
Analytic and Locally 
Approximate Solutions to 
P,-nn ,rtio..  of Prohabilistic JL ~ vIJ~.i~. ,~.~ . . . . . . . . . . . .  

Processes 

C. Tofts  *t 

ABSTRACT Recent extensions to process algebra can be used to describe 
performance or error rate properties of systems. We examine how prop- 
erties of systems expressed in these algebras can be elicited. Particular 
attention is given to the ability to describe the behaviour of system com- 
ponents parametrically. We present how analytic formulae for performance 
properties can be derived from probabilistic process algebraic descriptions; 
demonstrating how local approximate solutions can be derived for the prop- 
erties when their exact solutions would be too computationally expensive 
to evaluate. As an example we derive the performance of an Alternating 
Bit Protocol with respect to its error and retry rates. 

1 Introduction 

Process algebra [Mil80, Mi183, BK84, Hoa85, BBK86, Mil90] is a method- 
ology for formally calculating the behaviour of a system in terms of the 
behaviours of its components. Recent extensions have added: timing proper- 
ties [RR86, Tof89, MT90, Yi90, CAM90]; probabilistic properties [GSSTg0, 
Tofg0, ssg0, Tof94]; priority properties [BBK86, Cam89, Tofg0, SS90, 
Tof94] and combinations of the above [Tof90, Han92, Tof94]. Process alge- 
bras with these extensions can be exploited to formally analyse the per- 
formance (in terms of either success or failure) of the design of systems 
[vwg2,Tof93]. The analysis of a design can be greatly facilitated if an an- 
alytic solution to the performance of the system can be generated from 
an abstract description of the performance of its components. A possibly 
more important  question is how tolerant to error (in the precise value of 
component parameters) are system level predictions. 

Within the process algebra community the standard approach to a vet- 

*This work is supported by an EPSRC Advanced Fellowship. 
tDepartment of Computer Science, The University, Manchester, M13 9PL, emaih 

crnnt@cs.man.ac.uk 



Analytic and locally approximate solutions 175 

ification problem, is to describe and compose the system components and 
then verify by comparing the constructed system's behaviour with another 
(presumably correct) process [Chr90,JS90], or observing its compliance 
with a logical predicate [Han94,HJ94]. Whilst in many cases, where for 
instance design criterion are known in advance, this can be an appropriate 
methodology, it is however limited for the analysis of choices in system 
design. Often the requirement is to predict the effect of the component 
choice on system performance in the context of a service/cost trade-off, 
rather than compliance with a particular ab initio service requirement. Of 
great importance is the ability to 'track' the effect of a single component 
upon system performance. To achieve this we need two things, firstly a 
syntactic presentation of system components, secondly an abstract method 
of calculating the component's contribution to the system's performance. 

Within a system subject to failure system requirements are often ex- 
pressed in terms like; the probability of error is less than 0.05. It is hard 
to see how to interpret such a requirement in terms of the behaviour at a 
particular state. Indeed such requirements would often be re-expressed as 
the probability of failure at any s ta te  is less than 0.05. Whilst this con- 
dition is certainly sut~cient to ensure the conformance of a system to the 
requirement, is it reasonable? Consider the following WSCCS [Tofg0,Tof94] 
process: 

P1 de_~_] 9 . x / : p l _ b l . j : p  2 

P2 dej 1.error : P1 + 9 . J  : Vl 

The process P1 certainly does not obey the condition that the probability 
of error in all states is less than 0.05 as this probability is 0.1 in state P2. 
However, the process will only spend 10% of its time in state P2 hence the 
probability of error is only 021, which does indeed meet our performance 
requirement. In order to calculate the error probability of this system we 
need to know the probability of the system being in any particular state. 
These probabilities can only be evaluated with respect to the complete 
system, and hence any logic suitable to express these properties will need 
to express probabilities of being in a particular state, and thus will not be 
an abstraction on any underlying transition description. 

A frequently used method to formally derive the compliance of a prob- 
abilisitic system with some requirements is to express those requirements 
in the form of a 'standard' process [Chrg0,JS90,Tofg0], then demonstrat- 
ing an equality between the intended implementation and the standard. If 
we attempt to describe our requirement on errors in this fashion we might 
write the following process: 

Q de_/ 95 . J  : O + 5.error : Q 

The above being a process which certainly does not produce errors at a 
greater rate than 0.05. There's appears to be no sensible formal relation 



176 C. To~s 

between the process Q and our previous example P1. Again the reason for 
this incompatibility is tha t  we compare processes on a state by state basis. 

A possibly more realistic question would be the following. Given the 
process: 

R1 de=y p.X/ : RI + I.x/ : R 2 

R2 de.=] 1.error : P1 + q.~/ : PI 

what values of the expressions p and q will ensure that  the process does 
not produce error actions at a greater rate than 0.05? 

In many cases systemic requirements are expressed in terms of average 
performance. Tha t  is to say the average time before an error is seen will be 
greater than some amount, or alternatively the average time to see a 'good' 
outcome will be less than some amount. In order tha t  such performance 
parameters can be derived we need to know not only the probability of 
reaching a particular state, but  also how long it will take system to do so. 

In Section 2 we present an extension to WSCCS to permit  reasoning over 
weight expressions containing variables, and demonstrate how a Markov 
chain [Kei,Kle?5,GS82] can be derived from a WSCCS process. In Section 
3 we discuss how the properties of terminating processes can be derived. In 
Section 4 we discuss the solving for properties of finite processes. In partic- 
ular, we examine how approximate analytic solutions can be derived when 
computing an exact analytic solution to the problem will be infeasible. The 
form of approximation we shall obtain will be in the form of a polynomial 
expansion of small perturbations about particular values for systemic pa- 
rameters, and hence they are approximations valid only in a particular 
locality. We can obtain solutions over an arbitrary range of system param- 
eters by exploiting a series of local approximations for our performance 
problem. 

