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Abstract .  We analyze the specification of a hydroelectric power plant 
by ENEL (the Italian Electric Company). Our goal is to show that for 
the specification of the plant (its control system in particular) some given 
properties hold. 
We were provided with an informal specification of the plant. From 
such informal specification we wrote a formal specification using the 
CCS/Meije process algebra formalism. We defined properties using p- 
calculus. Automatic verification was carried out using model checking. 
This was done by translating our process algebra definitions (the model) 
and #-calculus formulas into BDDs. 
In this paper we present the informal specification of the plant, its formal 
specification, some of the properties we verified and experimental results. 

1 Introduction 

Computer controlled systems are more and more widespread. In safety critical 
applications this situation calls for formal verification of correctness with respect 
to the given specifications. Because of the cost of modifying the finished product 
it is essential that  design errors are detected as early as possible in the design 
process. For this reason formal verification is also used to guarantee that  for the 
specification of the plant some given properties hold. 

Development of formal methods should go hand in hand with realistic case 
studies. Case studies are useful to assess the applicability of a verification tech- 
nique and to guide research on new verification techniques. 

In this paper we report on the analysis of a hydroelectric power plant by 
ENEL (the Italian Electric Company). Our goal is to guarantee that  for the 
specification of the plant some given properties hold. We were provided with an 
informal specification of the plant [ENEL 92]. From this we derived a formal 
specification written using the CCS/Meije lAB 84] process algebra formalism. A 
previous version of such a formal specification was given in [LP 94]. To define 
properties we used p-calculus (see, e.g., [BCMDH 92]) since it is a clean and 
expressive logic. Automatic verification was carried out using model checking. 

1 This work has been partially supported by the EUROFORM network and MURST 
funds. 
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This was done by translating process algebra definitions (the model) amt p- 
calculus formulas into Binary Decision Diagrams (BDDs, see [Bry 86]). 

In this paper we present the informal specification of the plant, part of its 
formal specification, some of the properties we verified and experimental results. 
A full version of the formal specification is in [PT 95]. 

The main difficulties we had to face were: ambiguities in the informal speci- 
fication and state explosion (our system has about 1052 states). 

We succeeded in automatically verifying relevant properties of the formal 
specification. Our experiments were carried out on a SUN Sparc LX with 72MB 
RAM. Verification required building BDDs with up to 2.106 vertices. We needed 
174 boolean variables to code the state of the system and 15 boolean variables 
to code the actions of the system. Thus the transition relation (present state, 
action, next state) of the overall system had 363 boolean variables. We did not 
have problems in building such transition relation, but its size forced us to be 
very careful during verification. In particular to avoid running out of memory 
during automatic verification a careful choice of the logic formula representing 
the property we wanted to verify was necessary. 

The rest of the paper is organized as follows. In section 2 we give an in- 
formal description of the plant. In section 3, using CCS/Meije, we present a 
formal description of part of the plant. In section 4 we give p-formulas for some 
of the formal properties we verified. In section 5 we give experimental results. 
In appendix A we define the syntax and sketch the operational semantics of 
CCS/Meije. 

2 T h e  c a s e  s t u d y :  a n  i n f o r m a l  d e s c r i p t i o n  

Our reactive system is composed of a hydroelectric power plant and its con- 
trol system. The control system drives the engines producing electrical power, 
handles the basin sluices, checks for safe working of the plant and monitors the 
water level in the basin. Moreover the control system interacts with an opera- 
tor which solves by hand critical situations arising in the plant administration. 
The informal specification of the overall system was provided by ENEL (the 
Italian Electric Company) in [ENEL 92]. Such informal specification was quite 
ambiguous and incomplete. Since we wanted to study the power of CCS/Meije 
as a specification methodology we simplified the original specification by using 
small abstract domains as data values. Ambiguities were also removed. Never- 
theless the resulting case study is meaningful and nontrivial. In the rest of this 
section we present such simplified version of the original specification provided 
by ENEL. 

The environment of the control system includes a hydroelectric power plant, 
an operator and the aspects of the surrounding environment that have a promi- 
nent influence on the plant. The plant is composed of a catch basin and a power 
plant. The power plant is composed of energy production engines and a penstock 
to ensure a pressurized water flow from the basin to the power plant. Each energy 
production engine has a generator and an embedded controller. 
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The power plant can be directed by the operator (manual administration) or 
by the control system (automatic administration). The main goals of the control 
system are: 

- Managing hydraulic resources so that the plant produces as much power as 
possible; 

- Obtaining the best efficiency from production engines during daily produc- 
tion periods (which, in turn, are transmitted by the operator); 

- Saving up hydraulic power outside of daily production periods without vio- 
late plant constraints (e.g. do not exceed minimum and maximum levels in 
the basin). 

The control system achieves these goals by interacting with the power production 
engines and the basin sluices. In the following, we will ignore the interaction 
with the sluices and we will only concentrate on interaction with the production 
engines. 

2.1 The  catch b a s i n  

The shape and dimensions of the basin are known and, for the sake of simplicity, 
we will suppose that the water volume fluctuation can be computed by means of 
the water level fluctuation, that, in turn, is evaluated by means of a transducer. 
Hence, in the following, we will make no distinction between water volume or 
level in the basin. Water level increases due to rain and inflow of water through 
affluents. It decreases due to overflow from barrages and outflow through the 
penstock connecting the basin to the engines. Some water levels have a particular 
importance for the working of the plant. They are: 

V M S  (*) overflowing level; 
V M L  maximum working level; 
INT_I  (*) maximum working level when the transducer is broken; 
INT_2 ( , )  minimum working level when the transducer is broken; 
V m l  minimum working level; 
V M I N  (*) minimum capacity level. 

Some sensors send signals to the control system when one of the levels labelled 
with �9 is reached by the surface of water. When the transducer is broken it is 
possible to control the plant, even if in a less accurate way, using such sensors. 

2.2 The  hydroe lec t r i c  p o w e r  p l a n t  

The hydroelectric power plant is formed by some energy production engines, 
each of which contains a generator and an embedded controller. 
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The  g e n e r a t o r  A generator is characterized by a finite state automaton whose 
states can be partioned into two classes: stable states and unstable states. Here 
are the generator states accordingly to such partition. 

- stable states: 

S (stopped): the generator is stopped; 
G (generating): the generator is working; 
B t  (temporary block): the generator is blocked because of a fault that can 

be automatically removed (i.e. without the intervention of the operator); 
Bp  (persistent block): the generator is blocked because of a failure that 

only the operator can fix. After removing such failure the operator has 
to restart the generator and signal to the control system that recovery 
has taken place. 

- unstable states: 

sTg: transition state from S to G (representing the situation in which the 
generator is going from state S (stopped) to state G (working)); 

gTs: transition state from G to S (representing the situation in which the 
generator is going from state G (working) to state S (stopped)); 

gTb t :  transition state from G to Bt  (representing the situation in which 
the generator is going from state G (working) to state B t  (temporary 
block)); 

gTbp:  transition state from G to Bp  (representing the situation in which 
the generator is going from state G (working) to state Bp (persistent 
block)). 

To each generator the control system can send two kind of commands: 

- state commands: s t a r t / h a l t  to change the state of the generator; 
- position commands: i n c / d e c  to increase/decrease electric power production. 

During the generation phase (state G), a generator may produce different 
amounts of power at different times, accordingly to the energy production plan. 
The working point of a generator can be adjusted on different positions. Each 
position selects a different amount of water intake and thus a different amount 
of power that can be produced in a period of time. 
A generator can make the following transitions: 

- from S to sTg when it receives s ta r t  and from sTg to G when the command 
is executed; 

- from G to gTs  when it receives hal t  and from gTs to S when the command 
is executed; 

- from G to g T b t  when a temporary fault occurs and from g T b t  to B t  when 
the generator stops; 

- from G to g T b p  when a failure whose repairing needs the operator inter- 
vention occurs and from g T b p  to Bp when the generator gets stuck because 
of such failure; 

- from Bt  to S when the trouble causing the block disappears; 
- from Bp  to S when the operator has repaired the blocked generator. 
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The  c o n t r o l l e r  The controller behaves as a transparent interface between the 
control system and the generator. Indeed, the control system sends a command 
to the controller and this one transmits the command to the related generator 
and sends to the control system one of the following signals: 

- The generator state is changing (until the expected state is reached). This 
happens when the generator has received a command asking for a change of 
state. 

- The generator has not correctly changed its generation position. This hap- 
pens when the generator has received a command asking for a change in the 
generation position and the generator has not successfully executed it. 

The controller accepts and sends one command at a time. Moreover, for 
hydraulic reasons, the control system can send only one kind of command (change 
state or change position) at a time. This means that at most one generator at 
a time may execute fa command to change state and at most one generator at a 
time may execute a command to change position. 

With respect to the control system, the controller appears in one of two 
possible states: 

- a v a i l a b l e ,  when it is prepared to automatic administration: it accepts com- 
mands from the control system and transmits them to the generator; 

- n o n a v a ~ l a b l e ,  when the generator is directed by the operator or a (temporary 
or persistent) block happened: in such a case the controller will ignore the 
commands from the control system. 

In te rac t ions  be tween  power p r o d u c t i o n  eng ines ,  c o n t r o l  sys t em and  
o p e r a t o r  The control system handles the generator and its controller as one 
single entity. That is the control system interacts only with the controller which 
then transmits commands to the generator. 

A production engine goes from the state nonavailable to the state available 
when the controller receives an automatic administration signal and no block 
(temporary or persistent) occurred. A production engine goes from available to 
nonavailable when a manual administration signal arrives or a block occurs. 

After a temporary block, a generator is available again as soon as a varia- 
tion in the storage curve (see section 2.3: Governing task) is expected. After a 
persistent block, a generator is available again only if explicitly required by the 
operator (following recovery of the generator). 

Hand l ing  of  s ta te  commands  The signal busy  is the answer of the controller 
to a state command. If the control system does not receive such answer it tries 
again sending the command at most twice. If both trials fail, it sends ha l t  
without verifying its outcome and declares that generator is out of order by 
sending a signal alarm_gr_bad to the operator. After having received a signal 
busy  (following a state command), each minute for at most five minutes, the 
control system checks if the generator has reached the expected state. If this is 
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the case then the control system sends a position command accordingly to the 
storage curve (see section 2.3: Governing task), otherwise, at the end of the fifth 
minute, it sends hal t  without verifying the outcome and declares that generator 
is out of order by sending a signal alarm_gr_bad to the operator. 

Hand l ing  of  pos i t ion  c o m m a n d s  Position commands are sent each sampling 
time (see section 2.3: Activities of the control system) or, if necessary, after a 
successful state command. A minute after a position command has been sent, 
the control system checks the actual position of the generator. If such position 
is not the one expected, the control system tries again sending the command 
for at most two times and waiting for a successful outcome each time. If the 
second trial also fails, the system sends hal t  without verifying the outcome and 
declares that generator is out of order by sending a signal a larm_gr_bad to the 
operator. 

2.3 The  cont ro l  sy s t em 

Act iv i t ies  of  the  control  sy s t em All control system activities are timed: the 
operations are executed each minute or each five minutes or each sampling time. 
For example, each minute or each five minutes, the control system records the 
evaluations of some quantities, and, each sampling time, computes their expected 
values and takes the appropiate actions. 

P a r a m e t e r s  When the control system is activated, it receives the initialization 
values for parameters from the operator. These parameters are: water level in the 
basin, sampling time, time, daily production periods and connection priorities of 
generators. 

Work ing  The control system usually monitors the basin and the power plant; 
but, if it receives a managing consent from the operator, then it has also to 
actively manages them. 

At any moment the control system can receive data from the operator (e.g. 
time and water level), a managing agreement or its annulment, and a signal 
saying that a bad generator has been repaired. 

Mon i to r ing  t ask  The monitoring task is reading and updating periodically 
data about water level, state and position of generators. 

