
High-Bandwidth Encryption with
Low-Bandwidth Smartcards

Mat t Blaze

AT&T Bell Laboratories, Murray Hill, NJ 07974
mab@researeh, a r t . c o m

Abstrac t . This paper describes a simple protocol, the Remotely Keyed
Encryption Protocol (RKEP), that enables a secure, but bandwidth-
limited, cryptographic smartcard to function as a high-bandwidth secret-
key encryption and decryption engine for an insecure, but fast, host
processor. The host processor assumes most of the computational and
bandwidth burden of each cryptographic operation without ever leana-
ing the secret key stored on the card. By varying the parameters of the
protocol, arbitrary size blocks can be processed by the host with only
a single small message exchange with the card and minimal card com-
putation. RKEP works with any conventional block cipher and requires
only standard ECB mode block cipher operations on the smartcard, per-
mitting its implementation with off-the-shelf components. There is no
storage overhead. Computational overhead is minimal, and includes the
calculation of a cryptographic hash function as well as a conventional
cipher function on the host processor.

1 I n t r o d u c t i o n

Cryptographic smartcards are an important building block in many modern
security applications. In particular, their tamper-resistant packaging, low cost,
inherent portability, and loose coupling to the host make them especially at-
tractive for use as secret key storage tokens when the host cannot be trusted to
itseff store a secret key. Unfortunately, however, these same properties also limit
the utility of smartcards; loose coupling and low cost usually mean that a card
cannot process data at nearly the bandwidth of the host to which it is attached.

In some applications, such as challenge-response authentication protocols
and digital signatures of message digests, the low bandwidth of smartcards is
not an issue; the secret key stored on the card is used only occasionally and
speed requirements are minimal. In other applications, however, including file
encryption, encrypted realtime traffic and encrypted multimedia and video, a
much larger volume of traffic is encrypted and decrypted under the card's secret
key. Here the bandwidth to the card can be a serious bottleneck, with the speed
of the system limited by the latency and bandwidth of the card interface and
the computational capacity of the card.

It is therefore often desirable to shift as much work as possible from the slow,
computationally limited card to the fast, more powerful host. This typically in-
volves a tradeoff among security, performance, and cost. At one extreme, we

34

could engineer the smartcard and interface so that its performance matches that
of the host processor. This is not always technologically feasible, however, and
obviously can increase the total cost of the system, At the other extreme, we
could limit the use of the card to key storage, copying the key back to the host
processor for use there prior to performing any cryptographic operations. Re-
vealing the key entails a change to the usual smartcard security model, however,
since the host processor must now be trusted to safeguard the key.

In applications that require high-bandwidth bulk encryption with smartcard-
based key management, we would prefer a scheme that allows work to be shifted
to the host processor without also increasing its trust requirements. Previous
work in the area of "asymmetric capacity" cryptography has focused on public-
key cryptosystems in which parts of the computational burden can be shifted
from one communicating party to the other [BCY93] and does not address this
particular problem. Other work, e.g., [BFS90] [BFKR90], is concerned with hid-
ing instances of specific types of distributed computation and cannot be applied
directly to encryption with block ciphers. In this paper, on the other hand, we
present a simple protocol, the Remotely Keyed Encryption Protocol (RKEP),
for use with a conventional secret key cryptosystem in which a secure, but slow,
smartcard shifts most of the work to its insecure, but fast, host processor.

2 T h e R K E P P r o t o c o l

The players in our scheme consist of a host and a card. The host wants to encrypt
and decrypt large blocks under a secret key stored on the card. While the host is
by definition trusted to process the plaintext that it is actually handling, it is not
allowed to know the key. The smartcard knows the key K, but is computationally
and bandwidth limited and cannot process entire blocks in the time required
by the host. Our protocol allows the host to perform a single, fixed-size low-
bandwidth interaction with the card to obtain enough information to encrypt or
decrypt a given arbitrary length block. Without online access to the smartcard,
however, the host cannot encrypt or decrypt other blocks, even given past card
access.

RKEP requires that the smartcard and host share a block cipher algorithm,
such as DES [NBS77], that operates on b-bit cipherblocks and that is keyed with
a k-bit key. (Strictly speaking, there is no requirement that the host and card
implement the same cipher function; if two different ciphers are used, however,
the security of the system is limited to that of the weaker cipher.) There must be
a secure (secret and unspoofable) channel between the host and the card. The
host operates on large blocks of plaintext (P) and ciphertext (C), each consisting
of a series of n individual b bit cipherblocks, denoted P1...P,~ and C1...C,~, re-
spectively. I1 ...In denote temporary "intermediate" cipherblocks used internally
on the host by the protocol. For the purposes of this discussion, we assume that
k < b (we will remove this restriction below, however). We denote encryption
of plaintext block p under key K as EK (p) and decryption of ciphertext block
c under key K as DK (c). ~ denotes bitwise exclusive-OR. We assume that the

35

host can calculate efficiently a public function H (t) that returns a b-bit crypto-
graphic (one-way and collision-free) hash of arbitrary length bitstring t. Finally,
we assume the card has a public function M (c) that maps the b-bit string c to
a k-bit key string.

The encryption of n-cipherblock plaintext block P producing ciphertext C is
shown in Figure 1. Decryption of C is shown in Figure 2.

Host Card
d o i = 2 t o n

I~ = P~ ~ H(P~)
11 = P1 �9 H(I2.. .I~)
send I1 to card

d o i = 2 t o n
Ci ~- EKp(L �9 Ci-1)

C1 -- E/x'(/1)
I (p : M(E,((C1))

send C1, Kp to host

Fig. 1. RKEP encryption of P to obtMn C

Host Card
send C1 to card

do i = 2 to n
14 = DKp(Ci) ~ Ci-1

Pl = 11 ~ H(I2...IN)
d o i = 2 t o n

p~ = I, ~ H(P1)

I'[p = M(EK(C1))
11 = D~'(C1)

send Kp, 11 to host

Fig. 2. RKEP decryption of C to obtain P

Note that for ciphers where k > b, it is easy to adapt R K E P so that several
cipherblocks (enough to produce k key bits) are sent to and encrypted on the
card to calculate K p .

3 D i s c u s s i o n

36

3.1 L i m i t a t i o n s , o b s e r v a t i o n s and attacks

It is important to understand the basic limitations of RKEP and of smatcard-
based encryption generally. At best, data encrypted by a host following RKEP
can be decrypted only with the aid of online access to a card with the correct
key, and decryption by a host following RKEP will only produce the intended
cleartext when the encrypting host had online access to a card with the cor-
rect key. That is, the security semantics approximate encryption and decryption
performed entirely on a smartcard with respect to a peer that is following the
protocol. Nothing, of course, prevents two "conspiring" peeTs from exchanging
encrypted data without using the card at all, or from bilaterally choosing to re-
use a key from some past card transaction. Indeed, even protocols that require
encryption entirely on the card can be circumvented by peers that choose to
follow some other protocol to encrypt their traffic.

Ideally, we expect the protocol to have the property that without online
access to the smartcard, a host can neither encrypt nor decrypt data under the
card's key, even given past access to the card. That is, encryption and decryption
without the card should be no easier than breaking the underlying cipher. In
particular, the session key generated by the card for a given block should have
no more than 1/2 k probability of being the correct session key for some other
block.

Assuming strong block cipher and hash functions, the ciphertext for each
cipherblock in C appears to depend on the "card secret" key K and the plaintext
of all bits in P.

RKEP appears to be as secure as the underlying cipher against decryption by
a third party (or even a previous card holder) without the card. Since the session
key depends on K and H(P), there should be no useful correlation between the
Kp used to encrypt one large block and the key for another. Obviously, it is
possible (with probability 1/2 k) that the Kp for some block is the same as
the Kp for some previously processed block. This is not an actual weakness,
however, since it is no more likely that such a key will be correct than is any
other randomly chosen key.

It may be possible to exploit past card access to assist future encryption
without the card. Several attacks allow a host that has had past access to the
card to encrypt some chosen bits without the card with less effort than breaking
the underlying cipher or otherwise learning K. A "birthday" attack against the
hash function allows encryption of a b bit chosen cipherblock in 0(2 b/2) time.
This attack requires that the attacker have previously probed the card 2 b/~
times. Other tradeoffs are also possible, allowing fewer past probes in exchange
for more work per forged encryption.

An attacker who has used the card once and records the corresponding values
of P, C, I and Kp is able to encrypt m chosen bits anywhere in P2...P~ with
O(2 m) trial encryptions without online card access. The attacker uses the old

37

C1 and therefore Kp and randomly changes bits in C~...Cn until the chosen bits
deerypt to the desired values. The rest of the bits in P are random, however.

Depending on the protocol parameters (in particular, the cipherblock size b)
and the performance characteristics of the card, neither of these attacks is likely
to pose a serious threat to most practical applications. They can be prevented by
choosing a cipher with a sufficiently large b or with the use of standard crypto-
graphic integrity techniques. Of course, none of this is a proof of security; there
may be other, as yet undiscovered, attacks that allow more efficient encryption
or decryption without online access to the card.

It appears that any cryptographically strong block cipher (DES, IDEA, Skip-
jack, etc.) and hash function (SHA, MD5, etc.) can be used with this scheme.

RKEP can be adapted for use as a simple integrity mechanism by setting
some bits of each large plaintext block to some fixed value (say, all zeros). Tam-
pering with the ciphertext is detected by checking these bits on decryption.

3.2 P e r f o r m a n c e

Regardless of the value of n, any size block can be encrypted or decrypted on the
host with only one card interaction (with two cipherblock operations). However,
no bit of P is available until all bits have been processed, n should be therefore
be chosen to yield the largest size P that the host naturally processes as a unit.
Ordinarily, this will follow froIn some aspect of the application, such as the file
system block size or video frame buffer size. n can be varied as a parameter
of the system, even among successive blocks. If r~ is fixed, the large blocks are
suitable for use with any standard cryptographic "mode of operation" [NBSS0].

The scheme requires no communications overhead in transmitting or storing
the ciphertext; the plaintext and ciphertext sizes are equal.

Any size block can be encrypted or decrypted with one card interaction,
with the card performing exactly two cipherblock encrypt / decrypt operations in
each. If the hash function H is efficient to compute relative to the cipher function,
the overhead on the host is comparable to that of simply performing the entire
encryption there with K. The additional host overhead includes processing each
bit in P with the H function and the ~ operation. There may also be additional
latency introduced while waiting for responses from the smart card.

In the simplest implementation, the host simply performs the procedures
given in Figures 1 and 2 directly for each large block. The total t ime required
for an encryption or decryption of the n cipherblock block P is simply the
sum of the operations: one application of H on a single cipherblock on the
host, one application of application of H on n - 1 cipherblocks on the host,
two block cipher operations on the smartcard (plus any communications cost
associated with transmitting and receiving two cipher blocks between host and
card), and n - 1 applications of the block cipher function on the host. Observe
that, in such an implementation, the host is idle while the card is calculating
and transmitting its two block cipher operations. The card is similarly idle while
the host is calculating its hash and cipher functions.

38

An implementation can be optimized by employing a "pipeline" to yield closer
to 100% host utilization when several blocks are to be encrypted or decrypted
in succession. On encryption, once the host has finished calculating I1 for some
block, it can transmit the value to the card and move on to the next block. When
the card is ready with the C1 and K~ values for the first block, the host can
return to processing that block. Similarly, on decryption, a host can transmit
the next block's C1 value as soon as the previous block's I1 and Ks value is
received. It is possible to overlap the processing of arbitrarily many blocks in
this manner, at the cost of "buffer" memory proportional to the number of blocks
to be overlapped.

3.3 D E S / S H A and Fortezza Implementat ions

We implemented RKEP using a version of the AT&T smartcard as the key stor-
age and encryption engine for the Cryptographic File System (CFS) [B1a93]. CFS
is an encrypting file system for Unix-like operating systems. Files are automati-
cally and transparently encrypted and decrypted as they are read and written,
and therefore the performance of the system is highly dependent on the speed
of the encryption function. A software DES implementation on a modern (e.g.,
Pentium, Spare-201 etc.) workstation provides nearly transparent performance
under typical workloads. The ATKsT smartcard, however, is connected to the
host computer via a slow (9600 bps) serial link. Effective encryption bandwidth
to the card (taking into account communication overhead and card processor
latency) is approximately 8000 bps, with a minimum latency of about 10ms for
a single ECB encrypt/decrypt. The smartcard has a basic key storage facility
(protected by a user password) and the DES ECB encrypt / decrypt function.
Faster (e.g, PCMCIA-based) smartcard interfaces are available for some smart-
cards and host configurations, but are not universally available, especially for
Unix computers. Our smartcard system represents something of a "worst case"
configuration.

The software-only implementation of DES used in the standard version of
CFS encrypts, on a Pentium-90 workstation, at about 2.4Mbps. The bandwidth '
of the smartcard is slower than the software by a factor of about 300. Clearly,
the 9600 bps smartcard is unsuitable as a file encryption engine in an online file
encryption application such as CFS. Under RKEP, however, encryption with the
smartcard has only a small performance penalty compared with the software-
only system.

We used a reasonably well-optimized implementation of SHA as the hash
function H. This version of SHA hashes large blocks at approximately 18Mbps,
and can hash a single 64 bit DES cipherblock in about 20 microseconds. We
selected the large block size to mirror the block size of the file system, 4K bytes
(32768 bits). As expected, the performance of the smartcard-based system under
RKEP is about half that of the original software-only system and far better
than using the smartcard by itself. A "pipeline" RKEP implementation that
attempts to reduce latency by pre-fetching blocks on decryption and deferring
writes improves the performance considerably, approaching that of the original

39

software system. We compare the measured performance of the four systems in
Figure 3.

