New Structure of Block Ciphers with Provable
Security against Differential and Linear
Cryptanalysis

Mitsuru Matsui

Information Security System Development Center
Mitsubishi Electric Corporation
5-1-1, Ofuna, Kamakura, Kanagawa, 247, Japan
matsui@iss.isl.melco.co.jp

Abstract. We introduce a methodology for designing block ciphers with
provable security against differential and linear cryptanalysis. It is based
on three new principles: change of the location of round functions, round
functions with recursive structure, and substitution boxes of different
sizes. The first realizes parallel computation of the round functions with-
out losing provable security, and the second reduces the size of substi-
tution boxes; moreover, the last is expected to make algebraic attacks
difficult. We also give specific examples of practical block ciphers that
are provably secure under an independent subkey assumption and are
reasonably fast in hardware as well as in software implementation.

1 Introduction

In the first version of differential cryptanalysis, the notion “characteristic” was
successfully used for breaking block ciphers; if a cipher has a characteristic whose
probability is high enough, it is possible to recover some of secret key bits by
differential cryptanalysis. On the other hand, Lai, Massey and Murphy (1] found
that its converse is not necessarily true, and showed that the notion “differen-
tial”, instead of characteristic, strictly reflects the strength of a cipher against
differential cryptanalysis. Since a differential is, roughly speaking, a collection of
characteristics, even if the maximal characteristic probability is low, it cannot
be concluded that the cipher is strong against differential cryptanalysis. Mean-
while, Nyberg and Knudsen [2] first showed an example of a block cipher whose
maximal differential probability is low enough; they have called such property
“provable security” against differential cryptanalysis.

In linear cryptanalysis, we can see a similar situation. The first version of
linear cryptanalysis also applied “characteristic” (of linear cryptanalysis) to an
attack of block ciphers, but Nyberg [3] has recently showed that a collection of
characteristics, which she called “a linear hull”, must be taken into considera-
tion for strict evaluation of the strength against linear cryptanalysis. Since the
example given in [2] has a low hull probability, it is also provably secure against
linear cryptanalysis; however, its computational complexity is not small because
it requires a calculation over GF(233).
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The purpose of this paper is to discuss a new method for obtaining provably
secure and practical block ciphers against differential and linear cryptanalysis.
First, we change the location of round functions, which enables their paral-
lel computation without losing provable security. Next, we construct the round
functions recursively, which reduces the size of substitution boxes. We also intro-
duce substitution boxes of different sizes, which are expected to increase immu-
nity against possible algebraic attacks; e.g. an explicit description of the entire
cipher by a simple algebraic function.

Lastly, we give a full description of two practical examples of block ciphers
each of which is provably secure under an independent subkey assumption and
is reasonably fast in hardware as well as software implementation. We have
confirmed that their software encryption speed is more than 30Mbps on a work-
station computer HP9735 (PA7150-125MHz).

2 Security of Substitution Boxes

The purpose of this section and the next section is to give fundamental defini-
tions and lemmas necessary for later sections. We will discuss immunity against
differential and linear cryptanalysis in a parallel and self-contained form. The
first model in this section is a fixed substitution table S with n input/output
bits (figure 1). Throughout this paper, the input bit size of any substitution box
is equal to its output bit size. We now start with the following definition.

.

Definition 1. Let X and Y be a set of possible 2™ input /outpﬁt patterns of S,
respectively. For given Az, I'z € X and Ay, 'y €Y,

DPS(Az — ay) ‘e #lz € XIS(@) e’; (2 A7) = Ay} (1)
= Tr)e 2
LPS(I'z — I'y) % (2 #z € Xl» I;f =S)ely} 1) , (@

where a o b denotes the parity (0 or 1) of bitwise product of a and b.

Note that DP® and LPS run from 0 to 1. Although the notation of LPS is
slightly different from a standard definition of linearity, this is convenient for
treating differential and linear cryptanalysis in a similar way. Since DP® and
LP3 for a strong substitution box S must be small for any Az(#0),I'z € X
and Ay, I'y(#0) € Y, the following parameters represent immunity of S against
differential and linear cryptanalysis.

Definition 2.
s def S
DPmaz - A::gé((ll':rAy Dp (A‘T - Ay)a (3)
LPS . Y maz LP%(I'z — I'y). (4)

Tz, Cy#0
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The following two simple lemmas are useful.
Lemma 3.
2
!
LPS(Ps - Iy) = (E (—1)"’"’”@3‘”””) : (5)
z€X

where lee x denotes #)7 Ycex ond the symbol o has higher priority than the
symbol &.

Lemma4. For any S,

> DPS(Az - Ay) =1, (6)
AyeY
> LPS(I’'z—Ty)=1 (7)
rseX

Moreover, if S is a permutation,

> DPS(Ax - Ay) =1, (8)
AreX
> LP(I'z - I'y) =1. (9)
r'yey

Proof. Weshow Y, cx LPS(I'z — I'y) = 1. The remaining part is then trivial.

> LPS(I'z - I'y)
rzeX

2
Z (ZI(_I)zoneaS(z)-Fy)
rzeX \zeX
Z EI Z I(_l)xol":c(BS(z)oFyG)z’oI":t(})S(m')oI"y

reeX z€X z’eX

Z/ Z /(_1)(S(I)$S(z’))01“y Z (_1)(1(}):1:')01’1:,

zEX 2'€X rzeX

i

where the last sum is non-zero if and only if # = 2’. Hence we easily see that
the above must be equal to 1. (QED)

3 Security of Key-Dependent Functions

The next model is a key-dependent function F' as shown in figure 2. Let K be a
set of all possible key values. We define the strength of F' as an average strength
of F < k > when k runs over K, where F' < k > denotes a one-variable function
with the fixed key k. That is:
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Definition 5.
DPF(Az — Ay) S 'DPF*> Az — 4y), (10)
keEK
LPF(I'c — Iy) & S"'LPF<*>(I'v - Iy). (11)
kEK

In particular, when F is an encryption function, and DPF and LPF are small
enough for any Az(#0), I'z € X and Ay, I'y(#0) € Y, we say that F is provably
secure against differential and linear cryptanalysis. Equivalently, F' has provable
security if the following values are small:

Definition 6.
DPF . © maz DPF(Az — Ay), (12)
Az#0,Ay
Fodef F :
LP,,.. = Pz, LP*(I'z — I'y). (13)

In the rest of this section, we consider two cases where the key-dependent func-
tion F has a special form (figures 3 and 4). The following fundamental theorem
shows that average strength of the entire cipher is represented by a collection
of all possible “probabilistic paths”, where the first equality was proved by Lai,
Massey and Murphy [1], and the second by Nyberg [3]. Though their original
papers have wider frameworks, we here give a direct proof for our convenience.

Theorem 7 [1][3]. For the function F shown in figure 3,
DPF(Ax - Az)= ) DP(Az — Ay)DP%(Ay - Az)  (14)
Ayey
LP"(Pz - Iz)= Y LP%{(I'z — I'y)LPS*(I'y - I'z). (15)

ryey

Proof. Since clearly k; € K, does not affect the conclusion, we neglect k;. For
the first equality,

DPF(Ax — Az)
Fy<ka>

= Z Z DPS (Az — Ay)DP (Ay — Az|Az — Ay)
k€K, AyeY

= ¥ DPS(4z - ay) 3 'DP" " (ay  Aslas - ay), (10)
AyeY ko €K,

where the last term represents a conditional probability that Ay results in Az
when Az causes Ay. In other words, there exists a subset Y of Y,

k
ppS 2>(Ay — Az|Az — Ay)

=#{FeY|R <k > ([§)oF <k > (o dy) = Az}/#Y.
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Therefore the second sum of (16) is

Z ,DPF’<k’>(Ay — Az|Az — Ay)
k2 €Ky

’ - ~
=Y #FeVIR<k>@oR<k> (@[ dy)=A}/#7
k2€K,

= 3 #{G € VIS2i® k) ® S2(§ © kr @ Ay) = AZ}/#T
k:€K,

1 ~
= #{ks € K2|S2(§ © k2) © S2(7 & k2 & Ay) = Az}/#Ko
113%
= Z,DPsz(Ay — Az)
geY
= DP5(Ay — Az).

For the second equality,

> LPS(I'z — I'y)LP%(I'y - I'z)
ryey

)2 IDIS I I
ryeY zeX z'€X yeY y'eYy
(_1)2.]’:6}51(:c)oI"y{bz’oI’:c(BS;(:c')oI’yeBon"yEBS;(y)oI’z@y’oI’y@Sg(y')cI’z

_ z/ Z /Z/ Z /(_l)zol’xEB:c’oI‘z{BSz(y)oI‘zG)Sz(y’)oI‘z %

zeX z2'€X yeY y'eY

Z (_1)(51(2)6951(2’)6311691/’)'1’1/
b

r'yey

where the last sum is nonzero if and only if Si(z) & S1(z’) ® y ® y' = 0. Hence
by eliminating ¥’ and substituting ks for y we obtain

— Z’ Z’ Z I(_l)zone)z'oI’z@Sz(kg)01‘2@52(’926}931(3)6551(::'))01":
z€EX z'€X k€K,
_Z' Z' E I(_l)zo[’z@z'ol”z&)Sz(szﬁSl(:n))oI‘z{BS;(kﬁBSl(z'))ol’z
z€X z2'€X k€K,

3 'LPT<k>(Pg - I2)

k2 €K,
= LPF(I'z - I'z). (QED)

Note that the above theorem assumes that S; and S5 are fixed substitution
tables. However we can extend them to key-dependent functions as follows.
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Theorem 8. For the function F shown in figure 4,

DPF(Ax » Az)= ) DPP(Az — Ay)DP™(Ay —» 4Az),  (17)
Ayey
LPF(rz - Iz)= E LPF(Pz — I'y)LPT(I'y — I'z). (18)
ryey
Proof. We show the first equality. The second can be similarly derived.
DPF(Az — Az2)

Z ’ Z / Z ’ E 'DPF<ki1,kiz,k01,k02>(Ag;—-)Az).

kiy€KI kii€KI, k01 €K, ko2 €EKO»
By using theorem 7 for fixed k¢, and kie, we have

_ Z ' Z ! Z DPF]<ki1>(Am_)Ay)DPF2<ki2>(Ay_)Az)
kit€KI ki€KI, AyeY

=3 ¥ pPRMi(az s ay) S 'DPRRa>(4y o Az)

AyEYki, GI\’II kizEKIg
= ) DP"(Ax — Ay)DP™(Ay — Az). (QED)
AyeYy

The following corollary shows that an (n+ 1)-round c1pher is not “weaker” than
an n-round cipher with the same round functions.

Corollary 9. For the function F shown in figure 4,

DPf,. < DPF.. +DPF., (19)
Lpf . <LPR +LPP . (20)

Moreover, if F is bijective for any key value,

DPma.z' < mzn{Dpvfl‘hE’ D'P::ax} (21)
LPf,, <min{LPf:, , LPF }. (22)

Proof. We show the first inequality. The remaining part can be similarly proved.
For any Az # 0 and Az, we have, by lemma 4 and theorem 8,

DPF(Ax — Az)

= Y DPM(4z— Ay)DP™(Ay — Az)+ DPF(Az — 0)DP™(0 — Az)
AyeY\{0}

< Z DPFl(Am—"Ay)DP:z‘?n"'DP:&n
AyevY\{0}
< DPR.,+DP;,. (QED)
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4 New Structure of Block Ciphers with Provable Security

In [2], Nyberg and Knudsen first showed an example of a DES-like block cipher
with provable security against differential cryptanalysis. Nyberg also showed in
[3] that this example also has provable security against linear cryptanalysis. Its
principle is based on the following theorem.

Theorem 10 [2][3]. For the n-round (n > 3) function F given in figure 5,
assume that each substitution bozx S; is bijective and DI’;?;'M < p (resp. LP;E"M <
p). Then DPF . < 2p? (resp. LPL,. < 2p?).

maxr —

Example 1. In figure 5, let S; be a cubic function of galois field GF(23?). Then
since DPSi . = LPSi =273 DPF <275 and LPF,, <27%,

( For a cubic function f over GF(2"), if n is even DPJ,,. = LPf, = 272,
and if nis odd DPf , = LPf, . = 27"t see [4].)

mazr max

The purpose of the remaining part of this section is to discuss various extensions
of theorem 10. First, we change the location of the substitution boxes as in figure
6. Then we can prove the following.

Theorem 11. For the n-round (n > 3) function F given in figure 6, assume
that each substitution box S; is bijective and DPS: . < p (resp. LP3:i < p).

max
Then DPL,. < p? (resp. LPE . < p?).

Proof. We prove the theorem when n = 3. The case n > 3 is then trivial using
corollary 9. We consider four cases:

Case 1: If Az =0, then Az” # 0. Hence

DPF(Ax — Ay)
= DP5(Azt — Azl @ AyR)DPS (Ax" — Ay @ Ay®)
< DP7,DPy, = p*.

Case 2: If Az" =0, then Az® # 0. The output difference of Sy is zero and the
input difference of S3 must be equal to Ay®; hence AyE # 0.

DPF(Az — Ay)
= DP% (AzR — AyF)DPS (AyR — Ay & Ay™)
< DP3_DpSs

—_— 2
maz mazr — P -

Case 3: If Ay* & Ay® = 0, then the input difference of S3 is zero and the output
difference of S; must be equal to Az”. Hence Ax’ # 0 and AzE #£0.

DPF(Az — Ay)
= DP% (AzR - Az")DP% (AzT — AyR)
< DP%, . DP3:

— 2
maz maz — P -
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Case 4: Otherwise, let the output difference of S; be A, which is not deter-
mined uniquely. By a similar method to the proof of theorem 7, we have

DPF(Az — Ay)

=Y DP5(Az® - Aa)DP%(Az" - Az" & Ay" & Aa) x
Ac
DP%(Az" @ Ao — Ay" @ AyR)

< DP3,.DP32, Y DP%(Az" @ Aa — Ay" & Ay")

Ao
= DP;,,DPy:, =p’.

Theorem 11 shows that figure 6 is structurally stronger than figure 5 concerning
to both differential and linear cryptanalysis under the condition that all S;’s are
bijective. It should be also noted that in figure 6 two neighboring substitution
boxes are parallelizable. Moreover, this theorem is valid even if the substitution
boxes are affected by the secret key as in figure 7. That is, the following theorem
holds, which enables us to construct round functions recursively. Its proof can
be done in the same way.

Theorem 12. For the n-round (n > 3) function F given in figure 7, assume that
each function F; is bijective for any key and DPF: < p (resp. LPE: . < p).
Then DPy,, < p* (resp. LP} . < p?).

Ezample 2. In figure 7, assume that F; has a structure shown in figure 6 and let
S;; ( the j-th substitution box in F; ) be a cubic function of GF(2'¢). Then
since DPSi_ = LPSi_= 2= DPF. < (DPFi )* < (DPsy)* = 2756 and
similarly, LPF__ < 2756,

ma¥x

Lastly, we can extend theorem 12 to the case where the bit size of X* is not -
necessarily the same as that of X E.

Theorem 13. For the n-round (n > 3) function F given in figure 7, let the
bit size of X* and X® be n and m (n < m), respectively. We assume that at
the first and third XORs, the left n-bit data is zero-extended to m-bil, and at
the second XOR the left m-bit data is truncated to n-bit. If each function F; is
bijective for any key, then we have

DPF,, < maz{DP"i DP™ , DP":DP™ 2" "DPF DPP},  (23)
LPy,, < mas{LPPLP™, LP™LP™ 2™ " LPF L PP}, (24)

Proof. The difference from the proof of theorem 11 is “Case 2” only. In this case,

since only lower n bits of Ao are determined uniquely, the number of possible
Ao is 27" (QED)

Ezample 3. In figure 7, assume that F; has the structure shown in figure 6, where
32-bit input data of F; is divided into 15-bit and 17-bit data. Let S;; and S;3
be cubic functions of GF(2'7) and Si; be a cubic function of GF(2'®). Then
since DPF: = LPF: = 2730 due to theorem 13, DPE, < (DPF: )% = 2790,
Similarly we have LPF_ < 2760,

mag
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5 Examples

In this section we presents two specific examples of 64-bit block ciphers that are
provably secure under an independent key assumption and are practically fast.
Figures 8 to 12 and tables 1 to 2 show their full description, where “left” means
“lower address”.

— Figures 8 and 9 show data randomization parts of the two ciphers, each of
which contains two types of common sub functions FO; (1 < i < 8) and
FL; (1 <i < 10). FO; uses two 48-bit subkeys KI; and KO;, and FL; uses
a 32-bit subkey K L;.

— Figure 10 shows the structure of FO; (the first level recursive function),
which contains three sub functions FI; ; (1 < j < 3). KO;; and KI;; are
the j-th 16-bit data of KO; and K1I;, respectively.

— Figure 11 shows the structure of FI; ; (the second level recursive function),
which contains two types of substitution boxes S; and Sy. The input of
F1I; ; is divided into left 9-bit data and right 7-bit data. Accordingly, KI; ;
is divided into left 7-bit KI; ; ; and right 9-bit data K1, ;.

— Tables 1 and 2 show decimal representation of substitution boxes S7 and Sy,
respectively, §7 is affine equivalent to a 17-th power function on GF(27) and
Sy is to a 5-th power function on GF(2%). Note that, similarly to a cubic
function, we obtain DPS7, = LPS7 = 276 and LP3:,, = LP3s, =278,
The choice of these tables is due to a purely hardware reason; we omit the
detail due to space constraints.

— Figure 12 shows the structure of F'L;, where KL;; is the j-th 16-bit data
of KL; (1 € j £ 2). N and U denote bitwise AND and OR operations,
respectively.

We easily see, using theorem 13, that each cipher has the following security
parameters. It should be noted that since the FL; is a linear function for each
fixed key, it does not affect their security:

DP,{,’;;";‘MB < 2—-55’ LPfigure& <‘2—55’

mazr

DPY_'fzz;]:reQ S 2—56, LP'{lz'&q:reg < 2——56.

As for their encryption performance, the first cipher can execute two FI; ;
in parallel, and the second can process four in parallel. In figure 9, for exam-
ple, FI, i, FI, 3, Fly,, FI; 3 are parallelizable. The same is true for FI, 3,
Fly3, FI31, F141 and Fl3 5, Fl33, Fli 9, FI4 3. In hardware implementation,
therefore, the second cipher is expected to be twice as fast as the first cipher.
In software, our computer program successfully encodes plaintext at a speed
of more than 30Mbps for either algorithm on a workstation computer HP9735
(PA7150-125MHz).

We should also notice that although the decryption speed of the first cipher
is the same as its encryption speed, the decryption speed of the second cipher is
slower than its encryption in ECB and CBC modes. Therefore the second should
be used in OFB or CFB modes.
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Lastly, we show an example of the common (and simple) key schedule part when
the bit size of the secret key K is 128.

— The secret key K is divided into eight 16-bit data K; (1 <i < 8).
— Let Kjg be the output of F'T with KI =0 for input K; {1 <¢ < 8).
— The correspondence between the secret key and the subkeys is as follows:

ENE

[3]4]5]6]7][8]9]10]

KL;,|[K; K4

K6/ K10| K¢ |Kg [K12|K14(K3 Ky

KL;2||K1 |K3

Ki5|Ky |Ks |K7 |[K11|K3|Ky K3

T3 [a[5]6[7[5)
K,

K; |K;3 Ky K5 |Kg | K7 | K3

Ki9|Ki3| K14 K15(K16| Ky [ K9

K5 |Kq | K7 [Ks | Ky |Ky |K3

KI; 2| Kis

K| Ky | K10\ K11|K12| K13/ K14

K; |Ky (K [Ks | Ky |Ky [Ks

Ki1|Ky2|K13|K14| K15 K16| K9

Test data are as follows:

Secret Key (K to K3)

0011 2233 4455 6677 8899 aabb ccdd eeff

Plaintext

0123 4567 89ab cdef

Ky to Ky

£28d ¢826 ddf9 elc7 439a 05b7 8c¢23 cdce

Ciphertext (Algorithm I)

787a 62bb £622 6cd6

Ciphertext (Algorithm IT)

bfbf 3940 217d 4252
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s7[128] = {

85, 95, 53, 57, 65, 63, 99, 27, 86, 31, 33,110, 18, 47, 39, 28,
29, 61, 37, 3, 66, 22, 56,106, 15,108, 32, 69, O, 23,109,124,
101, 96, 97, 98, 64, 49, 6,113, 30, 88, 13, 77,107, 89, 658, 14,
36, 11,120, 81, 74, 17, 84, 9, 78, 34, 5,111,112,104,121,103,
80,126, 90,114, 82, 8, 26, 70, 94, 51, 67, 40, 12, 21, 83, 76,
45, 41,127,125,100, 20,116, 2, 50,117,119, 54, 43, 24, 44, 25,
72,105, 38, 1,123, 46, 87, 4, 62, 92, 71, 35, 93, 75,102,118,
60, S5, 10, 7, 68, 59, 48, 73, 91, 19,122, 52,115, 79, 16, 42 };

Table 1: The table of S;.

s9[s512] = {
341,310, 37,213, 79,140,348,268,379,262,266,484,273,460,259,333,
241,402,295,215,419, 96, 22,326,453,184,274,252,487, 68,339, 29,
220,255,420,276,103,228,380,364,230,219,159, 49,301,432,311,313,
342,117,136,312,421, 38, 24,264,118,331,169,263,501,104,329, 71,
280,472,120, 43, 6,102,261,502,127,161, 30, 83, 17,111, 19,254,
62,510,504,171,360, 8,205,318, 67,413,132,457,101,283,193,300,
309,437, 93, 78,394,426,129, 50, 70,216, 47, 34,393,439,387,302,
61,445,499,224,202,490,359,212, 84,458,155,406,467,237,383,210,
385,506,400,376,153, 66,235,163,303,330, 63,201,327,386, 52, 98,
121,258,206,294,297,242,509,181,461,168,123,397,493, 40, 56,366,
41, 18, 48,152,144, 11,234,226,147,182,395,317,346,479, 33, 55,
511,196,320,232,270,149,466,218, 95,378,481, 87,478, 91, 3,277,
69,157, 68, 15,345,289,315,464,418,356,162,247,462,424,173, 88,
319,231,408,211,107,275,175,324,450, 4,100,305,486,128, 35,470,
73,209, 64, 75,244,204,158, 53,442,316,178,167,119, 81,284,425,
285,133,434,185,488,208,292,143,500,114, 90,335,113,343,444, 9,
454 ,369,176,148,388,403,145, 21,456,353,447,389,250,243,238,116,
99,468,435,151,105,382,474, 94,375,222,422,156, 13,260,191,293,
217, 46,423,451,314,365, 39,227,195, 42,188,198, 80, 25, 76,150,
338,165,138,494,249,430,322,134, 82,443,139,497,137,448, 51,489,
203,223,429,298,141, 57,392,431,396,390,491,370,186, 16,190,135,
492,248, 44,427,482, 86, 65,358,433,187,368,233,207,357,109,340,
112, 36,286,473,407,355,154,263,291,361,332,405,436,350,440,449,
377, 45,177,374,214,290,381, 26,304,122,505, 32,495, 5,325, 60,
351,496,328,372,287,272,363,503,465,352,199,229,225,240,404,278,
166,265, 23,299,174,417,124,480,306,131,130,416, 74,347,409, 27,
97,142,126, 2,384,463,508,288,261, 10,485,391,106, 59,279,469,
438, 89,271,115, 31,336,197,281, 54,455,398,236,239,446,308,246,
475,471,476,323,416,307,507,452, 28, 14,282,411,296,410, 77,108,
160,428, 1,414,172,256,110,337,125,367,477, 92,257,179,194,483,
321,269,334,401,164, 72,200,183,146,192,412,349, 7,245,362,267,
20,344,189,354,441, 85,371, 12,221,399,373,180, 0,498,459,170 };

Table 2: The table of Sq.
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