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Abstract: Sequential consistency and causal consistency constitute two of the
main consistency criteria used to define the semantics of accesses in the shared
memory model. An execution is sequentially consistent if all processes can agree
on a same legal sequential history of all the accesses; if processes perceive distinct
legal sequential histories of all the accesses, the execution is only causally consistent
(legality means that a read does not get an overwritten value).

This paper studies synchronization constraints that, when obeyed by operations
of a given causally consistent execution, make it sequentially consistent. More pre-
cisely, the paper introduces the MSC synchronization (mixed synchronization con-
straint) which generalizes (1) the known DRF (data race free) and CWVF (concurrent
write free) synchronizations and (2) a new one called CRF (concurrent read free).
The MSC synchronization allows for concurrent conflicting operations on a same ob-
ject, while ensuring sequential consistency; this is particularly interesting in the the
context of distributed systems (where objects are possibly replicated) to cope with
partition failures: conflicting operations in two distinct partitions do not necessarily
block processes that issue them (as it is the case of quorum based protocols).
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De la cohérence causale a la cohérence séquentielle
dans les mémoires partagées

Résumé : La cohérence causale et la cohérence séquentielle constituent deux
des principaux critéres utilisés pour définir la sémantique des acceés dans le modele
“mémoire partagée”. Ce rapport étudie les liens entre ces deux types de cohérence
et montre qu’une exécution causalement cohérente dont les opérations de lecture et
d’écriture respectent certaines contraintes de synchronisation est en fait séquentiel-
lement cohérente (une exécution est séquentiellement cohérente si tous les processus
voient la méme histoire légale des acceés a la mémoire). Une contrainte de synchro-
nisation est particulierement étudiée; son intérét pour résister au partitionnement
dans le contexte des systemes répartis est mis en valeur.

Mots-clé : contrainte de synchronisation, cohérence causale, cohérence séquentielle,
mémoire partagée.
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1 Introduction

For several years the shared memory model has become a pervasive concept in pa-
rallel and distributed systems. This is due to the universality of the model: processes
distributed over a network and interacting through shared objects (objects distri-
buted over the network, and possibly replicated), fit for example perfectly into this
model. Moreover, the shared memory model® is the adequate framework for defining
consistency criteria: a consistency criterion defines the value returned by every read
operation invoked by a process on some object (or some variable). It is important
to stress that the definition of a consistency criterion must be independent of the
possible existence of multiples copies of objects, and must not rely on a particular
protocol implementing the criterion; it must be based on a formal model and be
as general as possible to make designers capable to study properties of consistency
criteria, and to produce results not bound to particular implementations. As for abs-
tract data types, such a classical approach distinguishes clearly the semantics offered
to users from its particular implementations. Several authors have correctly claimed
that a memory consistency criterion is a contract between the memory system and
application programs [21].

Three main consistency criteria have been proposed in the literature: atomic
consistency [19] (also called linearizability [14]), sequential consistency [17] and cau-
sal consistency [3]. In all three cases a read operation returns the last value assigned
to the variable (or written into the object). The three consistency criteria differ ho-
wever in the definition of the last write operation. Atomic consistency is the more
restrictive of the three consistency criteria: it requires that all the processes agree
on a total order including all the read/write operations that they have issued, and
this total order has to respect real time (i.e. if op; precedes opy in real time, then
all the processes have to agree that op; has occurred before opy). With sequential
consistency, the processes have also to agree on a total order of their read/write
operations, but this total order does not have to respect their real time order. With
causal consistency, processes can disagree on the way they totally order concurrent
write operations.

Causal consistency is included in sequential consistency (i.e. an execution that sa-
tisfies sequential consistency also satisfies causal consistency) and sequential consis-
tency is included in atomic consistency (i.e. an execution that satisfies atomic consis-
tency also satisfies sequential consistency). If some relationships between atomic and

A (logically) shared memory includes simultaneously all the objects with all their implicit
mutual and causal dependencies.

RR n"2557



4 M. Raynal and A. Schiper

sequential consistencies are well understood (e.g. [5] compares their respective po-
wers), a unifying framework, that would allow for a better understanding of the
links between sequential consistency and causal consistency criteria, is still missing.
This is precisely the purpose of this paper, which shows that sequential consistency
can be obtained from causal consistency by adding some appropriate synchroniza-
tion constraints (a synchronization constraint orders some pair of operations). This is
particularly interesting from methodological and implementation points of view as it
means that a family of protocols implementing sequential consistency can be seen as
consisting of two independent layers: a basic layer implementing causal consistency
and, on top of it, another layer enforcing the chosen synchronization constraints
(an interesting consequence of the approach is that only this second layer has to be
changed when we want to replace a set of synchronization constraints by another
one).

Our work can be seen as a continuation of the work started by Ahamad et al. [4].
These authors consider however only two types of synchronization constraints: Data
Race Free (DRYF) synchronization, and Concurrent Write Free (CWF') synchroniza-
tion. We generalize their work in two directions. First we distinguish between two
classes of synchronization constraints: (1) the per object synchronization constraints,
which synchronizes operations on each object independently, and (2) the inter-object
synchronization constraints, which synchronizes operations on distinct objects. The
DRF synchronization fits into the per object synchronization class, and the CWF
synchronization fits into the inter-object synchronization class. The per object syn-
chronization class is particularly interesting, as it provides the locality property in-
troduced by Herlihy and Wing [14]. The second, and most important contribution of
the paper, is the introduction of two new synchronization constraints: the Concur-
rent Read Free (CRY) synchronization, and the Mized Synchronization Constraint
(MSC) which combines the DRF, CWF and CRF synchronizations. The MSC syn-
chronization has the nice property to allow conflicting operations on the same object
to proceed concurrently. This is particularly interesting in the context of distributed
systems where objects are possibly replicated, to cope with partition failures. If se-
quential consistency is obtained by implementing the MSC synchronization on top
of a causally consistent distributed shared memory, then conflicting operations is-
sued from two distinct partitions do not necessarily block processes that issued them
(when sequential consistency is ensured by quorum based protocols such blocking
always occurs).

The paper is structured as follows. Section 2 formally defines causal and sequen-
tial consistency. Section 3 introduces the two classes of synchronization constraints

INRIA



Consistency in Shared Memory Systems 5

(per object synchronization and inter-object synchronization), and defines the DRF,
CWPF and CRF synchronization constraints. The mixed synchronization constraint
MSC is introduced in Section 4. This Section also contains the proof of the main
Theorem: GSC allows to transform causal consistency into sequential consistency.
Section 5 addresses practical aspects of the MSC synchronization in the context of
distributed systems (implementation of the constraint and partition failures). Finally
Section 6 discusses other consistency criteria from which sequential consistency can
also be obtained.

2 Shared Memory Model

2.1 Notations

We consider a finite set of sequential processes P, ..., P, that interact via a finite
set X of shared objects. Each object # € X can be accessed by read and write
operations. A write into an object defines a new value for the object; a read allows
to obtain a value of the object. A write of value v into object z by process P; is
denoted w;(z)v; similarly a read of = by process P; is denoted r;(z)v where v is the
value returned by the read operation; op will denote either r (read) or w (write). For
simplicity, we assume all values written into an object x are distinct. Moreover, the
parameters of an operation are omitted when they are not important. Each object
has an initial value; it is assumed that this value has been assigned by an initial
fictitious write operation.

2.2 Histories

The local history h; of P;is the sequence of operations issued by P;. If opl and op2
are issued by P; and opl is issued first, then we say opl precedes op2 in P;’s process-
order, which is noted opl —; op2. Let h; denote the set of operations executed by
P;; the local history h; is the total order (hi,—).

An ezecution history (or simply a history) H of a shared memory system is a
partial order H = (H,—p) such that? :

o opl —p op2 if :

2Section 6.5 briefly compares definition of histories in the shared memory model and in the
message-passing model.

RR n"2557



6 M. Raynal and A. Schiper

i) 3 P; :opl —; op2 (in that case, —p is called process-order relation),

or i) opl = w;(z)v and op2 = r;(z)v (in that case —p is called read-form
relation),

or iit) Jop3 :opl —py op3 and op3 — g op2.

A history His sequential if — g is a total order relation.

A read operation r(z)v is legal if: 3 w(z)v @ w(z)v —p r(z)v and A op(z)u
w(z)v —py op(z)u —pg r(z)v. A history H is legal if all its read operations are
legal?.

Two histories are equivalent if (1) they are defined on the same set of operations,
(2) they have the same process-order relation, and (3) they have the same read-from
relation.

Two operations opl and op2 are concurrent in H if we have neither opl — g op2 nor
op2 — opl.

2.3 Sequential Consistency

Sequential consistency has been proposed by Lamport in 1979 to define a correct-
ness criterion for multiprocessor shared memory systems [17]. Such a system is se-
quentially consistent with respect to a multiprocess program, if ”the result of any
execution is the same as if (1) the operations of all the processors where executed in
some sequential order, and (2) the operations of each individual processor appear in
this sequence in the order specified by its program”.

This informal definition states that the execution of a program is sequentially
consistent if it is equivalent to a sequential execution®. More formally, we define
sequential consistency in the following way.

?The usual definition of legality [3, 4] eliminates only the possibility of an intervening write
(w(z)u) between the writing of some value (w(z)v) and a reading of the same value (r(z)v). Our
definition of legality allows for a simpler definition of causal consistency (see Section 2.4).

*In his definition, Lamport assumes that the process-order relation defined by the program (see
point (2) of the definition) is maintained in the equivalent sequential execution, but not necessarily
in the execution itself. As we do not consider programs but only executions, we implicitly assume
that the process-order relation displayed by the execution histories are the ones specified by the
programs which gave rise to these execution histories.

INRIA



Consistency in Shared Memory Systems 7

Definition. Sequential consistency. A history H = (H,—p)is sequentially

consistent if there exists a legal sequential history S equivalent to H. In other
words, H admits a linear extension® S in which all reads are legal. O

As an example let us consider the history I?l (Figure 1)®. Each process P;,
(i=1,2), has issued three operations on the shared objects z and y. The write ope-
rations w(z)0 and wy(z)1 are concurrent. It is easy to see that Hy is sequentially
consistent by building a legal sequential history including first the operations issued
by P; and then the ones issued by P,. It is also easy to see that the history ]?2
(Figure 2) is not sequentially consistent, as no equivalent legal sequential history
can be built.

wi ()0 %ﬁ(% — =n()0

.
.

(L€ ) RN T (7)  p— 1€

Figure 1: A sequentially consistent history H,

Various cache-based protocols implementing sequential consistency have been
proposed in the context of parallel machines [1, 5, 20]. The protocols presented in
[1, 20] allow several read operations and one write operation to concurrently access
a same variable (reading of cached values and writing into the main memory) but
do not allow concurrent write operations on a same variable. One of the protocols
(called fast write) presented in [5] allows write operations on a same variable to
proceed concurrently. However, these protocols do not assume an underlying causally
consistent memory, and thus could not identify the two layers approach and the
mixed synchronization constraint given in the paper.

In the context of distributed systems, where each object is supported by several
permanent copies, non cached-based protocols implementing sequential consistency

A linear extension of a partial order is a topological sort of this partial order, so it maintains
the order of all ordered pairs of the partial order.

In all figures, only the edges that are not due to transitivity are indicated (transitivity edges
come from process-order and read-from relations). Moreover, (intra-process) process-orderedges are
denoted by continuous arrows and (inter-process) read-from edges by dotted arrows.
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8 M. Raynal and A. Schiper

have been proposed. Usually these protocols use votes [24] or quorums [13] mecha-
nisms and, consequently, implement actually atomic consistency which is stronger
than sequential consistency. Section 5.1 discusses some of these protocols.

2.4 Causal Consistency

Causal consistency, introduced by Ahamad et al. in 1991 [3], defines a consistency
criterion weaker than sequential consistency. Causal consistency allows for a wait-
free implementation of read and write operations in a distributed environment, i.e.
causal consistency allows for cheap read/write operations (see [3, 4] for protocols
implementing causal consistency).

With sequential consistency, all processes agree on a same legal sequential hlstory
S. The agreement defined by causal consistency is weaker. Given a history H it is
not required that two processes P; and P; agree on the same ordering for the write
operations which are not ordered in H. The reads are however required to be legal.

Definition. Causal consistency. Let H = (H,—p) be a history. H is causally
consistent if all its read operations are legal. O

wa(y )0 %u@( )2 -%m( )0 %m( )1

Figure 2: A causally consistent history H,

In a causally consistent history, all processes see the same partial order on ope-
rations but, as processes are sequential, each of them might see a different linear
extension of this partial order. An alternative definition of causal consistency is the
following one [4]. Let H; be the sub- history of H from which all read operations not
in the local history h; of P; have been removed”. History His causally consistent if,
for each process P;, there is a legal sequential history S equivalent to H

"More formally, fi\l is the sub-relation of H induced by the set of all the writes of H and all the
reads issued by P;.
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So, in a causally consistent history, no read operation of a process P; can get a
value that, from his point of view, has been overwritten by a more “recent” write.
As an example consider history H, (Figure 2). This history is causally consistent as
all its read operations are legal. The history Hs (Figure 3) is not causally consistent
as the read operation r3(z)1 issued by Ps is not legal: wy(z)l —g r3(2)2 —n
ra(x)l. When considering the alternative definition, when P; has issued its first
read operation on z (namely r(z)2), it has got the value 2, and consequently for this
process, the value 1 of z has logically been overwritten.

wi ()] —=wi(y)2
wa(x)2 %szyﬂ %’U&(Z:)‘g

7“3(2\{3 —=r3(2)2 —=r3(x)1

Figure 3: A non causally (but PRAM) consistent history Hs

3 Basic Synchronization Constraints

3.1 Adding Synchronization Constraints

As mentioned in the introduction, this paper shows that a causally consistent his-
tory whose operations respect some synchronization constraints is a sequentially
consistent history H: these synchronization constraints ascertain the existence of a
legal and sequential history 5 equivalent to H. From an implementation point of
view this means that a protocol implementing sequential consistency can be seen as
consisting of two independent layers: (1) a first layer implementing causal consis-
tency (i.e. basically ensuring the legality of reads), and (2) a second one enforcing
the synchronization constraints.

RR n"2557



10 M. Raynal and A. Schiper

A synchronization constraint orders some pairs of operations. Let op(z) and
op'(y) be such a pair. Two classes of constraints can be defined, depending whether
or not z and y are the same object.

1. Per object synchronization. In this case the synchronization constraint applies
to each object & independently of the others. Two operations op(z) and op'(y),
such that z and y are distinct, are never synchronized. This type of synchroni-
zation is particularly interesting as it provides the locality property introduced
in [14].

2. Inter-object synchronization. In this case the synchronization constraint orders
some pairs of operations op(z) and op/(y) on distinct objects z and y. This type
of synchronization is more general (as it includes the per object synchronization
as a special case). Moreover, as op and op’ can each be a read or a write
operation, several subclasses of constraints can be envisaged.

We consider below the data race free synchronization of the per object class, and
two types of the inter-object class: the concurrent write free synchronization, and the
concurrent read free synchronization. These three basic synchronization constraints
can be combined to define what we call the mized synchronization constraint. We
show that this mixed synchronization, when added to a protocol implementing causal
consistency, leads to sequentially consistent histories.

The synchronization constraints will be defined using the O RD predicate. Two
operations satisfy this predicate if they are not concurrent. More formally, let H=
(H,—pm) be a history, and op, op’ be two distinct operations of H:

def
ORD (op,0p’) = (op—m op') or (op' —p op)

3.2 Synchronization Tags

Each read or write operation of a history H is associated with one and only one
synchronization tag. The possible tags are DRF (data race free), CWF (concurrent
write free), CRF (data read free). A read operation can be tagged DRF or CRF; a
write operation can be tagged DRF or CWF. Operation op tagged T, and accessing
object z, will be noted opr(z).

Informally, all operations endowed with the same tag T obey the same syn-
chronization constraint (which is called T). Operations with distinct tags are not
synchronized. The next two subsections define synchronization constraints based on
tagged operations.

INRIA
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3.3 Per Object Synchronization

As indicated previously, the per object synchronization constraint is defined for each
object independently of the others: it consists in ordering conflicting operations on
each object z (two operations on an object & are conflicting iff one of them is a write).
In other words, operations on each object obey the readers-writers synchronization.
This constraint is usually called DRF (data race free).

DRF synchronization. The DRF synchronization orders conflicting operations
tagged DRF. Let H = (H,—p) be a history and z an object. For any two
distinct operations opprr(z) and opf, p(2), the DRF synchronization ensures

that, if at least one of these operations is a write, then ORD (opprr(z), opphpp(2))
holds. ]

It has been proved in [4] that a causally consistent history H in which (using our
terminology) all operations are tagged DRF is sequentially consistent. The reader
might consider this result as not very surprizing. This result is obtained here as a
special case of a more general result (see Section 4.3). The general result is indeed
more interesting than this special case.

3.4 Inter-Object Synchronization

The DRF synchronization does not order operations on distinct objects x and y. We
introduce two synchronization constraints that order operations on distinct objects:
one called CWF (concurrent write free) applies only to write operations, the other,
called CRF (concurrent read free), applies only to read operations.

In both definitions hereafter we consider a history H = (H,—p) and a pair of
(not necessarily distinct) objects  and y.

CWF synchronization. This synchronization orders write operations tagged CWF.
For any two distinct write operations, wewp(z) and wew p(y), the CWF syn-
chronization ensures ORD (wewr(z), wewr(y)).

CRF synchronization. This synchronization orders read operations tagged CRF.
For any two distinct read operations, rcrp(z) and rerrp(y), the CRF synchro-
nization ensures ORD (rcrp(z),rcrr(y)). ]

It has been shown in [4] that a causally consistent history ﬁ, in which all write
operations are tagged CWF is sequentially consistent. This result will also be proved
in Section 4.3 as a special case of our more general result. Notice that the CRF

RR n"2557



12 M. Raynal and A. Schiper

synchronization (with all read operations tagged CRF) is not sufficient to ensure
sequential consistency out of causal consistency. The CRF synchronization, together
with the DRF synchronization for write operations, leads however to this result.
This is included in our mixed synchronization constraint.

4 A Mixed Synchronization Constraint

4.1 The Mixed Constraint

The synchronization constraints DRF, CWF and CRF introduced so far can be
combined to define a mixed synchronization constraint, noted MSC (mized synchro-
nization constraint). Section 5.1 discusses its practical use. MSC is a generalization
of the previous synchronizations in the sense that it allows for combinations of
synchronization constraints (either CWF with DRF, or CRF with DRF). In other
words, MSC does not require that the same synchronization tag be attached to every
operation of a history. We distinguish between two MSC constraints, MSCy, and
MSCg:

e A history H satisfies the MSCyy constraint if and only if (1) all its operations
are tagged either CWF or DRF, and (2) the CWF tagged operations obey
the CWF synchronization, and the DRF tagged operations obey the DRF
synchronization.

Note that in this case all read operations are necessarily tagged DRF, while
write operations are tagged DRF or CWF.

e A history H satisfies the MSCp constraint if and only if (1) all its operations
are tagged either CRF or DRF, and (2) the CRF tagged operations obey the
CRF synchronization, and the DRF tagged operations obey the DRF synchro-
nization.

Note that in this case all write operations are necessarily tagged DRF, while
read operations are tagged DRF or CRF.

We say that the MSC synchronization is satisfied by a history H if and only if
H satisfies either MSCywy or MSCpg. Notice that, in a history H that satisfies the
MSC constraint, the tags CWF and CRF are incompatible. If w(z) is tagged CWF
in H then all read operations of H are tagged DRF (constraint MSCyy). Similarly if
a read is tagged CRF then all write operations are tagged DRF (constraint MSCp).

In order to understand the MSCy and MSCg synchronizations, it is important
to understand that they do not require conflicting operations on a given object z be

INRIA



Consistency in Shared Memory Systems 13

ordered. Consider a history H and the two cases of conflicting operations (namely,
read/write conflict and write/write conflict). Consider first read/write conflicting
operations. If H satisfies the MSCyy constraint, and if a write operation w on some
object z is tagged CWF, whereas a read operation r on z is tagged DRF, then these
two operations are not ordered by the MSCys synchronization constraint: hence
wewr(z) and rprp(z) are not synchronized. Consider now the same conflict with
H satisfying the MSCpg constraint: if a write operation w on z is tagged DRF,
whereas a read operation r on z is tagged CRF, then these two operations are not
ordered by MSCpg: hence wpgrp(2) and rcpp(z) are not synchronized.

The same result holds for write/write conflicts. Suppose the MSCy constraint
is satisfied by f]; if a write operation w on some object z is tagged DRF whereas
another write operation w’ on z is tagged CWF, then these operations are not orde-
red by MSCw: hence wpprp(z) and wiyyp(2) are not synchronized, i.e. concurrent
conflicting writes are allowed!

Remark. To understand that the DRF and the CWF constraints mentioned
in [4] are special cases of the MSC constraint, consider the following explanation.
First, the DRF synchronization constraint in [4] is obviously a special case of either
the MSCw or of the MSCg synchronization constraint, in which all the operations
are implicitly tagged DRF. Second, the CWF synchronization constraint in [4] is a
special case of the MSCyy synchronization constraint in which all the write opera-
tions are implicitly tagged CWF and obey CWF synchronization, and all the read
operations are implicitly tagged DRF and obey DRF synchronization (in that case
the DRF synchronization is actually a n:l synchronization as it applies only to read
operations of H which are never conflicting!).

4.2 Deterministic Read Operations

Section 4.3 proves our main result, namely: a causally consistent history IAI, that
satisfies either MSCy or MSCg, is sequentially consistent. Because MSCy allows
for concurrent writes on the same object, MSCyy requires an additional deterministic
read rule, in order for our main result to hold. This rule defines which value has to be
returned by a r(z) operation in case the read operation is aware of two concurrent
write operations.

Deterministic read rule. Consider A a causally consistent history obeying the
MSCw synchronization, an object z, and two concurrent writes wprr(z)u
and wewp(2)v. Let r(z) be a read operation such that both r(z)u and r(z)v

RR n"2557



14 M. Raynal and A. Schiper

are legal®. Then the read operation returns the value written by wewr(z), i.e.
r(z) returns v. O

4.3 The MSC Theorem

We prove in this Section our main result relating causal consistency to sequential
consistency. We prove the results for MSCy and for MSCp together.

Theorem 4.1 Let H = (H,—py) be a causally consistent history such that (1)
either MSCyw or MSCpr is salisfied, and (2) in case of MSCw each read operation
r(z) follows the read rule (Sect. 4.2). Then H is sequentially consistent.

4.3.1 Preliminary Definitions

In order to prove the Theorem 4.1, we introduce the Lemma 4.2. This Lemma is
based on two additional relations on the operations of a history H:a logical write-
write precedence relation (denoted —,,) and a logical read-write precedence relation
(denoted —).

Logical write-write precedence. Let H= (H,—p) be a history. The write-write
precedence relation —,, is defined on pairs of write operations, on a same object
x, that are concurrent in H. By definition, this can happen only if one of them
is tagged DRF while the other is tagged CWF (two writes on a same object,
both tagged either DRF or CWF, are ordered in }AI) The logical write-write
precedence relation states that the write tagged DRF is logically before the
write tagged CWF.

Definition: Let wewp(x) and wprp(z) be two concurrent write operations in
H. Then we have: wprr(z) —w wewr(z). (Moreover —, holds only in these
cases. )°

Logical read-write precedence. Let H = (H,—p) be a history. The logical
read-write precedence relation —, is defined on pairs of read and write opera-
tions for each object z.

8This means the read is aware of both writes and there is no intervening operation op(z)a, with
a # u and a # v, in between wewr(z)v and r(z) and in between wprr(z)u and r(z).

?So, given w(z)u and w(z)v, we necessarily have one of these four relations: w(z)u —g w(z)v,
or w(z)u —w w(z)v, or w(z)v =g w(z)u, or w(z)v —u w(z)u.

INRIA
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Definition: Let w(z)u, r(z)u and w(z)v be three operations in H such that
w(z)u —pg w(z)v or w(z)u —, w(z)v. Then we have: r(z)u —, w(z)v.
(Moreover —, holds only in these cases.)'°

4.3.2 Acyclicity Lemma

Lemma 4.2 (Acyclicity) Let H = (H,—p) be a causally consistent history that
satisfies the MSC synchronization constraint. Let —,, and —, be the two relations
on H defined above. Then the relation —g U —,, U —, defines a partial order on

H.

Proor. Let — be either — g or —,, or —,, and let — be either —,, or —,.

w/r
Consider the directed graph whose vertices are the operations of H, and whose
edges are the — relation. We prove that, for any n > 0, there are no (directed) cycle
of length n in this graph. The proof is by induction on m, where m is the number

of —,,/, edges in the cycle.

i) Base step (m=1). Let opy — op; — ... — op, — op; be a simple cycle of length
n > 1, and assume that one single edge of this cycle is of type —,, /.. We show that
this leads to a contradiction. Without loss of generality, let op; — opy be the only
—w/r €dge in the above cycle; so, as His transitive, we have opy — g opy. There are
two cases to consider, numbered ¢.1) and 7.2).

i.1) op1 —, opa.
From the definition of —, it follows op; = r(z)u and op; = w(z)v, and either (a)
w(z)u —g w(z)v or (b) w(z)u —, w(z)v.

(a) w(z)u —py w(z)v. As opy — g opy,ie. w(z)v —pg r(z)u, we have w(z)u —pg
w(z)v —g r(z)u, which means that r(z)u is not legal, in contradiction with the
assumption that, because Hisa causally consistent history, its read operations are
legal.

(b) w(z)u — (z)v. From the definition of —,, it follows that w(z)u and w(z)v
are concurrent and respectively tagged DRF and CWF. So we get (1) wewr(z)v —pn
r(z)u (because opy —p op1), (2) wprr(z)u — g r(z)u (read-from relation), and (3)
wewr(z)v and wprp(z)u are concurrent. This is in contradiction with the read rule
of Section 4.2 (namely r(z) cannot read value w; it reads v or, if it exists, a more
recent value v’ such that w(z)v —g w(z)v').

19Note that in this case u and v are necessarily distinct.
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i.2) op1 — Opa.
By definition of —,,, op; and opy are two concurrent write operations, but ops — g
op1 (because op; — op; is the only —,,/, edge in the cycle): a contradiction.

ii) Induction step (m > 1). Let opy — op2 — ... — op, — op; be a simple cycle
of length n, and assume that there is no cycle with m or less than m edges —,,,
(m < n). We prove that there can be no cycle with m + 1 edges —,/,. The proof is
again by contradiction.

Assume a cycle with m + 1 edges —,/,, and pick arbitrarily two of these m + 1
edges. Without loss of generality let opy, ops, op; (t > 2), ops41 be the four operations
that are the endpoints of the two —, /. edges: op1 —,/, op2 and op; —,/, Opry1.
There are four cases to consider, numbered :.1) to 7¢.4).

ii.1) opy —, opy and op; —, Opi41.

By definition of —,: opy1, op; are read operations and ops, opy41 are write operations.
ii.11). If op; and op; (or op; and op;41) are both tagged DRF we have opy — g opy
or opy —p op1 and consequently there exists a cycle of —,,/. with less than m + 1
edges.

i.12). If both op; and op, are not tagged DRF, and the same holds for op; and op;41,
then due to the incompatibility of CRF and CWF tags, either both reads (op; and
op;) are tagged CRF, or both writes (opy and opyq) are tagged CWF. If the reads
are tagged CRF, then as H satisfies MSC, either op;y —pg op; or op; —g op;.
If the writes are tagged CWF, then as H satisfies MSC, either opy — g opi4q or
opiy1 — g opz. In all of these four cases, we are able to exhibit a cycle with no
more than m edges —,/,, which is in contradiction with the induction hypothesis:
if op1 —p op; or opir1 —m ops ( respt. op; —p opy or opy —p opiy1) then there
is a cycle not including the edge opy —, opy (respt. op; —, op;+1) and so including
less than m + 1 edges —,,.

ii.2) op1 —, opy and op; —, OPi41.

By the definition of —, and —,, opy is a read operation, opy, op;, op;+1 are write
operations and op;y1 is tagged CWF. Because op;y; is tagged CWF, there can be
no read operations tagged CRF, i.e. op; is tagged DRF and opy is tagged DRF or
CWF.

i1.21). If opy is tagged DRF then we have opy — g opy or op; —p opy and there is a
cycle of —,/, of less than m + 1 edges.

ii.22). If opy is tagged CWF then, as opyy1 is also tagged CWF, we have either
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0p3 — [ Opry1 OT Opi41 —H op2. In both cases, we can exhibit as previously a cycle

with no more than m — edges, in contradiction with the induction hypothesis:

w/r

if ops — 1 opiy1 (respt. opry1 —p opz), then there is a cycle not including the edge
0Pt —w Opi41 (respt. op1 —, opa).

i1.3) op1 — 0p2 and op; —, Opiy1.
By renaming op; to op;, ops to opiy1, op; to opy and opiy1 to ops, case ii.3) becomes
identical to i.2).

ii.4) 0p1 —u 0ps and op; —, 0Py,
By the definition of —,,, opz and op; 1 are write operations tagged CWF),i.e. either
0ps — [ Opry1 OT Opy+1 —H op2. In both cases, we can exhibit as previously a cycle

with no more than m — edges, in contradiction with the induction hypothesis:

w/r
if opy —pm opit1 (respt. opip1 —m opz) there is a cycle not including the edge
0pt — 4 0pi41 (respt. the edge opy —, op2).

O

4.3.3 Proof of the MSC Theorem

Lemma 4.2 has showed that -y U —,, U —, defines a (partial) order on H. The
following Lemma 4.3 completes the proof of the MSC theorem by showing a legal
sequential history S can be constructed by a topological sort of (H, =g U —,, U —,

).

Lemma 4.3 (Legality) A topological enumeration of (H,—pg U —, U —,) pro-
duces a sequential history S that is legal and equivalent to H.

Proor. By construction, H and S are defined on the same set of operations, have the
same process-order relation and the same read-from relation, so they are equivalent.
We have to prove that read operations in S are legal, i.e. that, given any r(z)u in
S, there is no op(z)v, with v # u, such that: w(z)u —g op(z)v — r(z)u.

The proof of legality of the read operations is by contradiction. Let —p/,, be
either — 7 or —,,. Assume there is some op(z)v, with u # v, ordered after w(z)u and
before r(z)u in S, i.e. w(z)u —s op(z)v —s r(z)u. We consider two cases according
to op(z)v is a read or a write operation.

i) op(z)v = w(z)v.
As all writes on z are totally ordered by —p/, and as S is a topological sort
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o]

f (H,—y U —y U —,), if w(z)u is ordered in S before w(z)v, then we have
w(z)u — gy, w(z)v. By the definition of —, we have thus r(z)u —, w(z)v, i.e.
r(z)u is before op(z)v = w(z)v in §, which contradicts the assumption, namely
w(z)u —g op(z)v = w(z)v —5 r(z)u.

it) op(z)v = r(z)v.

In this case we have: w(z)u —g r(z)v —g r(z)u and w(z)v — g r(z)v (with u # v).
Two sub-cases have to be considered, as we have either w(z)v —p/, w(z)u or
w(z)u — g/ w(z)o.

i.1) w(z)v — gy w(T)u.

In that case we have: w(z)v —g w(z)u —g r(z)v. By exchanging v and v, case ii.1)
becomes case 7).

i.2) w(x)u — gy w(T)v.

In that case we have: w(z)u —g w(z)v —g r(z)u. It follows this case is similar to
case i). O

5 MSC Synchronization and Distributed Systems

Until now no assumption has been made about the implementation of the set X of
objects. Specifically this means that the result of the previous Section holds in dis-
tributed systems where the objects are possibly replicated (e.g. in order to achieve
fault-tolerance). In the sequel we consider replication, and discuss the classical im-
plementation of the DRF, CWF and CRF synchronization constraints in distributed
systems. Then we propose a simple protocol to implement MSC synchronization and
discuss the practical impact of the MSC synchronization (namely, to face partition
failures).

5.1 Implementing DRF, CWF and CRF Synchronization Constraints

Protocols implementing the DRF synchronization constraint have been proposed
for a long time in the context of distributed systems where each object has several
copies. Actually, these protocols implement atomic consistency which is a consistency
criterion stronger than sequential consistency. Simple protocols for CWF and CRF
synchronization can be designed; in all these protocols, legality all read operations
is guaranteed by the underlying causal memory.

DRF. A simple way to ensure the DRF synchronization consists in using, for each
object individually, some form of mutual exclusion. If objects are replicated
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this is classically implemented either by a voting protocol [24], or by a more
general quorum protocol [13]. Given an object z, let Q R, be a read quorum
for z, and QW, be a write quorum for x. A read or write operation on object
x by process P;, that obey the DRF synchronization, requires for P; to have
the corresponding quorum on z.

CWF or CRF. A simple way to ensure the CWF or the CRF synchronization is
to use a unique token. Let Towp be the CWF token, and Torp the CRF
token (note that, under the MSC constraint, these tokens cannot co-exist).
The Tewr token (respt. Togrp) gives its current owner a universal right to
write (respt. read) all the objects. More precisely, a write operation on object
x by process P;, that obey the CWF synchronization, requires for P; to have
the Tewr token. Similarly a read operation on object z by process FP;, that
obey the CRF synchronization, requires for P; to have the Torp token!!.

5.2 An Implementation of the MSC Synchronization Constraint

The advantage of the MSC synchronization over the pure DRF synchronization, or
the pure CWF synchronization, is to give two chances to perform an operation: the
MSCyy synchronization gives two chances to perform a write operation, whereas the
MSCpg synchronization gives two chances to perform a read operation:

MSCyy. To write an object x, a process must either have the write quorum QW.,,
or must have the Tow g token. To read an object x, a process must have the
read quorum QR...

MSCg. To read an object x, a process must either have the read quorum QR..,
or must have the Torp token. To write an object z, a process must have the
write quorum QW,.

Consider the protocol implementing MSCyy. As there are two chances to perform
a write operation, if the process willing to write an object z requests both the write
quorum W, and the token Tow , it will be allowed to write x as soon as one of the
two conditions is fulfilled. This shows that the MSC constraint is less constraining
than either DRF, CWF or CRF considered alone.

Albeit tokens Towr and Togrp cannot exist simultaneously, the MSC synchro-
nization has a nice property. It is possible, during an execution, to switch from the

1A token can be made fault-tolerant by replication. In this case, to have the token is equivalent
to have a write quorum on the replicated object representing the token.
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MSCy to the MSCpg synchronization, and from the MSCg synchronization to the
MSCy synchronization. In other words, the Tow g token can be dynamically chan-
ged to a Topp token, and conversely. The switching condition is the following: a
process P; can change the attribute of the token if and only if (1) P; owns the token,
and (2) P; has a read quorum @R, on all the objects of X. (Note that when this
condition is fulfilled, no process P; can concurrently write any object.)

5.8 Network Partitions

The fact that MSCy gives two chances to perform a write operation, and MSCp two
chances to perform a read operation, is particularly interesting in the case of network
partitions. Consider for example the network partitioned into II; and II;. The MSCg
synchronization might allow to read an object z in partition II; even if there is no
read quorum for z in Il (assume Terp in Ily). Similarly the MSCy synchronization
might allow to write an object « both in partition II; and in partition 1l (assume
Tewr in Iy, and a write quorum for z in II3). One could also imagine the case in
which no partition has the write quorum on an object z; despite this, the MSCy,
synchronization might allow to read and write z in some partitions (assume the read
quorum for z in II; and the Towr token in Ily).

Thus the MSC synchronization, while ensuring sequential consistency, is flexible
and reduces the blocking period of processes.

6 About Other Consistency Criteria

As indicated in the introduction, this paper aimed at showing that sequential consis-
tency can be obtained out of causal consistency by adding appropriate and flexible
synchronization constraints. Some authors have defined other consistency criteria to
get eflicient parallel programs. They also have given conditions to obtain sequen-
tial consistency out of these consistency criteria. We present some of them in the
next subsections. Relationships between PRAM consistency and causal consistency
are first given. Hybrid consistency, mixed consistency, entry consistency and release
consistency are then discussed. A short comparison between the message passing
model and the shared memory model concludes this Section.

6.1 PRAM Consistency

PRAM (Pipelined RAM) consistency [18] is a consistency criterion weaker than
causal consistency. The difference, in the shared memory model, between PRAM
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consistency and causal consistency is the same as the one between FIFO ordering and
causal ordering for message deliveries in the message passing model [10, 22]. PRAM
and FIFO are only concerned by “direct relations” between pairs of “adjacents”
processes and do not take into account transitivity due to intermediary processes.
More precisely, in a message passing system with FIFO ordering, two messages sent
to a same process by two distinct senders can be delivered in any order, even if the
send events are causally related [16] (this is not the case with causal ordering: if the
send events are causally related, messages must be delivered in their sending order
to the destination process). In the same way, in a PRAM consistent shared memory
system, two updates of objects by two distinct processes can be know in any order
by a third one'? (this is not the case in a causally consistent shared memory : if
w(z)u —g w(x)v, a process reading & can never get v and then u). As an example
consider history H3 which is not causally consistent (Figure 3). This history is PRAM
consistent: as wi(z)1 and wq(z)2 have been issued by distinct processes, values 1
and 2 of z can be known by P; in any order.

Let H be a history and let H = (H',—p) be a history defined from H in the
following way (IT’ differs from H only in point i) defining transitivity, where —; is
used instead of —p):

e H'=H (so H' =, h;)
o opl —p op2if :
i) 3 P; :opl —; op2 (process-order relation),

or ii) opl = w;(z)v and op2 = r;(x)v (read-form relation),

or iit) Jop3 :opl —; op3 and op3 —; op2.

Let H; be the sub-history of H' from which all read operations not issued by
P; have been removed. H is PRAM consistent if, for each P;, there exists a legal
sequential history S; which is equivalent to H;. This definition of PRAM consistency

shows that its difference, with respect to causal consistency, lies in the nature of the
transitivity considered.

6.2 Mixed Consistency

Mixed consistency has been introduced by Agrawal et al. in [2]. This consistency
criterion on one side considers histories including memory operations (read and

120f course, only one of the updates can be know, if updates overwrite the value previously
written by other processes.
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write) and synchronization operations (lock, barrier and await ), and on the other side
combines PRAM consistency with causal consistency; namely every read operation
is tagged either PRAM or causal.

A history H is mixed consistent if it is:

e causally consistent when considering only the legality of read operations tagged
causal, and

e PRAM consistent when considering only the legality of read operations tagged
PRAM.

The following result is shown in [2]. A mixed consistent history H in which all
'3 and in which every pair of concurrent operations
commute'*, is sequentially consistent.

read operations are tagged causa

6.3 Hybrid Consistency

Hybrid consistency has been introduced by Attiya and Friedman in [6]. This consis-
tency criterion guarantees properties on the order in which operations appear to
be executed at the program level. Operations are labeled either strong or weak.
By defining which operations are strong and which are weak, a user can tune the
consistency criterion to his own need. Informally hybrid consistency guarantees the
following two properties:

e all strong operations appear to be executed in some sequential order,

e if two operations are invoked by the same process and at least one of them
is strong, then they appear to be executed in their invocation order to all
processes.

Hence all processes agree on a total order for all strong operations, and on the
same order for any pair of strong and weak operations issued by the same process.
They can disagree on the relative order of any pair of weak operations issued by a
process between two strong operations. The following result is proved in [7]:

e every hybrid consistent history in which all writes are strong and all reads are
weak is sequentially consistent;

13*Note H is then causally consistent.
*Two concurrent operations commute if their execution order is irrelevant (this is not the case
for two concurrent writes on a same object).
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e every hybrid consistent history in which all writes are weak and all reads are
strong is sequentially consistent.

This result (a hybrid history that satisfies the previous property is sequen-
tially consistent) is similar to the one implied by the synchronization constraint
CWPF or CRF. But it requires more synchronization than the MSC synchronization
constraint, as it does not accept either concurrent write operations or concurrent
read operations. The MSC constraint potentially allows more parallelism to get se-
quential consistency (this results from the two layers approach with a basic layer
providing an underlying causally consistent memory).

6.4 Non Primitive Read and Write Operations

Till now we have supposed that read and write operations offered to users are pri-
mitive operations. Some authors have considered to provide users with mechanisms
allowing them to define non primitive read and write operations on a set of shared
data objects (notation: READ, WRITE). Each such READ or WRITE operation
is actually a procedure bracketed by two synchronization operations (release and
acquire), and composed of non synchronized primitive read and write operations.
Both release consistency [12] and entry consistency [9] address such non primitive
READ and WRITE operations, and provide sequential consistency when acquire and
release operations guarantee the readers-writers discipline. Concerning protocols im-
plementing these consistency criteria, eager vs lazy [15] is an implementation issue
whose aim is to reduce the number of messages and the amount of data exchanged;
invalidation vs update is another implementation issue addressing the management
of multiple copies of objects when a cached-based approach is used.

6.5 Shared Memory Model vs Message Passing Model

The definition of an history in the shared memory model, and its definition in the
message passing model, have some similarities. The first definition of an history in
the message passing model is due to Lamport [16]. In the message passing model,
operations issued by a process are modeled as events and can be :

e the sending of a message m (event send(m));
e the reception of a message m (event receive(m));

e the execution of a statement involving neither the send nor the receive of a
message (internal event).
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The local history of a process P; is the sequence h; of events it has produced. A
distributed computation (or an history) H of a set of processes Pi, ..., P, is a partial
order (H, — ) defined as in the case of the shared memory model except for point ii).
More precisely, the definition of the read-from relation is replaced by the definition
of a message relation :

o opl —p op2 if :

i) 3 P; :opl —; op2 (in that case, —p is called process-order relation),

or ii) opl = send(m) and op2 = recetve(m) (in that case —p is called message
relation),

or ¢it) Jop3 :opl —py op3 and op3 — g op2.

The similarity between both models is not limited to their definitions. PRAM,
causal and sequential consistencies in the shared memory model correspond to FIFO,
causal and logically instantaneous [23] communications in the message passing mo-
del. Characterizations of these communication modes can be found in [8, 11, 23].
Let H be a history in the message passing model. In [11], the following results are
shown:

o H has causally ordered communications if it satisfies the empty interval pro-
perty, namely:

Y receive(m) € H : {op | send(m) —p op —p receive(m)} = 0 (1)

e H has logically instantaneous communications if it has a linear extension sa-
tisfying the empty interval property. In others words it must exist a sequential
history S (1: linear extension) which is equivalent to H (same operations, same
process-order and message relations) and in which (2: empty interval property)
for all messages m, the receive event follows immediately the corresponding
send event:

Y receive(m) € S : {op | send(m) —g op —s receive(m)} = 0 (2)

These characterizations of causal and logically instantaneous communication
modes are very similar to their counterpart in the shared memory model, causal
consistency and sequential consistency respectively. Let H be a history in the sha-
red memory model. Causal consistency and sequential consistency can be described
in the following way:
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o His causally consistent if all its read operations are legal, i.e. :
Vor(z)ve H:{op(x)u|u # vAw(e)o —yop(z)u —y r(z)w}=0 (3)

o His sequentially consistent if it exists an equivalent sequential history S in
which all read operations are legal, i.e. :

Vor(z)oe S :{op(z)u|u # vAw(a)w—sop(z)u —sr(z)w}=0 (4)

Similarities between (1) and (3) on one side, and (2) and (4) on the other side,
are evident.

7 Conclusion

This paper has studied synchronization constraints that, when obeyed by operations
of a given causally consistent execution, make it sequentially consistent. Such an
approach is particularly interesting as, from methodological and implementation
points of view, it means that a protocol implementing sequential consistency can
consist of two independent layers: a basic one implementing causal consistency and,
on top of it, another one implementing some synchronization constraints for the
operations issued by processes.

The paper introduced the MSC synchronization (mixed synchronization constraint)
which generalizes (1) the known DRF (data race free) and CWF (concurrent write
free) synchronizations and (2) a new one called CRF (concurrent read free). A main
interest of this constraint lies in the fact it allows concurrent conflicting operations on
a same object while ensuring sequential consistency; this is particularly interesting
in the the context of distributed systems (where objects are possibly replicated) to
cope with partition failures: conflicting operations in two distinct partitions do not
necessarily block processes that issue them (as it is the case with quorum based
protocols). Technically, a tag (control type) is associated with each operation, and
all operations endowed with the same tag obey the same constraint.

The paper has also classified the synchronization constraints in two classes: the
per object synchronization class, and the inter-object synchronization class (which
includes the per object synchronization class). This classification allows to better
understand linearizability (which has the nice locality property [14]) with respect to
sequential consistency: linearizability is obtained by the per object synchronization.
Finally, while the paper has identified MSC as a sufficient condition to get sequential
consistency out of causal consistency, it would be interesting to identify a necessary
condition to get sequential consistency out of causal consistency.
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