- 
mal form of the input GLTS T. This is the normal form tha t  includes a 
node equivalent to each node of the original system, with a function from 
the original system which exhibits this equivalence (the map  need neither 
be injective - because it will identify nodes with the same semantic value 

- nor surjective - because the normal form sometimes contains nodes tha t  
are not equivalent to any single node of the original transition system). 
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Calculating the entire normal form is more time-consuming that  ordinary 
normalisation. The latter begins its normalisation search with a single set 
(the Y-closure v* (r) of T ' s  root) ,but  for the entire normal form it has to 
be seeded with {v*(n) [ n E T} - usually I as many sets as there are 
nodes in T. As with ordinary normalisation, there are two phases: the first 
(pre-normalisation) computing the subsets of T that  are reachable under 
any trace (of visible actions) from any of the seed nodes, with a unique- 
branching transition structure over it. Because of this unique branching 
structure, the second phase, which is simply a strong node-labelled bisim- 
ulation over it, guarantees to compute a normal form where all the nodes 
have distinct semantic values. We distinguish between the three semantic 
models as follows: 

�9 For the traces model, neither minimal acceptance nor divergence la- 
belling is used for the bisimulation. 

�9 For the stable failures model, only minimal acceptance labelling is 
used. 

�9 For the failures/divergences model, both sorts of labelling are used 
and in the pre-normalisation phase there is no need to search beyond 
a divergent node. 

The map from T to the normal form is then just  the composition of that  
which takes n to the pre-normal form node v* (n) and the final bisimulation. 

The equivalence relation is then simply that  induced by the map: two 
nodes are equivalent if and only if they are mapped to the same node in 
the normal form. The compressed transition system is that  produced by 
factoring out this equivalence using the rules discussed earlier. To prove 
that  the compressed form is equivalent to the original (in the sense that ,  
in the chosen model, every node m is equivalent to ~ in the new one) one 
can use the following lemma and induction, based on the fact tha t  each 
equivalence class of nodes under semantic equivalence is trivially Y-convex 
as required by the lemma. 

LEMMA 1 
Suppose T be any GLTS and let M be any set of nodes in T with the 
following two properties 

�9 All members of M are equivalent in one of our three models C. 

�9 M is convex under v (i.e., if m , m  ~ E M and m"  are such that  
m r~ ,m,,__y_~ , m  ~ then m" E M. 

Then let T '  be the GLTS T / - ,  where - is the equivalence relation which 
identifies all members of M but  no other distinct nodes in T.  m is semanti- 

1 If and only if there are no ~--loops. 
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cally equivalent in the chosen model to ~ (the corresponding node in T ' ) .  

PROOF 

It is elementary to show that each behaviour (trace or failure or divergence) 
is one of ~ (this does not depend on the nature of -). 

Any behaviour of a node ~ of 7 -~ corresponds to a sequence a of actions 

m : m o  x l ~  x~) m2. . .  

either going on for ever (with all but  finitely many  xl  v's),  or terminat-  
ing and perhaps depending on either a minimal acceptance or divergence 
marking in the final state. Without  loss of generality we can assume tha t  

such that  m r  x r) i the m r  are chosen so tha t  there is, for each r, mr+ a mr+ 1 
and tha t  (if appropriate)  the final mr  possesses the divergence or minimal 
acceptance which the sequence demonstrates.  Set ra~ = m, the node which 
we wish to demonstrate  has the same behaviour exemplified by a. 

For any relevant s, define a ~ s to be the final paxt of a s tar t ing at m-~s: 

~ ms+a x.+~ m s + 2 . . .  

I f  M,  the only non-trivial equivalence class appears  more than  once in 
the final (v-only) segment of an infinite demonstrat ion of a divergence, then 
all intermediate classes must be the same (by the v-convexity of M).  But 
this is impossible since an equivalence class never has a v action to itself 
(by the construction of T~ - ) .  

Hence, a can only use this non-trivial class finitely often. If it appears  
no times then the behaviour we have in T ~ is trivially one in T.  Otherwise 
it must  appear  some last t ime in a,  as m'-'7, say. Wha t  we will prove, by 

' (and hence m rn~) induction for s from r down to 0, is tha t  the node ms --- 
possesses the same behaviour demonstra ted by the sequence a 1" s in 7-'. 

If  the special node M in T '  becomes marked by a divergence or minimal 
acceptance (where relevant to C) through the factoring then it is trivial 
tha t  some member  of the equivalence class has tha t  behaviour and hence 
(in the relevant models) all the members  of M do (though perhaps after 
some v actions) since they are equivalent in C. I t  follows that  if ~ r  is the 
final s tate in a,  then our inductive claim holds. 

Suppose s < r is not final in a and tha t  the inductive claim has been 
established for all i with s < i < r. Then the node ms is easily seen to 
possess in T the behaviour of a 1" s. If  the equivalence class of ms is not 

and there is nothing else to prove. If  it is M then since M then ms = ms 
~ has the behaviour, it follows tha t  rn8 and m s are equivalent in C and m 8 

does also. This completes the proof of the lemma. ms 

4.2 Diamond elimination 

This procedure assumes tha t  the relation of v-reachability is a part ial  order 
on nodes. If  the input transition system is known to be divergence free 
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then this is true, otherwise v-loop elimination is required first (since this 
procedure guarantees to achieve the desired state). 

Under this assumption, diamond reduction can be described as follows, 
where the input state-machine is S (in which nodes can be marked with 
information such as minimal acceptances), and we are creating a new state- 
machine T from all nodes explored in the search: 

�9 Begin a search through the nodes of S starting from its root  No. At 
any time there will be a set of unexplored nodes of ~q; the search is 
complete when this is empty. 

�9 To explore node N,  collect the following information: 

- The set r* (N) of all nodes reachable from N under a (possibly 
empty) sequence of r actions. 

- Where relevant (based on the equivalence being used), diver- 
gence and minimal acceptance information for N: it is divergent 
if any member of r* (N)  is either marked as divergent or has 
a r to itself. The minimal acceptances are the union of those 
of the members of r* iN),  with non-minimal sets removed. This 
information is used to mark N in T. 

- The set V(N)  of initial visible actions: the union of the set of 
all non-r  actions possible for any member of r* (N). 

- For each a �9 V(N),  the set Na = N after a of all nodes reachable 
under a from any member of r* iN).  

- For each a �9 V(N) ,  the set min(Na) which is the set of all 
v-minimal elements of Na. 

�9 A transition (labelled a) is added to T from N to each N ~ in min(Na), 
for all a �9 V(N).  Any nodes not already explored are added to the 
search. 

This creates a transition system where there are no r-actions but  where 
there can be ambiguous branching under visible actions, and where nodes 
might be labelled as divergent. The reason why this compresses is that  we 
do not include in the search nodes where there is another node similarly 
reachable but  demonstrably at least as nondeterministic: for if M �9 r* (N)  
then N is always at least as nondeterministic as M. The hope is that  
the completed search will tend to include only those nodes that  are r -  
minimal: not  reachable under r from any other. Notice that  the behaviours 
of the nodes not included from Na are nevertheless taken account of, since 
their divergences and minimal acceptances are included when some node 
of min(Na) is explored. 

It  seems counter-intuitive that  we should work hard not to unwind r ' s  
rather than doing so eagerly, The reason why we cannot simply unwind r ' s  
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as far as possible (i.e., collecting the v-maximal points reachable under a 
given action) is that  there will probably be visible actions possible from 
the unstable nodes we are trying to bypass. It  is impossible to guarantee 
that  these actions can be ignored. 

The reason we have called this compression diamond elimination is be- 
cause what it does is to (at tempt to) remove nodes based on the diamond- 
shaped transition arrangement where we have four nodes P, pt,  Q, Q, and 
p r ~p~, Q__~Q~, p ja ~Q and P~ a ~Q~. Starting Lfrom P,  diamond elim- 
ination will seek to remove the nodes P~ and Q~. The only way in which 
this might fall is if some further node in the search forces one or both  to 
be considered. 

The lemma that  shows why diamond reduction works is the following. 

LEMMA 2 

Suppose N is any node in S, s E Z* and No = ~  N (i.e., there is a sequence 
of nodes M0 --- No, M1, ..., Mk = N and actions x l ,  ...,xk such that  Mi 
Mm+a for all i and s = (xi I i = 1, . . ,n, xi ~ r)) .  Then there is a node N'  
in T such that  No =:~ N'  in T and N E r* (N'). 

PROOF 

This is by induction on the length if s. If s is empty the result is obvious 
(as No E T always), so assume it holds of s * and s = s~(a), with No = ~  N. 
Then by definition of ~ ,  there exist nodes N~ and N2 of S such that  

No ~ Na, N1 - -~  N2 and N E r*(N2). 
8 S 

By induction there thus exists NI in T such that  No ~ NI in 7- 
and N1 E T*(N~). Since N~ E T it has been explored in constructing 
T.  Clearly a e V(N~) and N2 E (N~)a. Therefore there exists a member 
N '  of rnin((N~)a) (a subset of the nodes of T) such that  N2 E v*(N') .  
Then, by construction of T and since N E v*(N2) we have No = ~  N ~ and 
N E q'*(N *) as required, completing the induction. 

This lemma shows that  every behaviour displayed by a node of S is 
(thanks to the way we mark each node of T with the minimal acceptances 
and divergence of its v-closure) displayed by a node of T.  

Lemma 2 shows that  the following two types of node are certain to  be 
included in T:  

�9 The initial node No. 

�9 So, the set of all r-minimal nodes (ones not reachable under v from 
any other). 

Let us call So U {No} the core of S. The obvious criteria for judging whether 
to t ry  diamond reduction at all, and of how successful it has been once tried, 
will be based on the core. For since the only nodes we can hope to get rid 
of are the complement of the core, we might decide not to bother if there 
are not enough of these as a proportion of the whole. And after carrying 
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out the reduction, we can give a success rating in terms of the percentage 
of non-core nodes eliminated. 

Experimentation over a wide range of example CSP processes has demon- 
strated that diamond elimination is a highly effective compression tech- 
nique, with success ratings usually at or close to 100% on most natural 
systems. To illustrate how diamond elimination works, consider one of the 
most hackneyed CSP networks: N one-place buffer processes chained to- 
gether. 

C O P Y  >> C O P Y  >> . . .  C O P Y  >> C O P Y  

Here, C O P Y  = left?x ; right!x ----r C O P Y .  If the underlying type has k 
members then C O P Y  has k + 1 states and the network has (k + 1) N. Since 
all of the internal communications (the movement of data from one C O P Y  
to the next) become r actions, this is an excellent target for diamond 
elimination. And in fact we get 100% success: the only nodes retained are 
those that are not v-reachable from any other. These are the ones in which 
all of the data is as far to the left as it can be: there are no empty CO PY ' s  
to the left of a full one. If k = 1 this means there are now N + 1  nodes 
rather than 2 N, and if k = 2 it gives 2 N+I - 1 rather than 3 jr. 

4.3 Combining techniques 
The objective of compression is to reduce the number of states in the tar- 
get system as much as possible, with the secondary objectives of keeping 
the number of transitions and the complexity of any minimal acceptance 
marking as low as possible. 

There are essentially two possibilities for the best compression of a given 
system: either its normal form or the result of applying some combination of 
the other techniques. For whatever equivalence-preserving transformation 
is performed on a transition system, the normal form (from its root node) 
must be invariant; and all of the other techniques leave any normal form 
system unchanged. In many cases (such as the chain of C O P Y s  above) the 
two will be the same size (for the diamond elimination immediately finds a 
system equivalent to the normal form, as does equivalence f~toring), but 
there are certainly cases where each is better. 

The relative speeds (and memory use) of the various techniques vary 
substantially from example to example, but broadly speaking the relative 
efficiencies are (in decreasing order) r-loop elimination (except in rare com- 
plex cases), bisimulation, diamond elimination, normalisation and equiva- 
lence factoring. The last two can, of course, be done together since the 
entire normal form contains the usual normal form within it. Diamond 
elimination is an extremely useful strategy to carry out before either sort 
of normalisation, both because it reduces the size of the system on which 
the normal form is computed (and the number of seed nodes for the en- 
tire normal form) and because it eliminates the need for searching through 
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chains of r actions which forms a large part of the normalisation process. 
One should note that all our compression techniques guarantee to do no 

worse than leave the number of states unchanged, with the exception of 
normalisation which in the worst case can expand the number of states 
exponentially[19, 13]. Cases of expanding normal forms are very rare in 
practical systems. Only very recently, after nearly four years, have we en- 
countered a class of practically important processes whose normalisation 
behaviour is pathological. These are the "spy" processes used to seek errors 
in security protocols [21]. 

At the time of writing all of the compression techniques discussed have 
been implemented and many experiments performed using them. Ulti- 
mately we expect that FDR2's compression processing will be automated 
according to a strategy based on a combination of these techniques, with 
the additional possibility of user intervention. 

5 Compression in context 

FDR2 will take a complex CSP description and build it up in stages, com- 
pressing the resulting process each time. Ultimately we expect these deci- 
sions to be at least partly automated, but in early versions the compression 
directives will be included in the syntax of the target process. 

One of the most interesting and challenging things when incorporating 
these ideas is preserving the debugging functionality of the system. The 
debugging process becomes hierarchical: at the top level we will find erro- 
neous behaviours of compressed parts of the system; we will then have to 
debug the pre-compressed forms for the appropriate behaviour, and so on 
down. On very large systems (such as that discussed in the next section) 
it will not be practical to complete this process for all parts of the system. 
Therefore we expect the debugging facility initially to work out subsys- 
tem behaviours down as far as the highest level compressed processes, and 
only to investigate more deeply when directed by the user (through the X 
Windows debugging facility of FDR). 

The way a system is composed together can have an enormous influence 
on the effectiveness of hierarchical compression. The following principles 
should generally be followed: 

. Put  together processes which communicate with each other together 
early. For example, in the dining philosophers, you should build up the 
system out of consecutive fork/philosopher pairs rather than putting 
the philosophers all together, the forks all together and then putting 
these two processes together at the highest level. 

2. Hide all events at as low a level as is possible. The laws of CSP allow 
the movement of hiding inside and outside a parallel operator as long 



146 A,W. Roscoe et al 

as its synchronisations are not interfered with. In general therefore, 
any event that is to be hidden should be hidden the first time (in 
building up the process) that it no longer has to be synchronised at a 
higher level. The reason for this is that the compression techniques all 
tend to work much more effectively on systems with many v actions. 

3. Hide all events that are lrremvan~ (in the sense u ,~uo~d k~^_.~ ,^ 
the specification you are trying to prove. 

Hiding can introduce divergence, and thereby invalidate many failures/ 
divergences model specifications. However in the traces model it does not 
alter the sequence of unhidden events, and in the stable failures model 
does not alter refusals which contain every hidden event. Therefore if only 
trying to prove a property in one of these models - or if it has already been 
established by whatever method that one's substantive system is divergence 
free - the improved compression we get by hiding extra events makes it 
worthwhile doing so. 

We will give two examples of this, one based on the COPY chain example 
we saw above and one on the dining philosophers. The first is probably 
typical of the gains we can make with compression and hiding; the second 
is atypically good. 

5.1 Hiding and safety properties 

If the underlying datatype T of the COPY processes is large, then chaining 
N of them together will lead to unmanageably large state-spaces whatever 
sort of compression is applied to the entire system. For it really does have 
a lot of distinct states: one for each possible contents the resulting N-place 
buffer might have. Of course there are analytic techniques that can be 
applied to this simple example that pin down its behaviour, but we will 
ignore these and illustrate a general technique that can be used to prove 
simple safety properties of complex networks. Suppose x is one member of 
the type T; an obviously desirable (and true) property of the COPY chain 
is that the number of x's input on channel left is always greater than or 
equal to the number output on right, but no greater than the latter plus 
N. Since the truth or falsity of this property is unaffected by the system's 
communications in the rest of its alphabet (left.y, right.y I Y E E \ (x}) 
we can hide this set and build the network up a process at a time from 
left to right. At the intermediate stages you have to leave the right-hand 
communications unhidden (because these still have to be synchronised with 
processes yet to be built in)but nevertheless, in the traces model, the state 
space of the intermediate stages grows more slowly with n than without 
the hiding. In fact, with n COPY processes the hidden version compresses 
to exactly 2 n states whatever the size of T (assuming that this is at least 
2). 
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This is a substantial reduction, but  is perhaps not as good as one might 
ideally hope for. By hiding all inputs other than the chosen one, we are 
ignoring what the contents of the systems are apart  from x, but  because 
we are still going to compose the process with one which will take all of 
our outputs,  these have to remain visible, and the number of states mainly 
reflects the number of different ways the outputs of objects other than x 
can be affected by the order of inputting and outputt ing x. The point is 
tha t  we do not know (in the method) that  the outputs other than x are 
ultimately going to be irrelevant to the specification, for we are not making 
any assumptions about the process we will be connected to. 

Since the size of system we can compress is always likely to be one or 
two orders of magnitude smaller than the number of explicit states in the 
final refinement check, it would actually be advantageous to build this 
system not in one direction as indicated above, but  from both  ends and 
finally compose the two halves together. (The partially-composed system 
of n right-hand processes also has 2 N states.) Nothing useful would (in this 
example) be achieved by building up further pieces in the middle, since 
we only get the simplifying benefit of the hiding from the two ends of the 
system. 

If the (albeit slower) exponential growth of states even after hiding and 
compressing the actual system is unacceptable, there is one further option: 
find a network with either less states, or better  compression behaviour, 
tha t  the actual one refines, but  which can still be shown to satisfy the 
specification. In the example above this is easy: simply replace COPY with 

C~ = (#p.lejft.x ~ right.x --~ p) I~ CHAOS(Z \ {le~t.x, right.x}) 

the process which acts like a reliable one-place buffer for the value x, but 
can input and output  as it chooses one other members of T. It is easy to 
show that  COPY refines this, and a chain of n C~'s compresses to n § 1 
states (even without hiding irrelevant external communications). 

In a sense the Cx processes capture the essential reason why the chain 
of COPY's satisfy the x-counting specification. By being clever we have 
managed to automate the proof for much larger networks than following 
the 'dumb'  approach, but  of course it is not ideal tha t  we have had to be 
clever in this way. 

The methods discussed in this section could be used to prove properties 
about  the reliability of communications between a given pair of nodes in 
a complex environment, and similar cases where the full complexity of the 
operation of a system is irrelevant to why a particular property is true. 

5.2 Hiding and deadlock 

In the stable failures model, a system can deadlock if and only if P \ Z can. 
In other words, we can hide absolutely all events - and move this hiding 
as far into the process as possible using the principles already discussed. 
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Consider the case of the N dining philosophers (in a version, for simplic- 
ity, without a Butler process), A na tura l  way of building this system up 
hierarchically is as progressively longer chains of the form 

P H I L o l I F O R K o l I P H I L 1 1 1 .  . . I IFORK,  n - I  I I P H I L m  

In analysing the whole system for deadlock, we can hide all those events of 
a subsystem that  do not synchronise with any process outside the subsys- 
tem. Thus in this case we can hide all events other than the interactions 
between P H I L o  and F O  R K  N_ I , and between P H I L,n and F O R K ,  n. The 
failures normal form of the subsystem will have very few states (exactly 4). 
Thus we can compute the failures normal form of the whole hidden system, 
adding a small fixed number of philosopher/fork combinations at a time, 
in time proportional to N,  even though an explicit model-checker would 
find exponentially many states. 

We can, in fact, do even bet ter  than this. Imagine doing the following: 

�9 First, build a single philosopher/fork combination hiding all events 
not in its external interface, and compress it. This will (with standard 
definitions) have 4 states. 

�9 Next, put  10 copies of this process together in parallel, after suitable 
renaming to make them into consecutive pairs in a chain of philoso- 
phers and forks (the result will have approximately 4000 states) and 
compress it to its 4 states. 

Now rename this process in 10 different ways so that  it looks like 10 
adjacent groups of philosophers, compute the results and compress 
it. 

�9 And repeat this process as often as you like...clearly it will take time 
linear in the number of times you do it. 

By this method we can produce a model of 10 N philosophers and forks in 
a row in time proportional to N. To make them into a ring, all you would 
have to do would be to add another row of one or more philosophers and 
forks in parallel, synchronising the two at both  ends. Depending on how it 
was built (such as whether all the philosophers are allowed to act with a 
single handedness) you would either find deadlock or prove it absent from 
a system with doubly exponential number of states. 

On the prototype version of FDR2, we have been able to use this tech- 
nique to demonstrate the deadlock of 10 l~176176 philosophers in 15 minutes, 
and then to use the debugging tool described earlier to tell you the state 
of any individual one of them (though the depth of the parse tree even 
of the efficiently constructed system makes this tedious). Viewed through 
the eyes of explicit model-checking, this system has perhaps 7 l~176176176 states. 
Clearly this simply demonstrates the pointlessness of pure state-counting. 
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This example is, of course, extraordinarily well-suited to our methods. 
What makes it work are firstly the fact that the networks we build up have 
a constant-sized external interface (which could only happen in networks 
that were, like this one, chains or nearly so) and have a behaviour that 
compresses to a bounded size as the network grows. 

On the whole we do not have to prove deadlock freedom of quite such 
absurdly large systems. We expect that our methods will also bring great 
improvements to the deadlock checking of more usual size ones that are 
not necessarily as perfectly suited to them as the example above. 

6 Related Work 

A wide range of automated systems have been proposed for the analysis of 
state-transition systems [5, 7, 14, 17] and it is instructive to examine where 
FDR, as an industrial product, falls in the range of possibilities identified 
by academic research. The more flexible tools, like the Concurrency Work- 
bench of [5], permit a wide range of semantic operations to be carried out 
in those formalisms which exhibit less consensus about the central semantic 
:models. Choosing an alternative approach, systems constructed to decide 
specific questions about suitably constructed finite-state representations 
can achieve much greater performance [9, 23]. 

In designing FDR we make a compromise between these extremes: the 
CSP language provides a flexible and powerful basis for describing prob- 
lems, yet by concentrating on the standard CSP semantics we are able to 
achieve acceptable performance levels. Milner's scheduling problem (used 
as a benchmark in [5]) can be reduced to CSP normal form in around 3s for 
seven clients and around 45s for ten. (The admittedly somewhat outdated 
figure for bisimulation minimization using the Concurrency Workbench is 
2000s for seven clients, and the ten client problem was too large to be 
considered.) Furthermore, the flexibility of CSP as a specification language 
removes much of the need for special-case algorithms to detect deadlock or 
termination (such as those proposed as additions to Winston in [15]). 

Perhaps the most comparable approach is that taken by the SMV sys- 
tem [14], which decides whether CTL logical specifications are satisfied by 
systems expressed as state-variable assignments. The BDD representation 
used by SMV can encode very large problems efficiently, although as with 
any implicit scheme its effectiveness can vary with the manner in which 
a system is described: in this regard we hope that identifying candidate 
components for compression or abstraction may prove easier in practice 
than arranging that state variables respect a regular logical form. Unlike 
SMV, a key feature of FDR is its use of a process algebra for both specifi- 
cation and design, encouraging step-wise refinement and the combination 
of automatic verification with conventional proof. The underlying semantic 
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model, and the extrinsic nature of FDR2 compression can, of course, be 
applied to any notation or representation which can be interpreted within 
the FDR framework. FDR2 is designed to facilitate such extension. 

7 Conclusions 

We have given details of how FDR2's compression works, and some simple 
examples of how it can expand the size of problem we can automatically 
check. At the time of writing we have not had time to carry out many eval- 
uations of this new functionality on realistic-sized examples, but we have 
no reason to doubt that compression will allow comparable improvements 
in these. 

It is problematic that the successful use of compression apparently takes 
somewhat more skill than explicit model-checking. Only by studying its use 
in large-scale case studies can we expect to assess the best ways to deal with 
this - by automated tactics and transformation, or by design-rule guidance 
to the user. In any case much work will be required before we can claim to 
understand fully the capabilities and power of the extended tool. 
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