Skip to main content

Wave propagation in urban microcells: a massively parallel approach using the TLM method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1041))

Abstract

We consider a new approach to modeling wave propagation in urban environments, based on the Transmission Line Matrix (TLM) method. Two-dimensional simulations are performed using a map of a city A renormalization technique is proposed to convert the results to the three-dimensional space. Our approach provides good predictions for the intensity of a wave when compared with in-situ measurements and is appropriate to very fast massively parallel computations. In order to provide a performance analysis, the algorithm has been used as a benchmark on different parallel architecture (CM200, CM5, IBM SP2 and Cray T3D).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. L.Bertoni, W. Honcharenko, L. R. Maciel, and H. Xia. UHF propagation prediction for wireless personal communications. In IEEE Proceedings, Vol 82, No. 9, pages 1333–1359, 1994.

    Google Scholar 

  2. T. Kürner, D. J. Cichon, and W. Wiesbeck. Concepts and results for 3d digital terrain-based wave propagation models: an overview. IEEE Jour. on Selected Areas in Communications, JSAC-11(7):1002–1012, Sept. 1993.

    Google Scholar 

  3. K. Rizk, J.-F. Wagen, and F. Gardiol. Ray tracing based path loss prediction in two microcellular environments. In Proceedings IEEE PIMRC'94, pages 210–214, The Hague, Netherlands, sep 1994.

    Google Scholar 

  4. Wolfgang J. R. Hoeffer. The transmission-line matrix method. theory and applications. IEEE Transaction on microwave theory and techniques, MTT-33(10):882–893, oct 1985.

    Google Scholar 

  5. R. Benzi, S. Succi, and M. Vergassola. The lattice boltzmann equation: theory and application. Physics Reports, 222(3):145–197, 1992.

    Google Scholar 

  6. H. J. Hrgovčić. Discrete representation of the n-dimensional wave equation. J. Phys. A, 25:1329–1350, 1991.

    Google Scholar 

  7. Bastien Chopard. A cellular automata model of large scale moving objects. J. Phys., A(23):1671–1687, 1990.

    Google Scholar 

  8. G. Doolen, editor. Lattice gas method for partial differential equations. Addison-Wesley, 1990.

    Google Scholar 

  9. B. Chopard, P. Luthi, and M. Droz. Reaction-diffusion cellular automata model for the formation of liesegang patterns. Phys. Rev. Lett., 72(9):1384–1387, 1994.

    PubMed  Google Scholar 

  10. B. Chopard. Cellular automata modeling of hydrodynamics and reaction-diffusion proceses: Basic theory. In Plenum, editor, Scale invariance, interface and non-equilibrium dynamics, page, 1994. NATO Workshop, Cambridge, June 1994.

    Google Scholar 

  11. C. Vanneste, P. Sebbah, and D. Sornette. A wave automation for time-dependent wave propagation in random media. Europhys. Lett., 17:715, 1992.

    Google Scholar 

  12. D. Sornette, O. Legrand, F. Mortessagne, P. Sebbah, and C. Vanneste. The wave automaton for the time-dependent schroedinger, calissical wave and klein-gordon equations. Phys. Let. A, 178:292–300, May 1993.

    Google Scholar 

  13. Pascal O. Luthi and Bastien Chopard. Wave propagation with transmission line matrix. Technical report, University of Geneva and Swiss Telecom PTT, 1994.

    Google Scholar 

  14. B. Chopard, P. Luthi, and J.-F. Wagen. Submitted to IEEE Transactions on Antennas and Propagation, June 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jack Dongarra Kaj Madsen Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luthi, P.O., Chopard, B., Wagen, J.F. (1996). Wave propagation in urban microcells: a massively parallel approach using the TLM method. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science. PARA 1995. Lecture Notes in Computer Science, vol 1041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60902-4_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-60902-4_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60902-5

  • Online ISBN: 978-3-540-49670-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics