Refinement in Agent Groups

Ciara Byrne and Peter Edwards
{byrne, pedwards}@csd.abdn.ac.uk

Department of Computing Science,
King’s College,
University of Aberdeen,
Aberdeen,

Scotland AB9 2UE

Abstract. A group of intelligent agents may work together in order to
solve a problem or achieve a common goal. If the group fails to achieve
a goal, it may be able to adapt its behaviour so that such a goal can
be achieved in the future. One of the ways in which the behaviour of
the agent group can be changed is by refining the knowledge of indi-
vidual agents. We are developing a distributed refinement system called
DRAMA (Distributed Refinement Among Multiple Agents) to perform
this task. The system makes use of a special type of agent called a re-
finement facilitator which coordinates the refinement process within the
agent group.

1 DMotivation

Suppose that a group of people want to cook Christmas dinner. They divide
up the work in some manner: one person is to prepare the turkey, another to
make the Christmas cake, etc. The goal of the group is to produce the meal
at an appropriate time on Christmas day and this goal can only be achieved if
all members of the group contribute. The person who is supposed to make the
Christmas cake doesn’t start preparing it until Christmas morning. He reads the
recipe and discovers that he doesn’t have all the required ingredients and since
there are no shops open, he is unable to make the cake. In a different case, he
may make the cake but find that he can’t cook it because the oven is already
being used to cook the turkey. Another possibility is that another member of the
group sleeps in and therefore fails to carry out his task. These are some examples
of how a group goal fails due to the actions of one or more of the participants.
How can the same group of agents ensure that it will succeed if it attempts to
cook Christmas dinner next year? In other words, how can the group ensure that
it will be able to achieve a similar goal in the future?

A group of intelligent agents should be able to ensure that a failure is not
repeated by adapting their behaviour. Adaptation can be achieved by using ma-
chine learning techniques to refine the knowledge of agents. The aim of learning
in any intelligent system should be the improvement of the performance of that
system. Where the system consists of a number of interacting intelligent agents,



performance may be evaluated by the coherence of the agent group or from the
point of view of individual agents’ success in achieving their goals. “Coherence
will refer to how well the system behaves as a unit” [1]. Coherence may be
measured along several dimensions including the quality of the solutions which
the system produces, the efficiency with which solutions are produced and how
gracefully performance degrades in the presence of failure or uncertainty.

This paper is concerned with failure-driven learning, i.e. learning is prompted by
the failure of the agent group to achieve a goal. Performance is rated by solution
quality in the sense that the agent group either finds a solution (achieves the
group goal) or fails to find one (the group goal fails). The process of refining the
knowledge of agents attempts to improve solution quality by allowing the agent
group to avoid failures in the future.

2 The Refinement Problem

Techniques for refining the knowledge held in a single knowledge base have al-
ready been extensively investigated [2] [3] [4] [5]- The process of refining the mul-
tiple related knowledge bases of a group of cooperating agents presents unique
challenges. In addition to their domain knowledge, social agents have knowledge
that allows them to interact with others. Agents may represent knowledge in
different ways. Since agents each have their own knowledge base, finding the
failure point (or failure points) in the group’s knowledge is a much more com-
plex problem than in a single knowledge base. Refining one agent’s knowledge
may change its behaviour in a manner that affects other agents who will need
to react to these changes in an appropriate manner. It may be also be desirable
to maintain consistency between the knowledge bases of various agents.

2.1 The Knowledge of Agents

An agent which interacts with other agents needs two distinct types of knowl-
edge: domain knowledge and social knowledge. The agent’s domain knowledge
concerns its problem-solving domain and environment. An agent’s social knowl-
edge allows it to interact with other agents. This knowledge may include the
following;:

Communication: Knowledge about the physical means of inter-agent commu-
nication (e.g. information about communication channels and the locations of
agents) and an inter-agent communication language.

Interaction: How to interact with other agents in order to procure services,
perform tasks for others, etc. An agent may, for example, know how to use a
cooperation strategy such as the Contract Net Protocol [6]).



Agent Models: An agent can use these models to identify other agents with
whom it is useful to interact, and to make this interaction more effective. For
example, an agent may wish to determine which agents have the skills necessary
to perform a particular task. A model may contain information such as the skills
of other agents and their level of authority in the group.

2.2 Failures

Agents may have different knowledge bases and disparate views of their environ-
ment. Since social agents interact with other agents as well as the environment,
the possibilities for failure increase. There are three basic phases in the process of
achieving a group goal: task decomposition, task allocation and the coordination
of tasks while they are being carried out. Failures may occur if agents commit
errors during any of these phases. Task decomposition may be incorrect or in-
sufficient. In the case of insufficient decomposition, the agent to whom the task
is allocated may have the skills necessary to perform the task but cannot relate
the task description to these skills. For example, if one agent is allocated the
task “make a Christmas cake”, that agent may be able to measure ingredients,
mix them, use the oven, etc. but does not have a recipe for Christmas cake. Task
decomposition and allocation may not take into account dependencies between
tasks, e.g. the ingredients for the meal must be purchased before the cooking
can be done. Failures may also be caused by allocating a task to an agent which
cannot perform it or by failing to allocate a task redundantly when agents are
unreliable. During the execution of subtasks, an agent may fail to complete a
task. This may prohibit another agent from performing its task, e.g. by using a
cooking utensil which that agent needs and not returning it. An agent may fail
to share important information in a timely fashion, e.g. by not informing other
agents that it has finished using the oven (if this would be appropriate). These
are just some examples of the new range of failures that are possible when a
group of agents attempt to achieve group goals as opposed to individual ones.

2.3 Faults in Knowledge Bases

Any of the failures described above are the result of faults in the knowledge of
one or more agents in a group. Faults in a knowledge base include incorrectness,
incompleteness, inconsistency, redundancy and intractability. The meaning of
these terms may require some reinterpretation when applied to the collective
knowledge of a group of agents rather than a single knowledge base.

Incorrectness: Some part of the knowledge is inaccurate. The question of context
is important here as the same piece of knowledge may be correct in some contexts
and not in others. As different agents may use the same knowledge in different
contexts this issue is even more important in an agent system.

Incompleteness: Some necessary knowledge is missing. In the case of social
agents, incompleteness in social knowledge is an additional problem.



Inconsistency: While this is a fault in the knowledge of a single agent, it may
not always be necessary to maintain consistency between the knowledge bases
of group members.

Redundancy: While redundancy in a knowledge base may not actually cause
failures, it is usually desirable to make a knowledge base as compact as possible.
On the other hand, redundancy is necessary in an agent group if the agents share
a common environment or have similiar abilities.

Intractability: It is too expensive to achieve the goal using the current knowledge.
For example, an agent group may use an interaction protocol which means that
the group uses too many resources (e.g. time) when attempting to achieve a goal.
In this case, social knowledge may need to be refined in order to allow agents to
interact in a more efficient manner.

3 Designing a Distributed Refinement System

Refinement systems generally execute a cycle similar to the following (based on
EITHER [2]): Recognise that a fault has occurred, locate the failure point (or
postulate several possible failure points) and determine what refinements need
to be made to the faulty knowledge. The existing knowledge and examples of
the concept whose definition is considered to be faulty may be used to guide
the choice of refinements. Examples of concepts defined in the knowledge base
are classified as either positive (an example of the concept) or negative (not
an example of the concept). Classification is usually performed by an oracle.
An oracle may also be used to detemine when a failure has occurred and to
help locate the failure point. We hypothesise that while oracles may exist for
each individual agent, there may not always be a single oracle that can evaluate
the knowledge of the entire agent group. As a starting point for designing any
refinement system for multiple agents, it is therefore useful to consider a number
of questions:

How will the system recognise that a failure has occurred?

How will the failure point be located?

Where do the examples originate and how are they classified?

What is the form of an example?

How are refinements generated?

If there are several possible refinements, how are the final refinement(s) cho-

sen?

7. When the knowledge of one agent is refined, will other agents in the group
need to have their knowledge updated in some way?

8. Will an autonomous agent accept refinements to its knowledge which origi-

nate from some external entity?