2 WSCCS 

Our language WSCCS is an extension of Milner's SCCS [Mi183] a language 
for describing synchronous concurrent systems. To define our language we 
presuppose a free abelian group Act over a set of atomic action symbols 
with identity ~/, the inverse of a being ~, and action product  denoted by 
# .  As in SCCS, the complementary actions a (conventionally input) and 

(output) form the basis of communication. Within our group we define 
that  ~ = a -1. 

2.1 E x p r e s s i o n s  

We define a set of expressions. 



Analytic and locally approximate solutions 177 

D e f i n i t i o n  2.1 A relative frequency expression (RFE) /s formed from the 
following syntax, with x ranging over a set of variable names V R F ,  and c 
ranging over a fixed field (such as Af  or T~): 

e : : =  z lc le  + ele * e 

Further we assume that the following equations hold for relative frequency 
expressions: 

e + f  = f + e  
( e + f ) + g  = e + ( f + g )  
e * f  = f * e  
( e * f ) * g  = e , ( f , g )  
e * ( f  +g)  = e*  f + e * g  

alternatively, we have commutative and associative addition and multipli- 
cation, with multiplication distributing over addition. We shall assume that 
two expressions are equivalent if they can be shown so by the above equa- 
tions. 

In the sequel we shall omit the �9 in expressions, denoting expression 
multiplication by juxtaposition. It  should be noted that  unlike other calculi 
with expressions [Mil90, Hen91] the value of our expressions can have no  
effect  on the structure of the transition graph of our system. Hence we 
should not expect that  adding this extra  structure to our probabilistic 
process algebra will cause any new technical difficulties. 

2.2 Weights 

We also take a set of weights ~42, denoted by wi, which are of the form 
ew k. In the weight the relative frequency expression e denotes the relative 
frequency with which a process guarded by this weight will be chosen. The 
priority with which this choice should be taken is denoted by the strictly 
positive natural k. We take the following multiplication and addition rules 
(assuming k >_ k') over weights. 

e~k + fwk' = ew~ = f~k' + ewk e~ k + fw k = (e + f)w k = e~ k + fw k 
ew k , fw k' = (ef)w ~+k' = fw k' , e~ k 

As abbreviations we use e for the weight ew ~ and w k for the weight lw k. 

2.3 The Calculus 

The collection of WSCCS expressions ranged over by E is defined by the 
following BNF expression, where a E Act,  X E Va t ,  wi E V? , S ranging 
over renaming functions, those S : Act ~ Act such that  S(V/) = x / a n d  
S(a) = S(~), action sets A C_ Act, with x / E  A, and arbitrary finite indexing 
sets I: 



178 C. To~s 

E ::= X [ a.E[ E{w,E~[i E I} [ E x E [ E[A [ O(E) I E[S] I ~ / ~ .  

We let Pr denote the set of closed expressions, and add 0 to our syntax, 

which is defined by 0 ~eF ~{w~Edi e 0}. 
The informal interpretation of our operators is as follows: 

�9 0 a process which cannot proceed~ 

�9 X the process bound to the variable X; 

�9 a : E a process which can perform the action a whereby becoming 
the process described by E; 

�9 ~'~{wi.Eili E I} the weighted choice between the processes Ei, the 
weight of the outcome El being determined by wi. We think in terms 
of repeated experiments on this process and we expect to see over 
a large number of experiments the process El being chosen with a 
relative frequency of ~ .  

�9 E x F the synchronous parallel composition of the two processes 
E and F. At each step each process must perform an action, the 
composition performing the composition (in Act) of the individual 
actions; 

�9 E[A represents a process where we only permit actions in the set A. 
This operator is used to enforce communication and bound the scope 
of actions; 

�9 O(E) represents taking the prioritised parts of the process E only. 

�9 E[b~ represents the process E relabelled by the function S; 

�9 #ixE represents the solution xi taken from solutions to the mutually 
recursive equations ~ = E. 

Often we shall omit the dot when applying prefix operators; also we drop 
trailing 0, and will use a binary plus instead of the two (or more) element 
indexed sum, thus writing ~-~{11.a : 0, 22 : b.Oli E {1,2}} as 1.a + 2.b. 
Finally we allow ourselves to spedfy processes definitionally, by providing 

dey 
recursive definitions of processes. For example, we write A = a.A rather 
than px.ax. The weight n is an abbreviation for the weight nw ~ and the 
weight w k is an abbreviation for the weight lw k. 

The semantics, congruences and equational theory of this (minor) exten- 
sion of WSCCS are essentially identical to that of [Tof95] up to arithmetic 
on weight expressions. 

The congruences of WSCCS[Tofg0,Tof94] are important as they permit 
us to algebraically manipulate our processes. However, in many instances 
these equivalences are too fine, consider the following pair of processes: 



Analytic and locally approximate solutions 179 

2.(2.P + 4.Q) 4 .P  + 8.Q 

in many  instances we should like to be  able to  consider these processes as 
equivalent. Hence, we would like a notion of equivalence tha t  permits  us to  
disregard the structure of the choices and just  look at the total  chance of 
reaching any part icular  state. Whilst this notion of equivalence is useful it 
is known not to produce a congruence [SST89] for the complete language. 
However, such problems do not arise if we restrict  our process syntax to  
only allow a single depth of summation,  in which case our abst ract  rela- 
tionship a ,-~, defined below, coincides with the original probabil i ty preserving 
congruence [Tof94]. 

D e f i n i t i o n  2.2 We define an abstract notion of evolution as follows; 

p ~[w~ p ,  i f f p  ~1) . . .  w~, a, pt  wi thw = H w i -  

As an example,  5,(3.(2.a : Q + 4.b : P)  + 1,c : R) + 7.d : S a[3~ Q. 
In order to define an equivalence which uses such transitions we need a 

notion of accumulation. 

D e f i n i t i o n  2.3 Let S be a set of processes then: 

P a[wt S i f fw  = )-~{wi]P a[_~] Q for some Q e S}; 1 

We can now define an equivalence tha t  ignores the choice structure but  
not the choice values. 

D e f i n i t i o n  2.4 We say an equivalence relation R C_ Pr  x Pr  is an abstract  
bisimulation if (P, Q) E R implies that: 

there are e, f E R F E  such that for all S E P r / R  and for all 

w , v  6 W ,  P ~ S iff Q a[V! S and ew = fv .  

Two processes are abst rac t  bisimulation equivalent, written P a Q if there 
exists an abstract bisimulation R between them. 

In particular this description of a WSCCS process gives us (essentially) 
a p r o b a b i l i t y  t r a n s i t i o n  graph[Paz71].  

D e f i n i t i o n  2.5 A probabilistie transition graph is a quintuple (V,T,  so, A, 
R F E )  where V is a set of states, T a set of transitions C_ V x (a x p) • V,  
so E V is an initial state, A ranged over by a an alphabet, and R F  E ranged 
over by p the set of relative frequency expressions. 

Remembering this is a multi-relation so some of the Q and wi may be the same 
process and value. We take all occurences of processes in S and add together all the 
weight arrows leading to them. 



180 C. Torts 

3 T e r m i n a t i n g  S y s t e m s  

As an example consider the following simple game. Two identical (possibly) 
biased coins are tossed repeatedly. If  the coins both  show heads then the 
game is won, if the coins bo th  show tails then the game is lost, otherwise 
the coins are tossed again. Wha t  is the probabil i ty of winning the game? 

neeueu ~v~xa~u ~u S~ an , . , ~ ,~v~u~ .  And how many  tosses will be --  ~ j on . . . . . . . . . . . . .  * . . . .  

Coin dej p.head : Coin + q.tail : Coin 

GR de f 1.head2#win : 0 
1.head#tail : GR 
1.tail2#1ose : 0 

Game de_=/ (Coin • Coin • GR)p{win, lose} 

The probabil i ty of winning a game can be computed by solving the fol- 
lowing equation 2: 

and the average number  of coin tosses equired to reach an outcome: 

E(Game) = ~ _ ( E ( G a m e )  + 1) + ~ - ~ ( E ( 0 )  + 1) 

+ 1) 
E(0) = 0 

In the above we can rearrange the first equation to obtain the following: 

E(Game) = ~ q ~ E ( G a m e )  + ~ - ~ E ( O )  + ~ E ( 0 )  + 1 

Def in i t ion  3.1 The total output of a state T(s) = ~{p l s  a_~] s'}. 

Def in i t ion  3.2 Let Win  C A be a set of winning actions, and P(so, Win)  
be the probability of observing an action in the set Win  starting from state 
so, and the average number of ticks before an action in Win  is observed 
D(so, win). 

P(Win ,  so) is the solution of the following set of simultaneous equations, 
for all s E V 

P(s, Win) d,=Y E { ~ . ~ p ( s ,  ' Win)is a~] s', a r Win}  

+E( ls at a[pj],a e Win} 

Similarly we can define D(Win,  so) to be the a solution of the following 
set of simulataneous equations: 

21n general we obtain a set of simultaneous eqautions, one for each state. 



Analytic and locally approximate solutions 181 

D(s, Win)  del.._ c~ i f s  a~] 

O(s, Win)  de.j ~,{~iD(s,,Win)l s ~,~] s',a r Win}  
+1 

Hence given a probabilistic transition graph with n states we can produce 
a set of n simultaneous equations which describe the probabilities and av- 
erages we are interested in. Generating the equations from the graph is 
straightforward and the equations can subsequently be solved by any sym- 
bolic mathematics package. 

4 Finite State Non-terminating Systems 

Consider the following process: 

W1 de=I 6.sunny : W1 + 4.cloudy : W2 

W2  ae=y 5.cloudy : W2 + 5.sunny : W1 

If we assume that  the environment (of the process) is unbiased with respect 
to the sunny and cloudy actions then the above system can be represented 
by the following Markov [Kei, Paz71, Kle75, GS82] transition matrix: 

0.6 0.5 ) 
0.4 0.5 

A question that  is asked about the above system is with what probabil- 
ity is the action sunny seen. This question can be answered by knowing 
with what probability the system is likely to be in state W1 or W2 at an 
arbitrary time. In Markov chain theory this is known as the s t ab le  dis- 
tr ibutlon[Kei,GS82] of the chain. For a chain whose transition matrix is 
A then a stable distribution v is one which satisfies the following equation: 

A v = v  

and Iv[ is equal to 1. 
In the case of the transition system above the stable distribution [Kei, 

Kle75,GS82] is given by the vector: 

5/9 4/9 ) 
and hence the probability of observing a sunny action is: 

~ 4 5  P(sunny)  = +'6i'6 
= .# 



182 C. To~s 

Whilst in principle it is possible to convert a probability graph into its 
associated Markov chain and then solve for the stable distribution (by ex- 
ploiting eigen theory) this is a highly inefficeint method of solving the prob- 
lem. Given an n state probability transition graph the assodated Markov 
chain matrix will be of size n 2. To represent the transition system as a 
matrix is clearly highly inefficient, and would prevent the consideration 
of systems composed of many components as their state space "~ ~ *^ b~nu~ ~u 
grow exponentially in the number of components. An alternative manner 
of presenting the system is as follows. Remembering the original equation: 

ATr -~-Tr 

by defining ri(A~ as the ith row of the matrix A this is equivalent to solving 
the set of equations: 

r~(A=).~_ = ~_~ 

Whilst this would appear to still require O(n 2) memory to represent the 
problem this is generally not the case. The probabilistic transition graphs 
that result,in practice, from process algebraic descriptions tend to be very 
sparse. On the whole very few of the states of a system are reachable from 
any particular state, in fact there is generally a (small) bound (k) on the 
number of permitted transitions from any particular state and therefore 
in this representation an amount O(kn) of memory will be necessary to 
represent the solution. 

We can define the necessary set of simultaneous 3 equations directly in 
terms of the original graph as follows: 

together with the condition that )'~(~-s} = 1. the solution vector r_ being a 
stable distribution 4 for the transition system. 

In this case the unstructured sparseness of the equation set makes the 
use of standard symbolic mathematical equation packages very inefficient. 
A sparse equation solver was written to directly solve sets of equations 
generated by the above. By solving equations in inverse order of their fan 
out a considerable speed up can be achieved. The system generates a back 
substitution list which can be evaluated using a symbolic mathematics 
pad~ge. 

To calculate the mean occurence of an action, the probability of that 
action occuring at a particular state is multiplied by the probability of 

3The set of equations derived for Markov transition matrix will not be independent 
[GS82] and hence an extra condition is neede to ensure a unique solution. This condition 
is derived from the definition that a probability distribution must sum to 1 

4Care should be excersieed when using stable distributions as their uniqueness is only 
guaranteed under restricted circumstances [Kei,GS82] 



Analytic and locally approximate solutions 183 

being in that state. For an exmaple of this form of calculation performed 
by our toolset see Example 1.1 in the Appendix. 

Unfortunately, the solution of symbolic simultaneous equations requires 
NP-space in the number of equation to represent the solutions. In practice 
it appears that symbolic solutions are unfeasible for systems of more than 
about 30 states. 

An alternative definition [GS82] of the stable distribution of a markov 
system is presented in the following fashion: 

71"/+ 1 = ATI" i 

with K = lime,.,~K~ if there is a unique stable distribution. 
Using the above definition we can define an iterative calculation over the 

probability transition graph in the following fashion: 

If an attempt is made to calculate an exact solution to the above it- 
eration procedure then the same representation problem is encountered. 
However, it is possible to exploit the above method to provide an approx- 
imate solution (in the sense of a Taylor's expansion) to the stable vector 
problem. By truncating the ~r._ ! to a particular accuracy after each iteration 
of the calculation. If the terms (in a variable x say) are maintained to order 
k then, standard numerical solution of eigensystems theory [Wil65] shows 
that the solution will have an absolute error of O(xk) .  

Hence the following procedure can be exploited to give an approximate 
solution to the distribution problem, choose any non-zero length 1 1ro5: 

1. Compute ~ri+l from 7r_A; 

2. truncate 7ri+l to required accuracy k; 

3. repeat from 1 until stability is achieved. 

In practice one can compute a central approximation and then compute 
the further terms by increasing the approximation level steadily until the 
desired level is reached. An example of this solution method applied to the 
performance of the Alternating Bit Protocol can be found in the Appendix 
1.2. 

5 Conclusions 

Whilst it is possible to verify the behaviour of a system by checking the 
process that describes it against another process[MilS0, Mil90, Chr90, JS90, 

5In pract ice  we use the  vector  ~ ~ when the  sys tem has n states.  



184 C. Torts 

Tof90,. SS90] or a predicate[Mil90, Hart94, H J94] this is often not the best 
approach. In many cases the intention of the design analysis is to determine 
how well a system can function which is why simulation[BDMN79, Bir79, 
Kre86, BFS87] is often resorted to. It is important in such circumstances 
to be able to identify the contribution of the underlying components to the 
overall system performance. The verify strategy works well when system 
requirements are known in advance but in many cases the design problem is 
one of: what is the best way of using these components to solve a particular 
problem? In this case the components are fixed, and we need to be able to 
derive the resulting systemic behaviour. 

It might seem that we are not exploiting the algebraic properties of the 
process algebraic description in deriving our systemic properties. This is 
not the case. When the transition system for any process is computed 
within our tool we exploit the algebraic equivalences to try to produce as 
small a transition graph as possible. This does not necessarily produce a 
minimal system, but will exploit as much of the syntactic identity as made 
available in the description of the system provided. In practice this is only 
of value when the system contains repeated components, such as the two 
identical coins in our original example, where the number of states required 
to represent both coins can be reduced from 4 to 3 immediately. Over a 
large system these gains can significantly reduce the size of the states space, 
if we had six coins then we reduce the state space from 64 to 7. 

Whilst it is true that for the majority of problems a symbolic approach 
to process representation will not admit a computationally feasible analytic 
solution, this approach still has major advantages. As we describe perfor- 
mance aspects of the system's components symbolically and construct its 
probability transition graph in terms of these symbols (a computationally 
costly operation, even if all of the transition probabilities are constants) it 
is subsequently possible to instantiate the graph with particular values of 
interest for the component's performance. Hence, with little extra compu- 
tation cost, we can study the behaviour of our system under a wide range 
of conditions. 

The generation of local approximations to the solutions of systems is of 
great importance. It has long been known that the behaviour of complex 
systems can critically dependent on the precise values of their parameters. 
In any real implementation of a system the true values of its components 
performances are liable to vary slightly from the exact values in our models. 
Local approximations allow us to assess the effect that these small varia- 
tions may have on the systems true behaviour. For instance if performance 
could be heavily compromised by a small variance in one components per- 
formance it may be a good idea to redesign the system to be more tolerant 
or replace that component. 

A sublanguage of WSCCS and the algorithms in this paper have been 
implemented as a set of SML functions (Probabilistic Algebra Tools set) 
which can be obtained from cmnt@cs.man.ac.uk. In terms of scale the ex- 



Analytic and locally approximate solutions 185 

act solution generator can cope with systems of about 30 states, and will 
execute upon systems of this scale in 2 hours on a SPARCstation 2. The 
approximation method can cope with systems of 1000's of states and can 
take 24 hours to execute on such systems. Automatic scanning functions 
have been written to generate the piecewise approximations. For problems 
where there are no free weight parameters (all of the system constants are 
purely numerical) the tool set can successfully solve problems with 1OO00s 
of states. 

6 REFERENCES 

[BBK86] J. Baeten, J. Bergstra and J. Klop, Syntax and defining equa- 
tions for an interrupt mechanism in process algebra, Funda- 
menta Informatica IX, pp 127-168, 1986. 

[BDMN79] G. Birtwistle, O-J Dahl, B. Myhrhaug and K. Nygaard, Simula 
Begin, 2nd Edition, Studentliteratur, Lund, Sweden, 1979. 

[BFS87] P. Bratley, B. Fox and L. Schrage, A guide to simulation, second 
edition, 1987. 

[Bir79] G. Birtwistle, DEMOS - -  discrete event modelling on Simula. 
Macmillen, 1979. 

[BK84] ,].A. Bergstra, J.W. Klop, The algebra of recursively defined 
processes and the algebra of regular processes, in Proc l l t h  
ICALP, Springer LNCS 172, pp 82-85, 1984. 

[CAMgO] L. Chen, S. Anderson and F. Moller, A Timed Calculus of Com- 
municating Systems, LFCS-report number 127 

[Cam89] .]. Camilleri. Introducing a Priority Operator to CCS, Computer 
Laboratory Technical Report, Cambridge University, 1989. 

[Chrg0] I. Christoff, Testing Equivalences and Fully Abstract Models 
for Probabilistic Processes, Proceedings Concur '90, LNCS 458, 
1990. 

[CPS93] Cleaveland, R., J. Parrow and B. Steffen, The Concurrency 
Workbench: A Semantics-Based Tool for the Verification of 
Finite-State Systems, ACM Transactions on Programming Lan- 
guages and Systems, 15(1):36-72, 1993. 

[DLSB82] V.A. Dyck, J.D. Lawson, J.D. Smith and R.J. Beach, Com- 
puting: An Introduction to Structured Problem Solving Using 
Pascal: Reston, Reston, 1982. 

[GS82] G.R. Grimmer and D.R. Stirzaker, Probability and Random 
Processes, Oxford Science Publications, 1982. 



186 C. Tofts 

[GSST90] 

[Han94] 

[Hen91] 

R. van Glabbek, S. A. Smolka, B. Steffen and C.Tofts, Reactive, 
Generative and Stratified Models of Probabilistic Processes, pro- 
ceedings LICS 1990. 

M.R. Hansen, Model checking discrete duration calculus, FACS 
6A:826-845, 1994. 

M. Hennessy, A proof system for CCS with value passing, FACS 
3: 346-366. 

[HJ94] 

[Ho 5] 

[HR90] 

[Jon90] 

[ ei] 

[Kin69] 

[Kle75] 

H. Hansson and B. Jonsson, A Logic for Reasoning about Time 
and Reliability, FACS (6):512-535, 1994. 

C. A. R. Hoare, Communicating Sequential Processes, Prentice- 
Hall 1985. 

M. Hennessey and T. Regan, A Temporal Process Algebra, 
Technical Report, Department of Cognitive Science, Sussex Uni- 
versity, 1990. 

C. C. M. ,]ones, Probabilistic Non-determinism, PhD Thesis 
University of Edinburgh 1990. 

J. Keilson, Markov Chain Models - Rarity and exponentiality, 
Applied Mathematical Sciences 28, Springer Veflag. 

J.F.C. Kingman, Markov Population Processes, Journal of Ap- 
plied Probability, 6:1-18, 1969. 

L. Kleinrock, Queueing Systems, Volumes I and II, John Wiley, 
1975. 

[Kre86] 

psg0] 

[LS89] 

[MilS0] 
[MilS3] 

 il9O] 

[MT90] 

W. Kreutzer, System Simulation, Addison Wesley, 1986. 

C. Jou and S. Smolka, Equivalences, Congruences and Com- 
plete Axiomatizations for Probabilistic Processes, Proceedings 
Concur '90, LNCS 458, 1990. 

K. G. Larsen and A. Skou. Bisiraulation through probabilistic 
testing, proceedings POPL 1989. 

R. Milner, Calculus of Communicating System, LNCS92, 1980. 

R. Milner, Calculi for Synchrony and Asynchrony, Theoretical 
Computer Science 25(3), pp 267-310, 1983. 

R. Miiner, Communication and Concurrency, Prentice Hall, 
1990. 

F. Moiler and C. Torts, A Temporal Calculus of Communicating 
Systems, Proceedings Concur '90, LNCS 458, 1990. 



Analytic and locally approximate soiutions 187 

[ow78] 

[Paz71] 

[PloS1] 

[R.R86] 

[ss90] 

[SST89] 

ffSF92] 

[TF92] 

[WofSg] 

[To 0] 

[Tof93] 

[Tof94] 

[Tof94] 

[vi9o] 

[vw92] 

[Wil65] 

G. F. Oster and E. O. Wilson, Caste and Ecology in Social 
Insects, Princeton University Press, 1978. 

A. Paz, Introduction to probabilistic automata, Academic Press, 
1971. 

G. D. Plotkin, A structured approach to operational semantics. 
Technical report Dalmi Fn-19, Computer Science Department, 
Aarhus University. 1981. 

G. Reed and W. Roscoe, A Timed Model for CSP, Proceedings 
ICALP '86, LNCS 226, 1986. 

S. Smolka and B. Steffen, Priority as Extremal Probability, Pro- 
ceedings Concur '90, LNCS 458, 1990. 

S. Smolka, B. Steffen and C. Torts, unpublished notes. Working 
title, Probability + Restriction ~ priority. 

C. Tofts, M.J.Hatcher, N. Franks, Autosynchronisation in Lep- 
tothorax Acervorum; Theory, Testability and Experiment, .]our- 
nal of Theoretical Biology 157: 71-82. 

C. Tofts, N. Franks, Doing the Right Thing: Ants, Bees and 
Naked Mole Rats, Trends in Evolution and Ecology 7: 346-349. 

C. Tofts, Timing Concurrent Processes, LFCS-report number 
103, 1989. 

C. Torts, A Synchronous Calculus of Relative Frequency, CON- 
CUR '90, Springer Verlag, LNCS 458. 

C. Torts, Exact Solutions to Finite State Simulation Problems, 
Research Report, Department of Computer Science, University 
of Calgary, 1993. 

C. Tofts, Using Process Algebra to Describe Social Insect Be- 
haviour, Transactions on Simulation, 1993. 

C. Torts, Processes with Probabilities, Priorities and Time, 
FACS 6(5): 536-564, 1994. 

Yi W., Real-Time Behaviour of Asynchronous Agents, Proceed- 
ings Concur '90 LNCS 458, pp 502-520, 1990. 

S. F. M. van Vlijmen, A. van Waveren, An Algebraic Specifica- 
tion of a Model Factory, Research report, University of Amster- 
dam Programming research Group, 1992. 

J. Wilkinson, The Numerical Eigenvalue Problem, Oxford Uni- 
versity press 1965. 



188 C. To~s 

1 PRobabilistic Algebra Toolset (PRAT) 

The basic process definition mechanism is to present a file in Edinburgh 
concurrency workbench [CPS93] like syntax. The system then generates an 
extended probabilistic transition graph (it takes account of priorities) and 
provides a set of analysis functions which can be applied to the system. 

1.1 Weights 

Weights are defined by the following syntax, where n is an integer and 
s t r i n g  an ascii character string: 

e ::= n l s t r i n g l e  - e ~ 
W ::~--- e ~ n  

So the following are weights: 5, l - p ,  5�9 l - p 0 3 ,  the last two being 
weights at priority level 2 and 3 repsectively. Note that  we do not allow 
symbolic priorities, as this would actually affect the computational struc- 
ture. 

1.2 Actions 

Actions are defined as products of powers of strings; 

A ::= s t r i n g [ ^ n ] l A # A  

again we do not allow symbolic action powers. 
So the following are actions: a ,  aA-1 ,a#b A-2, e ' 4 # a # b ' 3 .  
To form a permission free group we provide a binding operator  for sets 

of actions: 

bs S e t  a,b,c 

binds the name Se t  to the actions a ,  b,  c. 

1.3 Processes 

We define the following constructions on processes which we present by 
example; it should be noted that  we only allow one depth of operator ap- 
plication, this permits automatic absorbtion of equivalent state in parallel 
compositions: 

6It should be noted that the current parser works LR so that 1 - p - q is actually 
1 - - p q - q  



Analytic and locally approximate solutions 189 

Sequential bs Coin p.head:Cl + l-p.tail:C2 
Parallel bpa Sys Sl IS2 
Permission bperm S1 Sys/Set 
Priority bpi Sn S 
Pri(Perm(Par)) btr Sys SllS2lS3/Set 
Perm(Par)  bpc Sys S1 I S 2 / S e t  
Comment *this is a comment 

As the sytem constructs processes it prints out the number  of states it 
has allocated so far as an indication of the work left to do. 

1.4 Analysis 
The following functions are presented to allow the maintenance, exploration 
and analysis of systems: 

�9 c l e ( )  clear the current process environment.  

�9 rf (filename) read a process definition from filename. 

�9 d u p o ( f i l e n a m e )  duplicate all output  to the file. 

�9 co () close duplicate output  file. 

�9 sim(Pname) simulate the process state called Pname. The simulator 
presents a menu of actions. Typing the number  of the action causes 
the system to continue from the labelled state. Hitting return takes 
option 0 and hitt ing q exits the simulator. 

�9 fd(Pname)  find deadlocks in the process pname. If  a deadlock is found 
then the shortest transition to tha t  state is printed. 

�9 ll(Pname) find livelocks in the process Pname. 

�9 do_prob (Pname, Win, Lose) generate a set of equations describing the 
probability of seeing the Win action, ignoring other actions but ter- 
minating on the Lose action. Action syntax as above. 

�9 do_mean (Pname, Win, Lose) generate a set of equations describing the 
mean number of ticks to see a Win or Lose action, ignore all other 
actions. 

�9 ibv(vn,real) bind the weight variable vn to the real value real. 

�9 sc(Pname) generate a set of back substitutions for the stable distri- 
bution of process Pname. 

�9 solmn(Pname,action,file) produce an expression for the mean 
number of action in process Pname output the results to file. This 
is separate from the above to allow reuse of the stable solution infor- 
mation. 



190 C. Tofts 

Pname 

Action 

vn 

low 

hi 

s tep  

inR 

�9 genfun(Pname,Action,vn,low,hi,step,inR,gR,aL) generate a 
piecewise approximation to the mean number of actions Action the 
parameters are as follows: 

the process; 

the action; 

the variable name to range over; 

lower limit of solution generation; 

upper limit of solution generation; 

step between solutions; 

initial number of iterations at approx level 0, to generate coarse 
approximation; 

gR number of iterations at final approx level; 

aL required accuracy of the final answer. 

�9 genml (ev rn , ap rx , f i l e )  generate an SML function to evaluate the 
piecewise approximation generated by above function, the error vari- 
able is given by evrn and f i l e  is the name of a file to copy the result 
to. 

The system supplies two iterative solution packages, one for numeric 
solutions the other for local approximations, we describe their use below: 

Numerical 
Initialise s t a r t A t e r a t e  (Pname) 
Iterate i t n  (n) 
Print Sol pt  () 
Mean ma(action) 
Mean (Cyclic) mcyc(action,n) 

In the above the n in the cyclic means is the 
cycle. Often good approximations to nearly cyclic systems can be obtained 
cheaply by exploiting this function. A further function sal(n) is supplied 
to set the approximation level in the second set of functions. 

As a first example we provide a system with an exact analytic solution. 

Example  1.1 Consider two processes competing for the same resource. 
Each process issues a request with probability l ip  after the last time it had 
the resource, and then will release the resource with probability 1/q at each 
instant. 

An~ytical 
SI(Pname) 
APN(n) 
CAP() 
AM(action) 
APC(acs,n) 

number of states i n the  

*Simple competi t ion example 

bs U1 p.t:UIG + 1-p.t:U1 



A n ~ y ~ c a n d l o c ~  approximatesolut~ns 

bs UIG l@l.get~-l:UIGot + l.baulk:UIG 

bs UIGot q.put'-l:U1 + 1-q.t:UIGot 

bs Res 1.get:RG + 1 . t : R e s  
bs RG 1 . p u t : R e s  + 1.t:RG 

b a s i  C b a u l k  

b t r  Sys U I I U I I R e s / C  

191 

Having solved the equations the above system generates we obtain the av- 
erage number of baulk actions seen at each tick is given by the following 
eqaution: 

2 3 -15 2 3 

(8. p - 4. p - 4.44089 I0 p q + 4. p q - 8. p q + 

4 2 2 2 
4.  p q + 1. (2.  - 2.  p)  p q )  / 

2 3 -15 2 3 

(8. p - 4. p + 8. p q + 4.44089 i0 p q - 8. p q + 

4 2 2 2 3 2 4 2 
4.  p q + 4 .  q - 4.  p q - 4 .  p q + 4 .  p q ) 

As a result of using a real representation for numerical values in the 
toolset there are rounding errors 7 in the above and if these are corrected we 
can obtain the following ]ormula: 

p2 (4_2p+2q_4pq+4p~ q+~l-p)~q2) 
4p 2-2pn+4p~q-4p~q+2p4q+2q 2 -- 2p2 q2-- 2pV q2 + 2p4 q 2 

As a second example  we demons t ra te  a performance analysis  of the  al- 
t e rna t i ng  bi t  protocol.  

E x a m p l e  1.2 In [MilYO] Milner presents an implementation of the Alter- 
nating Bi t  Protocol in CCS, and demonstrates that the protocol is correct. 
Perforce this implementation ignores the temporal and probabilistic proper- 
ties of the system and its components. 

Our alternating bit protocol realisation is depicted in Figure 1. 

ZCaused by the use of real numbers in the analysis system, easily identifiable as 
the terms are insignificant. The exponential growth of terms exhibited by products of 
processes forced the use of (truncated) real aritmetic in the tool, rather than the prefered 
(exact) integer arithmetic 



192 C. Torts 

accept deliver 

FIGURE 1. Alternating Bit Protocol 

The process Sa  will work in the following manner. After accepting a mes- 
sage, it sends it with bit b along the channel Tn s  and waits. Subsequently 
there are three possibilities: 

�9 it times out and retransmits the message; 

�9 it gets an acknowledgement b from the Ack line (signifying a correct 
transmission), so that it can now accept another message; 

�9 it gets an acknowledgement -,b from the Ack line (signifying a super- 
fluous extra acknowledgement o/ earlier message) which it ignores. 

The replier Ra  works in a dual manner. After a message is delivered it 
sends an acknowledgement with bit b along the Ack line. Subsequently there 
are again three possibilities: 

�9 it times out, and retransmits the acknowledgement; 

�9 it gets a new message with bit -,b from the T n s  line, which it delivers 
and acknowledges with bit -,b; 

�9 it gets a repetition of the old message with bit b which it ignores. 

We assume that messages are lost by the medium with probability err on 
each transmission. The sender and replier processes will retry with prob- 
ability rt at for each tick whilst they are waiting for an acknowledgement 
or the message bit to change. In order that we can apply our peturbahon 
theory to the variables err and rt, we assume perturbations of ere and rte 
upon their basic values. 

* P r o b a b i l i e t i r  a l t e r n a t i n g  b i t  protocol  

*Chr is  T o r t s  9 /8 /94  a f t e r  CWB versions 
, 



A n a l y t i c  a n d  l o c a l l y  a p p r o x i m a t e  s o l u t i o n s  193 

*The b a s i c  s e n d e r  p r o c e s s ,  no te  do e v e r y t h i n g  a s y n c h r o n o u s l y  

* t h i s  s h o u l d  be Sa 1 . e e n d : S a l  + 1 . t : S a  

ha Sa 1 . t : S a I  

*send  ou t  a s i g n a l  as  soon as  p o s s i b l e  

be Sa l  1 Q l . s 0 " - l : S a 2  + 1 . t : S a l  

*wa i t  f o r  acknowledgement  t o  come t h r o u g h  

bs  Sa2 1 . r a c k 0 : S l s  + 1 . r a c k l : S a l  + r t - r t e . t : S a l  + 1 - r t - r t e . t : S a 2  

* t e l l  t h e  wor ld  t h a t  i t  go t  t h r o u g h  OK and i n v e r t  s e n d i n g  b i t  

be S i s  1 . s u e t : S 1  

* t h e  d u a l  of t h e  above sys t em f o r  s e n d i n g  w i t h  b i t  s e t  t o  1 

* t h i s  s h o u l d  be bs  $1 1 . s e n d : S l l +  1 . t : S 1  

bs $1 1.t:Sll 

be $11 1@1.s1"-1:$12 + 1.t:$11 

be $12 1.rackl:Sas + 1.rackO:S11 + rt-rte.t:Sll + 1-rt-rte.t:S12 

be Sas 1.succ:Sa 

*the receiver for all of our sndeavours .... 

bs Ra 1.rO:Rarl+l.r1:Ra2 + rt-rte.t:Ra2 + 1-rt-rte.t:Ra 

bs  Rat1 1 . r e c e i v e : R a l  

* t r y  t o  send t h e  d a t a  as  q u i c k l y  as  p o s s i b l e  

bs Ral l@l.seckO'-l:R1 + l.t:Ral + l.rO:Rll + l.rl:Ra12 

be Ra2 IQl.sackl~-1:Ra + 1.t:Ra2 + l.r1:Rl2 + 1.rO:~arl 

be R1 1.rl:Ral2 + 1.rO:Rll + rt-rte.t:R11 § 1-rr 

be Ra12 1.receive:R12 
bs Rll l~l.sackO'-l:R1 + 1.t:R11 + 1.rO:Rll + 1.r1:Ra12 

bs R12 I01.sack1"-1:Ra + 1.t:R12 + 1.r1:R12 + 1.rO:Rarl 

*the lower channel for sending data on 

*we send out data as soon as possible after the transedssion 

*time if it is not lost to error... 

bs MI1 1.sO:MllaO + 1.s1:M1110 + 1.t:Mll 

*dscSde i f  t h e  d a t a  was t r a n s m i t t e d  OK, or  was s u b j e c t  t o  e r r o r  

bs  Mlla0  1 - s r r - e r s . t : M l l a  + e r r - s r e . t : M l l  

hs Mlla l@l.rO'-l:Mll + l.t:Mlla 

be M1110 1-srr-ere.t:Mlll + err-ere.t:Mll 

be M111 1~1.rl"-l:Mll + 1.t:M111 



194 C. Torts 

* t h i s  i s  t h e  t r a n s m i t t i n g  medium f o r  t h e  r e t u r n  o f  t h e  d a t a  

he MI2 1.sack0:Ml2al + l.sack1:Ml211 + I.t:MI2 

bs M12al 1-err-ere.t:Ml2a § err-ere.t:Ml2 

hs Ml2a IQl.rack0"-l:Ml2 + l.t:Ml2a 

he M1211 l-exT-ere.t:Ml21 + err-ere.t:Ml2 

he M121 IQ1.rack1"-l:Ml2 + 1.t:Ml21 

*ThatJe all the sequential hlts done so we can now have a go at puttin E 

*it all together... 

hasi Allow sand ,  receive, succ  

* t h i s  i s  t h e  complete sys t em 

h t r  ABP RaIMll IM12}$a/Al low 

The PRAT tool can output a local approximation function to compute the 
average number of s u e t  actions observed per tick. For a value of rt = 0.5 
and rLe = 0.0 and err in the range 0.05 to 0.35, toe obtain the/ollotoing 
piecetoise approximation/or the average e e o c  rate in the .form o/an SML 
function: 

fun tBP (v l )  
= i f  0.05<=vl a n d a l s o  v l<=O.15 

then let val ere = (0.05+0.15)/2.0 - vl in 

(26.  2801394665775-285 . 522119242462 * ere * ere * ere 

-94.9741260228557 * e r e  * e r e  + 26.6274947013716 * e re  ) /  

(270.683502505543+1.32871491587139E'12 * e r e  * e r e  * e re  - 

7 . 4 7 8 4 6 2 2 9 3 8 7 5 0 5 E ~ 1 3  * e r e  - 3 . 1 2 6 3 8 8 0 3 7 3 4 4 4 4 E ' 1 3  * e r e  * e r e  ) 

e n d  

e l s e  if 0.15<=vl a n d a l e o  vi<=0.25 

then let val ere = (0.15+0.25)/2.0 - vl in 

(11.7544078755176-83.86909484614 * ere * ere * ere 

-16.6668138922172 * e r e  * e r e  +19.7006844688574 * e r e  ) /  

(139.000000000001-3.19744231092045E'13 * e re  * e r e  * e re  

- 4.01456645704457E'13 * e r e  - 3 . 9 2 5 7 4 8 6 1 5 0 7 4 5 5 E - 1 3  * e r e  * e r e  ) 

e n d  

e l s e  i f  0 . 2 5 < = v i  a n d a l s o  v 1 < = 0 . 3 5  

then let val ere ffi ( 0 . 2 5 + 0 . 3 5 ) / 2 . 0  - vl in 

(9.68600554074613-41.7301838198085 * ere * ere * ere 

+1.29897621781181 * ere * ere +20.937477181878 * ere )/ 

(139 .0 -1 .59872115846023E '14 .  e r e  * e r e  * ere- 

3.5438318946035E'13 * ere -2 .46025422256935E'13 * ere * ere  ) 

end 

e l s e  0.0; 

As an example/or a value o/err = 0.2 toe obtain the result 0.0845640854353778, 

which equates (by inversion) to an average transmission time of 11.8253510914415. 

The total time to construct the process graph and the above approxima- 
tions was about I/I~ hour on a SPARCstation 2. 