Scheme 4KB Block Encrypt Bandwidth
Software-only 14 ms 2.4 Mbps
Smartcard-only 4100 ms 7900 bps
RKEP 31 ms 1.0 Mbps
Optimized RKEP 19 ms 1.7 Mbps

Fig. 3. Encryption Performance of Pentium-based CFS systems

We have also implemented a version of CFS with RKEP based on a proto-
type of the US DoD Fortezza PCMCIA card. The Fortezza card implements the
(classified) Skipjack algorithm [NIST94] and has key management facilities that
permit secure key establishment and storage. Because Skipjack is classified we
could not implement it in software on the host. Skipjack, like DES, has a 64 bit
codebook, so we chose triple DES (3DES) as a comparable host cipher. (The
security of the system, of course, is no greater than that of the weaker of 3DES
and Skipjack.) The performance results of RKEP in this application were similar
to those of the smartcard-based system; optimized RKEP was about one 30%
slower than the software-only implementat ion and many times faster than the
Fortezza-only system. However, its exact performance characteristics were highly
sensitive to the implementat ion of an experimental prototype PCMCIA device
driver, and we therefore omit detailed measurements here. (An aside: our im-
plementat ion defeated the key escrow scheme used in Fortezza by re-generating
and re-loading the Law Enforcement Access Field each t ime a key was loaded.
This was done for reasons having less to do with our dislike of key escrow than
with architectural constraints; the CFS system's internal structure did not eas-
ily accommodate the LEAF field and it was more convenient to regenerate it as
needed than to find a place to store it in the file system.)

4 C o n c l u s i o n s

RKEP is appropriate in any application in which a trusted "cryptographic mod-
ule" is relied upon for key security but cannot perform bulk encryption at the
rate required by the host application. Cryptographic modules, which are of-
ten packaged in inexpensive, removable smartcards and PCMCIA devices, are
architecturally different from traditional "co-processors". In particular, most
co-processors are designed and connected for the express purpose of improv-
ing performance (e.g., a floating-point ari thmetic processor that is tightly cou-
pled, or even part of, the host CPU). Cryptographie co-processors, on the other
hand, often function primarily to provide an encapsulated, portable security

40

environment, and their architecture reflects this different purpose. Frequently,
this means that bulk encryption through a cryptographic co-processor results in
much lower data rates than would be possible in software on the host.

While we have been primarily concerned with applying RKEP to bulk file
encryption using smartcards, the protocol has application in several other con-
figuration as well. "Set-top boxes" used in advanced cable television systems,
for example, often require highly tamper-resistant cryptographic processing but
cannot rely on high-bandwidth speciM hardware due to cost constraints. Cellular
telephone systems have similar design constraints.

Because RKEP requires no special software or protocol support on the cryp-
tographic module, it can be implemented with virtually any off-the-shelf smart-
card, PCMCIA device, or encryption chip that can perform ECB encryption and
decryption. The module's interface need only have the ability to return the result
of single cipherblock ECB operations. All other special processing is handled by
the host.

5 Acknowledgements

The author thanks Joan Feigenbaum, Matthew Franklin, Jack Lacy, Dave Maher,
Mike Reiter and the anonymous reviewers for their many helpful comments on
previous drafts.

References

[BFKR90] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with Low
Communication Overhead. Advances in Cryptology- Crypto '90, Lecture
Notes in Computer Science, volume 537, Springer, Berlin, 1991, pp. 62-76.

[BFS90] D. Beaver, J. Feigenbaum, and V. Shoup. Hiding Instances i n Zero-
Knowledge Proof Systems. Advances in Cryptology - Crypto '90, Lecture
Notes in Computer Science, volume 537, Springer, Berlin, 1991, pp. 326-
338.

[BCY93] M. J. Beller, L. Chang and Y. Yacobi. Privacy and Authentication in a
Portable Communications System. IEEE Journal on Selected Areas in Com-
munications, August, 1993.

[Bla93] M. Blaze. A Cryptographic File System for Unix. Proc. 1st ACM Conference
on Computer and Communications Security, Fairfax, VA., November 1993

[NBS77] Data Encryption Standard. National Bureau of Standards, Federal Informa-
tion Processing Standards Publication ~6, Government Printing Office, Wash-
ington, D. C., 1977.

[NBSS0] Data Encryption Standard. National Bureau of Standards, Federal Informa-
tion Processing Standards Publication 81, Government Printing Office, Wash-
ington, D. C., 1980.

[NIST94] National Institute for Standards and Technology. Escrowed Encryption
Standard, Federal Information Processing Standards Publication 185, U.S.
Dept. of Commerce, 1994.