Govern ing  task  The governing task consists of the following operations: 

- check if there exist available generators; 
- check the state and position of each available generator; 
- if there is at least a generator available then 

�9 compute the basin fluent discharge; 
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�9 recompute the production program by using the data previously ac- 
quired. 

We now examine in more detail the above mentioned activities. When the 
control system is enabled to direct the plant, it computes a production program 
and then, conforming to such program, establishes the amount of power the plant 
must produce during the day and sends the appropriate commands to genera- 
tors. Production program inputs are the initialization values for parameters and 
fluent discharge. Fluent discharge is the average value of the variation of water 
volume in the basin (owing to rain and affluents) as recorded in the previous 
24 hours. Production program output is the storage curve, that is a set of pairs 
(volume, time) specifying the average value of water volume each sampling time. 
To each pair (volume, time) is associated information about the expected state 
and position of generators. 

The production activity of the plant should maintain water level in the in- 
terval between Vml  and VML. This is the normal working range. If fluent dis- 
charge deviates from the expected values and the water level is not in the normal 
range then the control system has to take measures in order to drive the level 
back into the normal range. In such a case, it sends a signal alarm_level_bad 
to the operator, leaves the daily program for power production and follows a 
program trying to comply with the expected variations of water volume. In par- 
ticular the control system estimates volume fluctuation in the next time interval 
on the basis of fluent discharge in the previous sampling time. It does not use 
the average fluent discharge from the previous 24 hours since in this situation 
it is not a reliable forecast. Finally the control system establishes a power (not 
greater than the maximum one the plant admits) to drive the volume back into 
the normal working range and sends appropriate commands to the generators. 

INT_2 and INT_I are used in place of, respectively, Vml and VML when 
the transducer is broken. 

T i m e d  act iv i t ies  There is a clock that sends periodic timeout signals to some 
of the processes forming the system. Such timeouts are sent: each minute, each 
five minutes and each sampling time. 

Act iv i t i e s  accompl i shed  every m i n u t e  

- Update the output buffer towards the operator. If such updating is not suc- 
cessful then send a signal alarm_bo_broken to the operator and go on with 
the administration. 

- Read and update availability of generators. 
- Check the result of possible state or position commands previously sent. 

Act iv i t i e s  accompl i shed  every five minutes  

- Read transducer and sensors. 
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- If water level is out of the normal working range, send alarm_out_workAnt 
and recompute the storage curve (using the fluent discharge evMuated in the 
previous sampling time instead of the daily average value (see section 2.3: 
Governing task)). 

- If the level fluctuation estimated by the transducer disagrees with the sig- 
nals coming from sensors, send a signal a la rm_transducer_broken and 
compute again the storage curve using INT_2 and INT_I  as minimum and 
maximum levels. 

- If the level is VMS (overflow), order to all available generators to produce 
the maximum power. 

- If the level is V M I N  (minimum level) halt all generators. 
- Obtain new parameter values from the operator. 

A c t i v i t i e s  accompl ished every sampling per iod  

- Acquire the value of the level in the basin and behave accordingly to the 
storage curve (see section 2.3: Governing task). 

- Send state and position commands to the available generators to obtain a 
situation in agreement with the one prescribed by the storage curve. 

- Compute fluent discharge in the sampling time and update the mean flow in 
the last 24 hours. 

3 Formal specification 

In this section we present the CCS/Meije formal specification for the informal 
specification in section 2. A description of CCS/Meije is in appendix A. With 
respect to the informal description in sec. 2 we make the following assumptions. 

- We assume that the number of production engines is 3 (no value is specified 
in the informal description in section 2). 

- To simplify clocking we assume that the sampling time is about five minutes. 
Note that sampling time is not specified in the informal description in sec. 
2. 

- We assume that system components synchronize without exchanging values. 
This means that we are not considering value dependent computations. Note 
that no numerical value is defined in the informal description in section 2. 

In the rest of this section we only present the CCS/Meije term we have 
used to formally define the specification for the generator in section 2.2. For the 
interested reader the complete formal specification is in [PT 95]. 