S Gk W=



3.1 The Argument Against Centralisation

One possible solution to the refinement problem would involve collecting the
knowledge of all agents and refining it in a similar manner to that employed for a
single knowledge base. Of course, consideration would need to be given to the fact
that the knowledge originated from several different agents. However, we would
predict several problems with this approach. Agents may represent knowledge
in different ways and still be able to cooperate. Therefore, the knowledge bases
of individual agents would have to be translated into a common representation
before refinement could occur and the refined knowledge retranslated into the
agents’ individual representations. How would knowledge be reassigned to agents
once it had been refined in conjunction with the knowledge of other agents?
How would the refinement system determine when inconsistency and redundancy
between agent knowledge bases is necessary and when it is a problem? If the
knowledge of different agents is contradictory how can it be determined which is
correct? In addition, a centralised refinement system would require access to the
internal structure of agents and this may not always be desirable. In conclusion,
we feel that this would constitute a centralised solution to a distributed problem
and we consider a distributed solution to be more appropriate.

3.2 A Distributed Approach

We believe that a group of agents can determine the causes of a failure and im-
plement an effective set of refinements if they cooperate by sharing their knowl-
edge and different perspectives on a failure. Our refinement system DRAMA
(Distributed Refinement Among Multiple Agents) consists of two parts: a re-
finement module within agents and a refinement facilitator. Agents use the re-
finement module to generate refinements to their own knowledge. This can be
regarded as an extra skill which agents possess in addition to the skills which
they use in problem-solving. The facilitator coordinates the refinement process
within the group but does not itself generate refinements !. Agents recognise
that a failure has occurred and inform the facilitator which then gathers re-
finement proposals from relevant agents. The facilitator evaluates the proposed
refinements and chooses a subset for implementation; in other words it acts as
a filter for refinements.

We believe that this approach has several advantages. It allows agents to re-
tain their autonomy by letting them propose refinements to their own knowledge
rather than having refinements imposed upon them. Difficulties arise in the re-
finement process because individual agents only have a limited view of any failure
which arises in the achievement of a group goal. The facilitator attempts to solve
this problem by considering the views of all agents who may have contributed
to the failure. The capabilities of the facilitator could possibly be distributed
among the agents in the group but the use of a single facilitator agent reduces

! One of the problem-solving agents in the group may also act as a facilitator.



the amount of inter-agent communication and negotiation that would otherwise
be necessary.

4 GOAL

We decided to test this approach to refinement by applying it to agents written
in an agent-oriented programming language called GOAL (Goal-Oriented Agent
Language). Agent-oriented programming [7] is a new programming paradigm
which attempts to use mentalistic concepts such as beliefs, desires and intentions
to formally describe the properties of agents. GOAL is based on Agent-K [8].
An Agent-K agent is specified in terms of its capabilities, a set of initial beliefs
and a number of commitment rules. An agent’s capabilities are the actions which
it can perform. A belief is a logical statement which the agent “believes” to be
true at a particular point in time. An agent’s beliefs may change over time.
When an agent decides to carry out an action, it forms a commitment to do
s0. A commitment to perform an action may be made in response to a request
from another agent. One of the ways in which commitments can be formed is by
the firing of a commitment rule. A commitment rule’s conditions are matched
against incoming messages and the agent’s current mental state. If the rule fires,
then a commitment is formed to perform the action requested by the message
sender. Agents use KQML (Knowledge Query and Manipulation Language) [9]
messages for inter-agent communication.

4.1 The Test Domain

We have implemented a simple hunter-prey scenario using agents programmed
in GOAL. We chose this domain because it has previously been used in the
DAT literature [10] and both agents and their environment can be defined at
various levels of complexity. During experimentation, the environment may be
made progressively more realistic and complex, thereby making it more difficult
for agents to achieve their goals. The domain has the characteristics that it is
dynamic, ongoing and unpredictable. The aim of refinement is the improvement
of the performance of the agent group. In our test domain, performance is mea-
sured by the quality of solution produced. In the simple scenarios discussed here,
there are only two possible evaluations of solution quality: either a solution is
found, i.e. the group goal is achieved, or it is not. Agents are hunters who seek
and kill prey. Some hunters have the ability to initiate cooperation in order to
achieve goals such as the killing of a large prey by a group of hunters. Unless
they are involved in cooperation, hunter agents execute a very simple cycle of
actions: find a prey, move to the prey if it is not in the current location, attack
the prey and eat it. A special world agent simulates the environment by peri-
odically updating agents with new sets of beliefs about the environmental state.
How much of the world a hunter can “see” depends on a vision-range parameter
which is set in the world agent. We expect this test scenario to become more
complex as our work proceeds.



4.2 The GOAL Language

In addition to beliefs, capabilities and commitment rules, GOAL also allows an
agent’s individual goals to be specified in the form of a simple goal tree. The
structure of a GOAL agent is shown in Fig.1. High-level goals are decomposed
into subgoals and eventually primitive actions. Some goals require the coopera-
tion of other agents. These group goals are described by the number and types
of agents needed to achieve them and the actions which each of the agents will
be required to take. When an agent wants to achieve a group goal, it requests
the cooperation of appropriate agents. If they agree to participate, it sends them
instructions during cooperation and dissolves the group either when the group
goal has been achieved or cannot be achieved. All agents except the agent which
initiated cooperation suspend their own goals during cooperation. As a result,
agents must either be altruistic or believe implicitly that they will benefit from
cooperation.

Goals

Group Goals

Commitment Rules

Domain Hierarchies

Precondition Sets

Capabilities

Fig.1. A GOAL Agent

Associated with each action are various preconditions which must be satisfied
before it can be performed. Two types of preconditions are defined: a constraint
set and a set of immediate preconditions. The constraint set includes constraints
on the characteristics of the agents with which the agent is currently cooper-
ating (Wholist); when (When) and why (Why) the goal or action is being per-
formed; and the arguments of the action (Arglist). Since there may be several
precondition sets associated with a particular action, an index number is used
to distinguish between them. A constraint set thus has the form given in Fig.2.



The precond field here consists of the set of immediate preconditions associated
with the constraint set. The constraints are evaluated when an action or goal
is under consideration. If a constraint set is satisfied, then the agent forms an
instantiation ? of the goal or action and forms a commitment to perform it.

constraints(Action,
When,
Arglist,
Wholist,
Why,
Index,
precond(Arg-names, Precond-sets))

Fig. 2. The syntax of a precondition set

Even when an agent has decided to take an action, additional preconditions
concerning the mental state of the agent and the state of the world may need
to be evaluated immediately before the execution of an action. We call this type
of precondition an immediate precondition. The total precondition set shown in
Fig.3 means that Hunter! will not form an instantiation of the action eat(X)
unless its argument is an object of type prey and the action is being requested
by another agent. Whether the agent is cooperating or not is irrelevant. The
immediate preconditions indicate that the agent will not attempt to execute
the action unless it is in the same position as the prey and the prey is dead.
The reason for this separation of constraints and immediate preconditions is to
differentiate the factors taken into consideration when making a commitment
to perform an action, and the world state immediately before the action is at-
tempted. The world state may change in the time between the formation of the
commitment and its execution.

An agent may also have knowledge in the form of domain hierarchies. A hier-
archy will describe a particular aspect of the agent’s task or environment. For
example, in the hunter-prey domain there may be a hierarchy which defines the
prey in the environment as either small or large prey. Hierarchies are used to
evaluate constraints, e.g. the constraint set of an action such as attack(Object)
may contain a constraint which specifies that Object should be a small prey.

5 Refinement Within Agents

Agents propose refinements to their own knowledge. In theory, refinements could
be made to any of the types of knowledge which GOAL agents possess, i.e. defini-
tions of goals and group goals, domain hierarchies, capabilities and commitment

2 Examples of instantiations are given later in this paper.



constraints(eat,
time (—),
[prey(-)],

other-request(—),
17
precond([Prey],
[[believes(hunterl, [Now, object-position(hunterl, Here)], t),
believes(hunterl, [Now, object-position(Prey, Here)], t),
believes(hunterl, [Now, object-status(Prey, dead)], t)]])).

Fig. 3. Example precondition set from the hunter-prey domain

rules. The form which a refinement will take depends on the type of knowledge
being refined. For example, knowledge about capabilities may be changed by
adding or deleting a belief about the capabilities of a particular agent, whereas
the definition of a group goal may be modified by reallocating an action to an
agent or increasing the number of cooperating agents. Initially, we have given
agents the ability to refine precondition sets. The agent gathers information
relevant to the fault in order to guide refinement, determines which type of
knowledge needs to be refined (if refinements to several types of knowledge are
possible) and applies refinement operators in order to generate a refinement. In
the case of preconditions, GOAL allows agents to record information about the
circumstances in which actions have been taken in the past. In order to par-
ticipate in the refinement process an agent needs to know the following: how
to describe faults to the facilitator and understand descriptions of faults, how
to generate refinements and describe them, and how to update its knowledge if
modifications are required due to the refinement of another agent’s knowledge.

To generate refinements to preconditions, agents need information about the
context in which a particular action has been performed in the past. Records of
the circumstances in which actions are taken, i.e. the evaluation of constraints
and preconditions, are continuously generated during an agent’s execution. Such
arecord is termed an instantiation and has the form given in Fig. 4. The instanti-
ation of a successful action can be seen as a positive example and an unsuccessful
one as a negative example. If there are multiple precondition sets for a particular
action, we need to identify which set has been satisfied. C-set indicates the con-
straint set that was satisfied by this instantiation and P-set the set of immediate
preconditions that was satisfied.

In general, existing refinement systems work by applying generalisation op-
erators when the fault involves the misclassification of a positive example and
specialisation operators when a negative example is misclassified. In this context,
a positive example of an action is one which was successful, e.g. an attempt to
take the action move-to([1,2]) results in the agent’s new position being [1,2]. A



inst(Action, When, Arglist, Wholist, Why, C-set, P-set, Evals)

inst(move-to, [2,8,95,9,20,3], [[1,3]], [], hunterl, 1, 2, [t,t,t])

Fig. 4. The syntax of an instantiation

negative example would be the execution of an action in inappropriate circum-
stances, e.g. attack(X) where X is another hunter. Because there are two distinct
types of precondition (constraints and immediate preconditions) in our system,
we use the following set of refinement operators:

Specialise an existing constraint set.

Delete a constraint set.

Generalise an existing constraint set.

Add a new constraint set.

Delete an immediate precondition from an existing set.
Add a new set of immediate preconditions.

Add an immediate precondition to an existing set.
Delete a set of immediate preconditions.

e e Al ol

An agent may apply some combination of these operators in order to gener-
ate a suitable refinement. Although these refinement operators may be used
in any domain, a number of characteristics of the hunter-prey domain will de-
termine exactly how they will function and what strategy is used to control
their application. For example, we are assuming that a hunter’s example set will
consist largely of positive examples with few, if any, negative examples of ac-
tions. Therefore, refinement operators must be able to use positive example sets
effectively. Obviously, this condition may not apply in other problem domains.
Therefore, evaluating the generality of results obtained in this particular domain
may be problematic. However, from the perspective of the facilitator the manner
in which operators generate refinements is an internal implementation detail of
the agents. The important thing from the point of view of the agent group is
that refinements are generated and that they are presented in an appropriate
manner to the refinement facilitator.

6 The Refinement Facilitator

A facilitator coordinates interaction between agents. For example, KQML [9]
communication facilitators are used to manage message traffic among other
agents by routing messages to appropriate agents, providing buffering and trans-
lation facilities, etc. The task of the refinement facilitator is to coordinate re-
finement by processing refinement requests from agents, soliciting refinement
proposals, choosing the refinements which will eventually be implemented and



informing agents of changes to the knowledge of other agents. Much of the fa-
cilitator’s knowledge will be domain-independent because it is concerned with
general issues such as types of refinements and the relationships between them.
It will also require some domain-specific knowledge in order to work with a par-
ticular group of agents. The refinement facilitator requires the following types
of knowledge:

Information about agents: Names and URLs (Universal Resource Locators)
of agents.

Descriptions of faults and refinements: The facilitator needs to know how
faults are described so that it can correctly interpret and process descrip-
tions received from agents. Similarly, the facilitator must correctly interpret
descriptions of proposed refinements.

Refinement types: Refinements can be divided into categories depending on
the type of knowledge being modified, e.g. precondition sets or a definition
of a group goal.

Fault decomposition: The facilitator must know how to use a fault descrip-
tion provided by an agent to identify possible failure points and solicit re-
finements from appropriate agents.

