Skip to main content

Universal hashing and k-wise independent random variables via integer arithmetic without primes

  • Conference paper
  • First Online:
Book cover STACS 96 (STACS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1046))

Included in the following conference series:

Abstract

Let u, m≥1 be arbitrary integers and let ku. The central result of this paper is that the multiset H={itha,b¦0≤a, b<km} of functions from U=0,..., u }-1 to M={0,..., m −1, where h a,b (x)=((ax+b) mod km) div k, for xU, is a (c, 2)-universal class of hash functions from U to M in the sense of Carter and Wegman [7, 25], with c=5/4. More precisely, we show that if x 1, x 2 are distinct elements of U and i 1,i 2M are arbitrary, and if h is chosen at random from H, then ¦Prob (h(x 1)=i 1h(x 2)=i 2-1/m2¦≤(1/2km)2≤1/4m 2. Among the many known constructions of (c, 2)-universal classes there was none that would get by with such a small number of pure integer arithmetic operations without the assumption that a prime number of size the order of¦U¦ or at least ¦M¦ was available. — Varying this result, we obtain: (a) two-independent sequences of random variables; (b) universal hash classes of higher degree (“(c, l)-universal” classes) and l-wise independent random variables, for l ≥ 2; (c) algorithms for static and dynamic perfect hashing with an optimal number of random bits; all using pure integer arithmetic without the need for providing prime numbers (arbitrary or random) of a certain size. It should be noted that the focus here is not on minimizing the size of the probability space used, as in much of the recent work on “almost k-independent random variables”, but on the realization of such variables or hash classes using the most natural and most widely available operations, viz., integer arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Abrahamson. Time-space tradeoffs for branching programs contrasted with those for straight-line programs. In Proc. of the 27th IEEE FOCS, pp. 402–409, 1986.

    Google Scholar 

  2. N. Alon, O. Goldreich, J.Håstad, and R. Peralta. Simple constructions of almost k-wise independent random variables. Random Structures and Algorithms, 3:289–304, 1992.

    Google Scholar 

  3. N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Addendum to “simple constructions of almost k-wise independent random variables”. Random Structures and Algorithms, 4(1):119–120, 1993.

    Google Scholar 

  4. P. Beame, S.A.Cook, and H.J.Hoover. Log depth circuits for division and related problems. SIAM J. Comput., 15(4):994–1003, 1986.

    Article  Google Scholar 

  5. B. Chor and O. Goldreich. On the power of two-point based sampling. J. of Complexity, 5:96–106, 1989.

    Article  Google Scholar 

  6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Mass., 1990.

    Google Scholar 

  7. J. L. Carter and M. N. Wegman. Universal classes of hash functions. J. Comp. Syst. Sci., 18:143–154, 1979.

    Article  Google Scholar 

  8. M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable. In W. Kuich, editor, Proceedings of 19th ICALP, pp. 235–246. Springer-Verlag, LNCS 623, 1992.

    Google Scholar 

  9. M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm for the closest-pair problem. Research Report 513, Universität Dortmund, December 1993.

    Google Scholar 

  10. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994.

    Article  Google Scholar 

  11. M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time. In J. Buchmann, H. Ganzinger, and W. J. Paul, editors, Informatik. Festschrift zum 60. Geburtstag von Günter Hotz, volume 1 of Teubner-Texte zur Informatik. B. G. Teubner, Stuttgart-Leipzig, 1992.

    Google Scholar 

  12. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time. J. Assoc. Comput. Mach., 31(3):538–544, July 1984.

    MathSciNet  Google Scholar 

  13. G. H. Hardy, and E. M. Wright. An Introduction to the Theory of Numbers. Oxford Science Publications, Clarendon Press, Oxford, 1994.

    Google Scholar 

  14. R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem. J. Assoc. Comput. Mach., 32(4):762–773, 1985.

    Google Scholar 

  15. N. Linial, M. Luby, M. Saks, and D. Zuckerman. Efficient construction of a small hitting set for combinatorial rectangles in high dimension. In Proc. of the 24th ACM STOC, pp. 258–267 1993.

    Google Scholar 

  16. M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput., 15:1036–1053, 1986.

    Article  Google Scholar 

  17. K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  18. Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing. Theoretical Computer Science, 107:121–133, 1993.

    Article  Google Scholar 

  19. K. Mehlhorn and U.Vishkin. Randomized and deterministic simulations of PRAMs by parallel machines with restricted granularity of parallel memories. Acta Informatica, 21:339–374, 1984.

    Article  Google Scholar 

  20. Y. Matias and U. Vishkin. On parallel hashing and integer sorting. J. Algorithms, 12:573–606, 1991.

    MathSciNet  Google Scholar 

  21. N. Nisan. Pseudorandom generators for space-bounded computations. In Proc. of the 22nd ACM STOC, pp. 204–212, 1990.

    Google Scholar 

  22. J. Naor and M. Naor. Small-bias probabilitiy spaces: Efficient constructions and applications. In Proc. of the 22nd ACM STOC, pp. 213–223, 1990.

    Google Scholar 

  23. A. Siegel. On universal classes of fast high performance hash functions, their time-space tradeoff, and their applications. In Proc. of the 30th IEEE FOCS, pp. 20–25, 1989. Revised Version.

    Google Scholar 

  24. A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292, 1971.

    Google Scholar 

  25. M. N. Wegman and J. L. Carter. New classes and applications of hash functions. In Proc. of 20th IEEE FOCS, pp. 175–182, 1979.

    Google Scholar 

  26. A. Wigderson and O. Goldreich. Tiny families of functions with random properties: A quality-size trade-off for hashing. In Proc. of 26th ACM STOC, pp. 574–583, 1994.

    Google Scholar 

  27. A. Wigderson. The amazing power of pairwise independence. In Proc. 26th ACM STOC, pp. 645–647, 1994. (Invited lecture).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Puech Rüdiger Reischuk

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dietzfelbinger, M. (1996). Universal hashing and k-wise independent random variables via integer arithmetic without primes. In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-60922-9_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60922-3

  • Online ISBN: 978-3-540-49723-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics