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Abst rac t .  We introduce a methodology for designing block ciphers with 
provable security against differential and linear cryptanalysis. It is based 
on three new principles: change of the location of round functions, round 
functions with recursive structure, and substitution boxes of different 
sizes. The first realizes parallel computation of the round functions with- 
out losing provable security, and the second reduces the size of substi- 
tution boxes; moreover, the last is expected to make algebraic attacks 
difficult. We also give specific examples of practical block ciphers that 
are provably secure under an independent subkey assumption and are 
reasonably fast in hardware as well as in software implementation. 

1 I n t r o d u c t i o n  

In the first version of differential cryptanalysis, the notion "characteristic" was 
successfully used for breaking block ciphers; if a cipher has a characteristic whose 
probability is high enough, it is possible to recover some of secret key bits by 
differential cryptanalysis. On the other hand, Lai, Ma~ssey and Murphy [1] found 
that  its converse is not necessarily true, and showed that the notion "differen- 
tiM", instead of characteristic, strictly reflects the strength of a cipher against 
differential cryptanalysis. Since a differential is, roughly speaking, a collection of 
characteristics, even if the maximal characteristic probability is low, it cannot 
be concluded that the cipher is strong against differential cryptanalysis. Mean- 
while, Nyberg and Knudsen [2] first showed an example of a block cipher whose 
maximal differential probability is low enough; they have called such property 
"provable security" against differential cryptanalysis. 

In linear cryptanalysis, we can see a similar situation. The first version of 
linear cryptanalysis also applied "characteristic" (of linear cryptanalysis) to an 
attack of block ciphers, but Nyberg [3] has recently showed that  a collection of 
characteristics, which she called '% linear hull", must be taken into considera- 
tion for strict evaluation of the strength against linear cryptanalysis. Since the 
example given in [2] has a low hull probability, it is also provably secure against 
linear cryptanalysis; however, its computational complexity is not small because 
it requires a calculation over GF(233). 
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The purpose of this paper is to discuss a new method for obtaining provably 
secure and practical block ciphers against differential and linear cryptanalysis. 
First, we change the location of round functions, which enables their paral- 
lel computation without losing provable security. Next, we construct the round 
fnnctions recursively, which reduces the size of substitution boxes. We also intro- 
duce substitution boxes of different sizes, which are expected to increase immu- 
nity against possible algebraic attacks; e.g. an explicit description of the entire 
cipher by a simple algebraic function. 

Lastly, we give a full description of two practical examples of block ciphers 
each of which is provably secure under an independent subkey assumption and 
is reasonably fast in hardware as well as software implementation. We have 
confirmed that  their software encryption speed is more than 30Mbps on a work- 
station computer HP9735 (PA7150-125MHz). 

2 Security of Substitution Boxes 

The purpose of this section and the next section is to give fimdamental defini- 
tions and lemmas necessary for later sections. We will discuss immunity against 
differential and linear cryptanalysis in a parallel and self-contained form. The 
first model in this section is a fixed substitution table S with n input /output  
bits (figure 1). Throughout  this paper, the input bit size of any substitution box 
is equal to its output  bit size, We now start  with the following definition. 

D e f in i t i on  1. Let X and Y be a set of possible 2" input /output  patterns of S, 
respectively. For given Ax, Fx  E X and Ay, Fy  E Y, 

n p S ( A x  .-. Ay)  &=l # { x  E X I S ( x  ) @ S(x  @ Ax)  = Ay}  
2" , (1) 

LPS(Va:--* Vy) ~: (2 )= = 2 ~  - 1 , ( 2 )  

where a * b denotes the parity (0 or 1) of bitwise product of a and b. 

Note that D P  s and L P  s run from 0 to 1. Although the notation of L P  s is 
slightly different from a standard definition of linearity, this is convenient for 
treating differential and linear cryptanalysis in a similar way. Since D P  s and 
L P  s for a strong substitution box S must be small for any A x (~  0), Fx  E X 
and Ay, F y ( #  O) E Y ,  the following parameters represent immunity of S against 
differential and linear cryptanalysis. 

D e f i n i t i o n  2. 

S def DPma x = max D P S ( A x  ~ Ay), (3) 
Zlx~O,Ay 

S def LP~a x = max  LPS(Fx--+ Fy). (4) 
rx,ry:~O 
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The  following two simple lemmas are useful. 

L e m m a  3. 

Lps(rx-- ,  ry) = ~ i ' ( -1 )  x~176 , (5) 

k x E X  / 

symbol 0. 

L e m m a 4 .  For any S, 

DpS(Ax  ~ Ay) = 1, (6) 
A y E y  

LPS(Fx ---* Py)  = 1. (7) 
FzEX 

Moreover, if S is a permutation, 

DPS(Ax ~ A y ) =  1, (8) 
AzEX  

LPS(Fx --~ Fy) -- 1. (9) 

FyEY 

Proof, We show ~ r ~ e x  LPS( Fx --* Fy)  = 1. The  remaining par t  is then trivial. 

E rx ry) 
FxEX 

FxEX zEX x 'EX 

= ~--~' ~'(_l)(S(x)| ~ (-1) (x| 
a E X  x ' E X  E a E X  

where the la~st sum is non-zero if and only if x = x'. Hence we easily see tha t  
the above must  be equal to 1. (QED) 

3 Security of Key-Dependent Functions 

The next  model  is a key-dependent  f lmction F as shown in figure 2. Let  K be a 
set of all possible key values. We define the s t rength  of F a~s an average s t rength  
of F < k > when k runs over K,  where F < k > denotes a one-variable funct ion 
with the fixed key k. Tha t  is: 
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D e f i n i t i o n  5. 

DPF(Ax -* ziy) de/ E'DpF<k>(Ax = ~ a y ) ,  (lO) 
kEK 

LpF(Fx ~ ry) dej E'LpF<k>(F x ~ ry). (ii) 
kEK 

In particular, when F is an encryption function, and DP F and LP F axe small 
enough for any Ax(~0),  Fx E X and Ay, Fy(~O) E Y, we say that F is provably 
secure against differential and linear cryptanalysis. Equivalently, F has provable 
security if the following values are small: 

D e f i n i t i o n  6. 

def DpFa~ = max DpF(Ax--* Ay), (12) 
Ax~O,Ay 

F def 
LP~o~ = m a x  L P F ( r x  -~ ry).  (13) 

l'x,Fy#O 

In the rest of this section, we consider two cases where the key:dependent fimc- 
tion F has a special form (figures 3 and 4). The following fundamental theorem 
shows that average strength of the entire cipher is represented by a collection 
of all possible "probabilistic paths", where the first equality was proved by Lad, 
Massey and Murphy [1], and the second by Nyberg [3]. Though their original 
papers have wider frameworks, we here give a direct proof for our convenience. 

T h e o r e m  7 [1][3]. For the function F shown in figure 3, 

DpF(Ax --, Az) = E npSl (Ax --, Ay)DP s2 (Ay --, Az) (14) 
AyEy  

LpF(rz -, rz) = ~ Lpsl(rx -, ry)Lps2(ry -~ Fz). (15) 
I 'yEY 

Proof. Since clearly kl E K1 does not affect the conclusion, we neglect kl. For 
the first equality, 

DPF(Ax --, Az) 
~ F 2 < k 2 >  . 

= E ' E DpSl(Ax "-* Ay)DP (Ay .-, AzlAx --, Ay) 
k2EK2 A y E y  

= E Dpsl(Ax -* Ay) E ,~-~f,<k2>(Ay --, AzIAx -~ Ay), (16) 
AyEy  k~EK2 

where the last term represents a conditional probability that ziy results in Az 
when Ax causes ziy. In other words, there exists a subset 17" of Y, 

b-~F~<~>(Ay --, Z~zlAx -~ Z~y) 

= # { ~  ~ ? l f~  < k2 > (~) �9 F2 < k2 > (~ ~ Ay) = ~ } / # ? .  
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Therefore the second sum of (16) is 

E 'DPI~2<k'>(AY "" Azl~z  ~ ~y) 
k2EK2 

= ~ '#{~ e YIF2 < k2 > (.0) �9 F2 < k2 > ( j@ Ay) = Ziz} /#:Y 
k~EK2 

= ~ '#{.o e ?lS~(~ �9 k~) �9 s2(~ �9 k~ �9 ay) = ~ z } / # ?  

= ~ ' # { k 2  c K2IS2(~ �9 k~) �9 S2(~ �9 k2 �9 Z~y) = z~z}/#iC& 
i~e ? 

= E'DP'%(Ay--~ Az) 
~e9 

= DP s~ (Ay --, Az). 

For the second equality, 

E LpS' (Fx --* Fy)LP s~ (Fy ~ Fz) 
FyEY 

E E'E'E'E' 
FyEY rEX x 'EX yEY y 'EY 

(_ 1) z. FzE),% (z).Fy(~)z'.FxOSl (x').PyOy,Fy| 

xEX x~EX yEY y~EY 

FyEY 

where the last sum is nonzero if and only if SI(X) (~ SI(X') (0 y @ y' = 0. Hence 
by eliminating y~ and substituting k2 for y we obtain 

= (-i) 
xEX x 'EX k2EK2 

= E '  E '  E ' ( - 1 ) x ' r ' ~ 1 6 2  

�9 EX z ' EX  k2EK2 

= E 'LpF<k~>(Fx ~ Fz) 
k2EK2 

= LpF(Fx --* rz).  (QED) 

Note that  the above theorem assumes that  $1 and $2 are fixed substitution 
tables. However we can extend them to key-dependent functions as follows. 
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T h e o r e m  8. For the ]unction F shown in figure 4, 

DpF(Ax --* zlz) = E DPF'(Ax ~ Ay)DPF:(AY "* Az), (17) 
A y E y  

LpF(Fx ~ rz)  = ~ LpF1(Fx ..~ rv)LP~'(ru --, rz). (18) 
r v E Y  

Proof. We show the first equality. The second can be similarly derived. 

DpF(Ax ~ Az) 

= E ' E ' E ' E  
kil E K l l  kil E K l l  kol E K 01  ko2EKO~ 

By using theorem 7 for fixed kil and ki2, we have 

= E ' E ' E DPf~<ki~>(Ax ~ Ay)DpF2<ki~>(AY~ Az) 
k i lEKI1  k i2EKl2  A y E y  

= E E 'DPF~<ki'>(Ax "* Ay) E 'DpF~<ki~>(AY ~ Az) 
A y E Y k Q  E KI1 kiu E KI2 

= ~ DPF'(Ax--,Ay)DPr~(Ay~Az). (QED) 
A y E y  

The following corollary shows that an (n + 1)-round cipher is not "weaker" than 
an n-round cipher with the same round functions. 

Corol lary  9. For the ]unction F shown in figure 4, 

F F1 F~ D Pma ~ < + hPma~, (19) D P,~ax 
F F~ Lp~a ~ < Lp~a x F2 + LP~a x. (20) 

Moreover, if F is bijeetive for any key value, 

F �9 FI F~ DP(n~ <_ m~n{DP(nax,DP~}, (21) 
F �9 F~ F2 L P ~  <_ m , n { L P ~ ,  LP~=}. (22) 

Proof. We show the first inequality. The remaining part can be similarly proved. 
For any A x r  0 and Az, we have, by lemma 4 and theorem 8, 

DpF(Ax ---, Az) 

= ~ DpFI(Ax ~ Ay)DpF~(Ay--* Az )+DPFI (Ax  ~ O)Dpr~(o ~ Az) 
ayEY\{O} 

<_ + 

AyEy\{o} 
< F1 F2 _ DP~o~ + DP:,, , .  (QED) 
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4 New Structure of Block Ciphers with Provable Security 

In [2], Nyberg and Knudsen first showed an example of a DES-like block cipher 
with provable security against differential cryptanalysis. Nyberg also showed in 
[3] that  this example also has provable security against linear cryptanalysis. I ts  
principle is based on the following theorem. 

T h e o r e m l 0  [2][31. For the n-round (n > 3) function F given in figure 5~ 
assume that each substitution box Si is bijective and DP~ax < p (resp. LP~'ax << 
p). Then F (resp. F D P . ~  < 2p 2 L P ~  < 2p2). 

Example1. In figure 5, let Si be a cubic hmction of galois field GF(232). Then 
since DP~'~: = L P ~  = 2 -3~ DpFa~ < 2 -Sa and LpF~, < 2 -59. 

( For a cubic function f over GF(2n) ,  if n is even DP/~,,: = LP/~,~, = 2 -~+2, 
and if n is odd DPIm~ ~ = LPlmaz = 2 -n+l .  see t41- ) 

The purpose of the remaining part  of this section is to discuss various extensions 
of theorem 10. First, we change the location of the substitution boxes as in figure 
6. Then we can prove the following. 

T h e o r e m  11. For the n-round (n > 3) fitnction F given in figure 6, assume 
that each substitution box Si is bijective and DP~ax <_ p (resp. LP~az <_ p ). 
Then F _ p2 DP~a x < (resp. F LP~o~ < p2 ). 

Proof. We prove the theorem when n = 3. The case n > 3 is then trivial using 
corollary 9. We consider four cases: 

Case h If Ax R = 0, then Ax L # O. Hence 

D P r ( A x  --, Ay) 

= Dp,%(Ax L ~ Ax  L ~ AyR)DPS'~(Ax L ~ Ay r~ | Ay n) 

_ DF, S2 DpS.~ p2. 
< - - -  m a x - - -  m a z  = 

Case 2: If Az  L = 0, then Ax n # O. The output  difference of $2 is zero and the 
input difference of $3 must be equal to AyR; hence Ay R ~- 0. 

D P F ( A x  --, Ay) 
= D P  s~ (Ax  R ~ AyR)DpS~(Ay  n ~ Ay L 0 Ay n) 

< DpS~ DpS3 =p2. 
- -  - - -  r t l a x - - -  r f t a ~ g  

Case 3: If  A~y L •Ay  n = 0, then the input difference of $3 is zero and the output  
difference of $1 must be equal to Ax L. Hence Ax L ~ 0 and Ax n ~s O. 

D p F ( A x  ~ Ay)  

= D p  8, (Ax  n ~ A x L ) D p  82 (Ax  L ~ Ay n) 

< DpS1 D p S ~  = p 2 .  
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Case 4: Otherwise, let the output  difference of $1 be Aa,  which is not deter- 
mined uniquely. By a similar method to the proof of theorem 7, we have 

D p F ( A x  -., Ay) 

= E DpS~ (AxR "* Aa)DPS2(AxL -'* AxL (~ AyR (~ A(~) X 
Zla 
DPSn( Ax L ~ Aa ---, Ay L $ A y  R) 

<- DP~DPSm~z E DpS3(AxL @ Aa --* Ay L �9 Ay n) 
A a  

= DpSl  DpS2 =/)2. 
~ F r I ( 2 X - - -  F / ~ ( l X  

Theorem 11 shows that figure 6 is structurally stronger than figure 5 concerning 
to both differential and linear cryptanalysis under the condition that all Si's are 
bJjective. It should be also noted that  in figure 6 two neighboring substitution 
boxes are parallelizable. Moreover, this theorem is valid even if the substitution 
boxes are affected by the secret key as in figure 7. That  is, the following theorem 
holds, which enables us to construct round functions recursively. Its proof can 
be done in the same way. 

Theorem 12. For the n-round (n > 3) function F given in figure 7, assume that 
each function Fi is bijective for any key and D p F ~  <_/) (resp. LpF'az <_ p). 
Then DpFa= <_ p2 (resp. LpFa= </)2). 

Exam/)le 2. In figure 7, assume that  Fi has a structure shown in figure 6 and let 
Si,j ( the j - th  substitution box in Fi ) be a cubic function of GF(216). Then 
since DPSm'~ = LPS~z = 2 -~4, DpF~= <_ (DpF~=) 2 <_ ( D P , ~ )  4 = 2 -50 and 
similarly, LpFa~ < 2 -56. 

Lastly, we can extend theorem 12 to the case where the bit size of X L is not 
necessarily the same ms that of X n. 

Theorem 13. For the n-round (n >_ 3) function F given in figure 7, let the 
bit size of X L and X R be n and m (n < m), res/)ectively. We assume that at 
the first and third XORs, the left n-bit data is zero-extended to m-bit, and at 
the second XOR the left m-bit data is truncated to n-bit. If each function Fi is 
bijeetive for any key, then we have 

D P ~  <_ max{DP f~ D P  F2 , DpF2DpF'% 2m-~DP fa D P  r~ }, (23) 

LpFa~ <_ max{LpF~LpF2,LpF2LpF%2m-nLP F~ LpF~}. (24) 

Proof. The difference from the proof of theorem 11 is "Case 2" only. In this case, 
since only lower n bits of Ac~ are determined uniquely, the number of possible 
Aa is 2 m-n. (QED) 

Example 3. In figure 7, assume that  F /ha s  the structure shown in figure 6, where 
32-bit input data  of Fi is divided into 15-bit and 17-bit data. Let S/1 and Si3 
be cubic functions of GF(217) and S/2 be a cubic function of GF(215). Then 
since D p F ~  = LpFhx = 2 .30 due to theorem 13, DPFax <_ (DPrmhx) 2 = 2 -60. 
Similarly we have LPFmaz <_ 2 -0~ 
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5 Examples 

In this section we presents two specific examples of 64-bit block ciphers that  are 
provably secure under an independent key assumption and are pra~.tically fast. 
Figures 8 to 12 and tables 1 to 2 show their filll description, where "left" means 
"lower address". 

- Figures 8 and 9 show data  randomization parts of the two ciphers, each of 
which contains two types of common sub functions FOi (1 < i < 8) and 
FLi (1 < i < 10). FOi uses two 48-bit subkeys KIi and KOi, and FLi uses 
a 32-bit subkey KLI. 

- Figure 10 shows the structure of FOi (the first level recursive function), 
which contains three sub functions FIi j  (1 < j < 3). KOi,j and KIi,j are 
the j - th  16-bit data  of KOi and KIi, respectively. 

- Figure 11 shows the structure of FIi,j (the second level recursive function), 
which contains two types of substitution boxes $7 and $9. The input of 
Fli,j is divided into left 9-bit data  and right 7-bit data. Accordingly, KIi,j 
is divided into left 7-bit KIi,j,1 and right 9-bit data KIi,j,2. 

- Tables 1 and 2 show decimal representation of substitution boxes $7 and $9, 
respectively. $7 is affine equivalent to a 17-th power function on GF(27) and 
$9 is to a 5-th power fimction on GF(29). Note that,  similarly to a cubic 
fimction, we obtain DPS~ = LPSm~= = 2 -6 and LP~= = LpS~= = 2 -8. 
The choice of these tables is due to a purely hardware reason; we omit the 
detail due to space constraints. 

- Figure 12 shows the structure of FLi, where KLi,j is the j - th  16-bit data  
of KLi (1 < j < 2). f) and t3 denote bitwise AND and OR operations, 
respectively. 

We easily see, using theorem 13, that each cipher has the following security 
parameters. It should be noted that since the FLi is a linear fimction for each 
fixed key, it does not affect their security: 

DPLi~ u'e6 <_ 2 -55, Lpyi~: ~'es < 2  -55, 

DPL~: ~'9 <_ 2 -56, LpYmlg: ''9 <_ 2 -56. 

As for their encryption performance, the first cipher can execute two FIi,j 
in parallel, and the second can process four in parallel. In figure 9, for exam- 
ple, FII,1, FI1,2, 1212,1, FI2,2 are parallelizable. The same is true for FI1,3, 
FI2,3, FI33, FI4,] and FI3,2, FI3,3, FI4,2, FI4,3. In hardware implementation, 
therefore, the second cipher is expected to be twice as fast as the first cipher. 
In software, our computer program successfully encodes plaintext at a speed 
of more than 30Mbps for either algorithm on a workstation computer HP9735 
(PA7150-125MHz). 

We should also notice that although the decryption speed of the first cipher 
is the same as its encryption speed, the decryption speed of the second cipher is 
slower than its encryption in ECB and CBC modes. Therefore the second should 
be used in OFB or CFB modes. 
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Lastly, we show an example of the common (and simple) key schedule part when 
the bit size .of the secret key K is 128. 

- The secret key K is divided into eight 16-bit data  Ki (1 < i < 8). 
- Let Ki+8 be the output of FI with KI = 0 for input Ki (1 < i < 8). 
- The correspondence between the secret key and the subkeys is as follows: 

[ i 1 1 1 1 2 1 3 1 4 1 5 1 , 6 1 7 1 8 1 9 1 1 0  
KLil /(2 I(4 K16 g l o / ( 6  K8 K12 KI4/(2  I/(4 
KLi,2 Ka Ka K15 1(9 K~ 1(7 Kll K1s K1 

I i  1 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8  I 
KOij K1 K2 Ks 1(4 1(5 1(6 Kr Ks 
KIij 
KOi,2 
KI~,2 

iKOi,3 
KIi,3 

!1(11 K12 KI~ 
K4 Ks K6 
I(~5 K16 1':9 
K6 KT K8 
1(lo Kll K12 

K14 K15K16/(9 Klo 
K7 KsIK1 K2 Ka 
KlO K l l / ( 1 2  K13 K14 
K1 K2 Ks K4 Ks 
K13 K14 K15 K16 1(9 

Test data  are as follows: 

Secret Key (K 1 to / (8 )  0011 2233 4455 6677 8899 aabb ccdd e e f f  
Plaintext 0123 4567 89ab c d e f  

K9 to K16 ]f28d c826 d d f 9  e l c 7  439a 05b7 8c23 c d c e  

Ciphertext (Algorithm I) 787a 62bb f622 6cd6 
Ciphertext (Algorithm II) bfbf  3940 217d 4252 
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$7 [128] = 
85, 95, 53, 57, 65, 63, 99, 27, 
29, 61, 37, 3, 66, 22, 56,106, 

101, 96, 97, 98, 64, 49, 6,113, 
36, 11,120, 81, 74, 17, 84, 9, 
80,126, 90,114, 82, 8, 26, 70, 
45, 41,127,125,100, 20,116, 2, 
72,105, 38, 1,123, 46, 87, 4, 
60, 55, 10, 7, 68, 59, 48, 73, 

86, 31, 33,110, 18, 47, 39, 28, 
15,108, 32, 69, 0, 23,109,124, 
30, 88, 13, 77,107, 89, 58, 14, 
78, 34, 5,111,112,104,121,103, 
94, 51, 67, 40, 12, 21, 83, 76, 
50,117,119, 54, 43, 24, 44, 25, 
62, 92, 71, 35, 93, 75,102,118, 
91, 19,122, 52,115, 79, 16, 42 }; 

Table 1: The table of $7. 

s91512] = { 

341,310, 37,213, 79,140,348,268,379,262,266,484,273,460,259,333, 
241,402,295,215,419, 96, 22,326,453,184,274,252,487, 58,339, 29, 
220,255,420,276,103,228,380,364,230,219,159, 49,301,432,311,313, 
342,117,136,312,421, 38, 24,264,118,331,169,263,501,104,329, 71, 
280,472,120, 43, 6,102,261,502,127,161, 30, 83, 17,111, 19,254, 
62,510,504,171,360, 8,205,318, 67,413,132,457,101,283,193,300, 

309,437, 93, 78,394,426,129, 50, 70,216, 47, 34,393,439,387,302, 
61,445,499,224,202,490,359,212, 84,458,155,406,467,237,383,210, 

385,506,400,376,153, 66,235,163,303,330, 63,201,327,386, 52, 98, 
121,258,206,294,297,242,509,181,461,168,123,397,493, 40, 56,366, 
41, 18, 48,152,144, 11,234,226,147,182,395,317,346,479, 33, 55, 

511,196,320,232,270,149,466,218, 95,378,481, 87,478, 91, 3,277, 
69,157, 68, 15,345,289,315,464,418,356,162,247,462,424,173, 88, 

319,231,408,211,107,275,175,324,450, 4,100,305,486,128, 35,470, 
73,209, 64, 75,244,204,158, 53,442,316,178,167,119, 81,284,425, 

285,133,434,185,488,208,292,143,500,114, 90,335,113,343,444, 9, 
454,369,176,148,388,403,145, 21,456,353,447,389,250,243,238,116, 
99,468,435,151,105,382,474, 94,375,222,422,156, 13,260,191,293, 

217, 46,423,451,314,365, 39,227,195, 42,188,198, 80, 25, 76,150, 
338,165,138,494,249,430,322,134, 82,443,139,497,137,448, 51,489, 
203,223,429,298,141, 57,392,431,396,390,491,370,186, 16,190,135, 
492,248, 44,427,482, 86, 65,358,433,187,368,233,207,357,109,340, 
112 
377 
351 
166 
97 

438 
475 
160 
321,269,334,401,164, 72,200,183,146,192,412,349, 

20,344,189,354,441, 85,371, 12,221,399,373,180, 

36,286,473,407,355,154,253,291,361,332,405,436,350,440,449, 
45,177,374,214,290,381, 26,304,122,505, 32,495, 5,325, 60, 

496,328,372,287,272,363,503,465,352,199,229,225,240,404,278, 
265, 23,299,174,417,124,480,306,131,130,416, 74,347,409, 27, 
142,126, 2,384,463,508,288,251, 10,485,391,106, 59,279,469, 
89,271,115, 31,336,197,281, 54,455,398,236,239,446,308,246, 

471,476,323,415,307,507,452, 28, 14,282,411,296,410, 77,108, 
428, 1,414,172,256,110,337,125,367,477, 92,257,179,194,483, 

7,245,362,267, 
0,498,459,170 }; 

Table 2: The table of $9. 
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