Relationships between refinement types: We have proposed a number
of possible relationships between refinements: refinements can be equiva-
lent, complementary or conflicting. Two different refinements may have the
same effect as regards correcting a fault, but involve different changes to the
knowledge of agents. These refinements can be considered to be equivalent.
Refinements conflict if they negate each other’s effects and complement each
other if both (or several) are needed to repair a fault.

Rating refinements: If there are alternative sets of refinements which may
be applied to correct a fault, then the facilitator needs to have some way
of choosing between them. A rating scheme is used to calculate ratings for
refinements and the refinement set that achieves the best overall rating is
approved.

Knowledge update rules: When an agent makes changes to its knowledge,
other agents may need to be informed. This may be necessary in order to
maintain consistency between the knowledge bases of agents. In other cases,
agents may need to be informed about a refinement because of the changes
this will cause to the future behaviour of an agent. A knowledge update rule
thus defines a list of agents which should receive messages describing the
refinement which occurred.



7 An Example

To illustrate our ideas, we present an account of how DRAMA would rectify
a simple fault from the hunter-prey domain. The domain knowledge in this
scenario consists of hierarchies which classify agents and prey objects, locations,
and reasons for performing actions. For example, Hunter! has the domain knowl-
edge shown in Fig.5. The agent’s environment is divided into squares, each of
which are referenced by z and y coordinates. Each square is characterised by
the dominant type of terrain in that square, e.g. marshland. Prey animals in the
environment are classified as large or small. Finally, agents may perform actions
under their own initiative or because of a request from another agent.

prey(X)

small_prey(X) large prey(X)

why(X) where(X)

/N

self_request(X) other_request(X) farmland(X) wasteland(X)

N N

hunterl hunter2  hunter3 marsh(X) wood(X) rocky(X)

Fig. 5. Domain Hierarchies of Hunterl

All hunters have the ability to generate refinements that modify the precon-
dition sets of particular actions. In addition, Hunter2 can propose refinements
involving changes to its beliefs about the capabilities of an agent. The simple
refinement facilitator used in this example has the following knowledge:

Information about agents: Hunter!, Hunter2, Hunterd and their respective
URLs.



Refinement types:
modify-preconds: An agent modifies the set of preconditions (either a con-
straint set or immediate preconditions) associated with one of its actions.
modify-capabilities: An agent modifies its view of the capabilities of another
agent, e.g. by adding or removing an action from the list of actions that it
believes another agent is capable of performing.

Relationships between refinements: If a modify-preconds refinement pro-
posed by agent A is concerned with action X and a modify-capabilities refine-
ment is concerned with the ability of A to perform X, the two refinements
are considered equivalent.

Rating strategies: A refinement to a precondition set receives a better rating
than a refinement to knowledge about capabilities.

Knowledge update rules: If the agent which initiated cooperation (i.e. the
owner of the group goal) proposed a refinement of type modify-capabilities
and it is accepted, inform other agents who were in the cooperating group
of the change.

Hunter?2 senses a large prey and requests the help of Hunter! and Hunter? in
killing the prey. It sends the agents messages in which it proposes actions for
them to perform. Hunter2 does not specify details of actions at this stage, i.e.
the time at which the actions are to be performed and their specific arguments.
Hunterl and Hunter3 reply indicating that they will participate. Hunter2 then
sends messages to Hunter! and Hunterd to confirm that cooperation will go
ahead. Hunter! and Hunter8 go into cooperation mode by suspending their own
goals and await further instructions from Hunter?. Hunter2 requests that they
both move to the location of the prey. Hunterd moves to the location without
difficulty. Hunter! tries to move through marshland in order to get to the prey
with the result that it gets stuck and does not reach the prey. Hunter2 recognises
that the goal of killing the prey has failed because Hunter! did not move to the
prey’s location and dissolves the group. Hunter2 sends a message to the refine-
ment facilitator which names the agents involved in cooperation and describes
the nature of the failure. In this case there is only one failure point. In more com-
plex scenarios, there may be multiple failure points. The type of fault involved
is the non-performance of an agreed action by Hunterl. The facilitator requests
refinement proposals from both Hunter! and Hunter2. The facilitator will have
determined from the failure description that Hunter3 was not responsible for the
failure since it carried out the requested actions.

As Hunterl! can only generate refinements of type modify-preconds, it attempts
to find a refinement of this type. On receipt of the request for refinement propos-
als, Hunterl examines its actions. Agents move from one location to another by
executing a series of next-location primitive actions. Newxt-location(Loc) causes
the agent to move one square in a given direction. Hunter! plotted a route



through marshland because this was the most direct route to its target loca-
tion and the precondition set for next-location allowed it to do so. The total
precondition set for next-location(Loc) is shown in Fig.6.

constraint(next-location,
time(—),
[wasteland(—)],
WhY( _) )
17
precond([Loc], []))

Fig. 6. Hunterl’s precondition set for the nezt-location action

Because this is an example of an action being performed in the wrong circum-
stances, the agent applies a specialisation operator. In this case, Hunter! does
not know whether the constraint set or the set of immediate preconditions is at
fault. The constraint set is specialised due to the existence of a heuristic which

where(X) where(X)
farmland(X) wasteland(X) farmland(X) wasteland(X)
marsh(X) woody(X) rocky(X) marsh(X) new1(X)

woaody(X) rocky(X)

Fig. 7. Changes to the domain hierarchies

specifies that it is better to refine a constraint set than a set of immediate pre-
conditions. This is because the agent has more information (i.e. evaluations of



constraint sets in previous actions) on which to base refinements of the former
type. The refinement operator finds the first constraint in the set which can be
specialised sufficiently to exclude the failing example. In this case, the where
constraint of the next-location action is specialised sufficiently to exclude moves
through marshland. The specialised constraint should allow the agent to move
through any type of wasteland except marshland. The domain hierarchy for the
where constraint must be changed in order to allow this. A new predicate, newl,
is created that covers woodland and rocky areas but not marshland. The new
domain hierarchies are shown in Fig.7. The new predicate replaces the old where
constraint in the specialised constraint set (shown in Fig.8).

Having found this possible refinement, Hunter! suggests it to the facilitator.
Since Hunter2 has the ability to generate refinements of type modify-capability,
it may suggest a change in its belief that Hunter! can move to a given location.
The facilitator decides that the two refinements are equivalent. By using the
rating strategy it chooses the refinement proposed by Hunterl. The facilitator
informs Hunter! that it can carry out the refinement.

constraints(next-location,
time(—),
[newl(-)],

)

1

p;econd([LOC], m)

Fig. 8. Hunterl’s refined precondition set for the next-location action

8 Discussion and Future Work

8.1 DRAMA

To summarise the properties of our refinement system DRAMA (Distributed
Refinement Among Multiple Agents), we will consider the questions raised in
Section 3. To date, DRAMA only addresses faults related to incompleteness and
incorrectness in precondition sets.

How will the system recognise that a failure has occurred? In general, the leader
of a group goal will recognise that a failure has occurred because the goal has
not been achieved. It will then inform the refinement facilitator that a failure
has occurred.

How will the failure point be located? Agents analyse their own knowledge, pos-
tulate possible failure points and propose refinements to correct their knowledge.



What is the form of an example? Examples take the form of instantiations of
actions.

Where do examples come from and how are they classified? Agents continuously
gather examples of the use of actions. The agent observes the results of its actions
and thereby classifies examples as successful or unsuccessful. Classification may
also originate from an external source, e.g. the leader of a group goal (the agent
which initiated cooperation).

If there are several possible refinements, how are refinements chosen? The fa-
cilitator uses its knowledge of the relationships between refinements in order to
sort, refinements into sets and then uses a rating strategy to choose the “best”
set. In essence, it acts as a filter for refinements.

When the knowledge of one agent is refined, will other agents in the group need
their knowledge updated in some way? Knowledge update rules fulfill this func-
tion by informing agents of changes to the knowledge of other agents. Agents
which receive updates can use this information to change their own knowledge
so that it remains consistent with the knowledge of others.

Will an autonomous agent accept refinements to its knowledge which originate
from some external entity? Agents suggest refinements to their own knowledge
and therefore refinements do not originate from an external source.

8.2 Evaluating Generality

Our ultimate aim is to design an approach to refinement that is generally ap-
plicable in two different senses; namely that it can be used in multiple domains
and with agents which are written in diverse languages.

Agents work together in order to solve problems from a particular problem do-
main. A refinement scheme should be independent of any particular domain. We
are currently designing a domain-independent framework for a refinement facil-
itator. This framework will need to be instantiated with some domain-specific
knowledge in order to function with agents in a particular problem domain, e.g.
the hunter-prey domain. The basic refinement cycle outlined above, the types of
knowledge which a facilitator needs and the way in which the facilitator uses its
knowledge should remain broadly the same regardless of the domain.

Designing a refinement system that is effective when applied to agents written
in languages other than GOAL is a longer term objective, and may prove too
complex to achieve. A language-independent facilitator is possible if agents can
describe faults and refinements in a manner that is independent of the language
in which they are written. Such a facilitator would need to be able to interpret
these high-level descriptions.



8.3 Future Work

There are many issues, in addition to those outlined in earlier sections, which
we plan to explore. These include the use of knowledge update rules, side-effect
refinements, maintaining consistency between the knowledge of agents, more
direct exchange of knowledge between agents, and increasing agents’ input into
the selection of refinements by the facilitator. A side-effect refinement is one
which does not directly contribute to the resolution of the current failure but
could allow the agent to avoid different types of failure in the future. Suppose an
agent is asked to move to a particular location by the leader of a group goal. For
some reason moving to this location has a detrimental effect on the agent. During
the refinement phase it is determined that this action was not necessary in order
to achieve the goal so it is removed from the definition of the group goal. However,
it would also be beneficial to the agent to refine its precondition set so that it will
not move to this location again. This is a side-effect refinement. Another type of
side-effect refinement could occur when one agent modifies a precondition set for
an action and other agents update their precondition sets with the refined one.
Performance may also be improved by allowing agents to suggest refinements
to each other’s knowledge, provide confidence factors for refinements proposed
by other agents and exchange information (such as instantiations) which can be
used to guide the generation of refinements.

It should be emphasised that this is very much work in progress and our ideas
will develop as we put them into practice. To date, we have concluded that agents
need information on the context in which they take actions in order to gener-
ate refinements to precondition sets. We have made a first attempt to facilitate
the continuous generation of such information by extending an existing agent
language. We have implemented a basic hunter-prey scenario by programming
a group of agents in this language. Our aims in the immediate future include
building a prototype refinement facilitator and expanding the range of refine-
ments which an agent can make. We also intend to test the refinement scheme in
progressively more complex versions of the hunter-prey domain and eventually
in a completely new domain.

References

1. A.H. Bond and L. Gasser, An Analysis of Problems and Research in DAI Readings
in Distributed Artificial Intelligence (1988), Morgan-Kaufmann, 3-35.

2. D. Ourston and R.J. Mooney, Changing the Rules: A Comprehensive Approach to
Theory Refinement, Proceedings of the Eighth International Conference on Machine
Learning (1991), 485-489.

3. G. Towell, J. Shavlik and M. Noordewier, Refinement of Approzimate Domain The-
ories by Knowledge-Based Neural Networks, Proceedings of the Eighth National
Conference on Artificial Intelligence (1990), 861-866.

4. B.L. Richards and R.J. Mooney, Learning Relations by Pathfinding, Proceedings of
the Tenth National Conference on Artificial Intelligence (1992), 723-738.



5. S. Craw and D. Sleeman, The Flexibility of Speculative Refinement, Machine Learn-
ing: Proceedings of the Eighth International Workshop (1991), 28-32.

6. R.G. Smith, The Contract Net Protocol: High-Level Communication and Control in
a Distributed Problem Solver, IEEE Transactions on Computers, C-29:12 (1980),
1104-1113.

7. Y. Shoham, Agent-Oriented Programming, Technical Report STAN-CS-1335-90
(1990), Department of Computer Science, Stanford University.

8. W. Davies and P. Edwards, Agent-K: An Integration of AOP and KQML, CIKM
Workshop on Intelligent Information Agents (1994), Y. Labrou and T. Finin (Eds),
National Institute of Standards and Technology, Gaithersburg, Maryland.

9. T. Finin, R. Fritzson, D. McKay et al, An Overview of KQML: A Knowledge Query
and Manipulation Language, Technical Report (1992), Department of Computer
Science, University of Maryland.

10. M. Tan, Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents,
Machine Learning: Proceedings of the Tenth International Conference (1993), 330—
337.

This article was processed using the ITEX macro package with LLNCS style