Process Generator in figure 1 models the generator described in section 2.2. 
Process Generator defines a finite state automaton (see figure 2) with initial 
state S. Transitions are defined with equations defining present-state, action, 
next-state. Actions have form a? (input action) or a! (output action). Processes 
communicate using synchronization. Thus a process can execute action a? (a!) 
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Generator = let rec { 
S = startGr?: sTg + stopped!: S + operator?: G 

and  G = noise!: gTbt + lock!: gTbp + haltGr?: gTs + incGr?: G + decGr?: G 
-4- producing!: G + act_gr_pos!: G + repaired_generator?: S 
+ operator?: S + operator?: Bt + operator?: Bp 

and  Bt = noisegone!: S +broken]: Bt + r: Bt 
+ repaired_generator?: noisegone!: S + operator?: S 

and  Bp = repaired_generator?: (lockgone!: S -4- operator?: S) 
+ locked!: Bp + r: Bp 

and  sTg = startOk!: G + r: sTg + repaired_generator?: S 
and  gTbt = ko!: Bt 
and  gTbp = ko!: Bp 
and  gTs = haltOk]: S + r: gTs + repaired_generator?: S 

} i n S .  

Fig .  1. Process Generator 

only if some other process can execute action a! (a?). E.g. equation "gTbt  = 
ko!: Bt" ,  says that  if we are in state gTb t  then performing output  action ko we 
reach state Bt. Nondetermininsm is also possible. E.g. equation "S - s tar tGr?:  
sTg + stopped!: S + operator?: G" says that  from state S we can: perform input 
action s t a r tGr  and reach state sTg or perform output  action stopped and reach 
s tate  S or perform input action operator and reach state G. Action 7" models an 
action tha t  is internal to the process performing it. Thus it is invisible to the 
other processes. We usually use 7"'s to model stuttering. 

In the following we show how the definition of process Generator in this 
section links to the informal specification in section 2.2 (The generator).  The 
informal meaning of all states has been already given in section 2.2 (The gener- 
ator). The intended meaning of the signals (actions) is defined in the following. 

- s t a r t G r  requires the generator to start .  This happens via a synchronization 
between process Generator and the process modelling the control system. 

- h a l t G r  requires the generator to halt. This happens via a synchronization 
between process Generator and the process modelling the control system. 

- i n c G r  requires the generator to increase the amount  of produced power. This 
happens via a synchronization between process Generator and the process 
modelling the control system. 

- d e c G r  requires the generator to decrease the amount  of produced power. 
This happens via a synchronization between process Generator and the pro- 
cess modelling the control system. 

- s t a r t O k  signals to the process modelling the control system that  the gen- 
erator has begun producing power. 

- h a l t O k  signals to the process modelling the control system that  the gener- 
ator has stopped producing power. 

- n o i s e  signals to the process modelling the control system that  a t empora ry  
failure has occurred and that  the generator is going to stop. 
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18! 

12! ~ 10!,137 

15? 

121,13? 
5!,15? 

157 

13? 

I I !  . " - ' (  8! 

1],3?,6?,14! 

Legend :  1 -- act_gr_pos, 2 ---- broken, 3 -- decGr, 4 -- haltGr, 5 -- haltOk, 
6 -- incGr, 7 ~ ko, 8 -- lock, 9 - locked, 10 - lockgone, 11 - noise, 12 _-- noisegone, 
13 - operator, 14 _= producing, 15 -- repaired_generator, 16 -- startGr, 17 - star- 
tOk, 18 -- stopped, 19 =_ r. 

An edge labelled 11,. . . ,  lk represents k edges labelled, respectively, 11,.. �9 lk. 

F i g .  2. Process Generator A u t o m a t o n  

- l o c k  signals to the process modell ing the control  sys tem tha t  a pe rmanen t  
(i.e. requiring opera tor ' s  intervention) failure has occurred and tha t  the gen- 
era tor  is going to stop. 

- n o i s e g o n e  signals to the process model l ing the control  sys tem tha t  t empo-  
ra ry  failure has disappeared and tha t  the generator  is ready to  s tar t  produc-  
ing power again. 

- l o c k g o n e  signals to the process modell ing the control  sys tem tha t  pe rma-  
nent  failure has been repaired and the generator  is ready to s tar t  p roducing  
power again. 

- b r o k e n  signals to the process model l ing the control  sys tem tha t  the gener- 
a tor  is not  producing any power at all due to a t e m p o r a r y  failure. 
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- locked signals to the process modelling the control system that the generator 
is not producing any power at all due to a permanent failure. 

- s topped  signals to the process which has the job of sending commands to 
generators and to the process modelling the control system that the generator 
is not producing any power at all. 

- p roduc ing  signals to the process which has the job of sending commands to 
generators and to the process modelling the control system that the generator 
is producing some amount of power. 

- aet_gr_pos signals to the process modelling the activity of management of 
the produced power and to the process modelling the control system the 
amount of power the generator is producing. We do not use a value-passing 
calculus. Thus action act_gr_pos is an abstraction for the real actions in 
which values are involved. 

- ko is a visible (output) signal. That is process Generator does not have to 
synchronize with another component of the system in order to execute it. 
Action ko is used to signal (e.g. to a human operator) that something wrong 
happened and the generator is going to stop (temporarily or permanentely). 

- ope ra to r  is a visible (input) signal. That is process Generator does not have 
to synchronize with another component of the system in order to execute it. 
Signal operator is used to represent the possibility that the generator state 
changes because of a request coming from outside of the system (i.e. the 
operator). 

- repa l red_genera tor  is a visible (input) signal. It is used to represent the 
fact that the generator has been repaired by the operator. 

In the following we comment each of the equations defining process Generator 
in figure 1. 

From state S (stopped) the generator can perform the following actions. 

- s t a r t G r ?  When this signal is received the generator goes to unstable state 
sTg. 

- s topped!  The generator can output signal stopped and go (i.e. stay) to state 
S. 

- ope ra to r?  When this signal is received (from the operator) the generator 
goes in state G. 

From state G (generating) the generator can perform the following actions. 

- noise! Due to a temporary failure the generator goes to unstable state gTbt. 
- lock! Due to a persistent failure the generator goes to unstable state gTbp. 
- h a l t G r ?  The generator is required to stop. Thus it goes to unstable state 

gTs. 
- i ncGr?  When signal incGr is received the generator has to increase the 

power which it is producing going to another generation state. Remember 
that we abstract away from any kind of value thus we represent this situation 
by using state G again. 
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- decGr?  When signal incGr is received the generator has to increase the 
power which it is producing going to another generation state. Remember 
that we abstract away from any kind of value thus we represent this situation 
by using state G again. 

- producing!  The generator signals it is producing and stays in the same 
state. 

- act_gr_pos! The generator signals the amount of power which it is producing 
and stays in the same state. Since we abstract away from any kind of value 
we represent this situation by using only a signal act_gr_pos. 

- repai red_genera tor?  The generator receives (from the operator) signal re- 
paired_generator and goes to the state S. 

- opera to r?  This (input) signal represents the possibility that the generator 
is managed by the operator. After receiving this signal the generator can go 
in one of states G, Bt or Bp. 

From state Bt (temporary block) the generator can perform the following actions. 

- noisegone! The generator has recovered from a temporary failure and goes 
to state S. 

- broken! The generator signals it is not producing due to a temporary failure 
and stays in the same state. 

- r The generator performs invisible action r and stays in the same state. 
- repai red_genera tor?  The generator signals that it has been repaired (by 

the operator) and goes to an anonymous state from which it can perform 
only action noisegone! going to state S. 

- ope ra to r?  The generator can change state going to state S by perform- 
ing the action operator? which represents the possibility the generator is 
managed by the operator. 

From state Bp (permanent block) the generator can perform the following ac- 
tions. 

- repa i red_genera tor?  The generator has been repaired (by the operator) 
and goes to an anonymous state from which it can perform either action 
lockgone! going to state S or action operator? going to state S. 

- locked! The generator signals it is not producing due to a persistent failure 
and stays in the same state. 

-- 7" The generator performs invisible action ~" and stays in the same state. 

From unstable state sTg the generator can perform the following actions. 

- s ta r tOk!  The generator outputs signal startOk and goes to state G (gener- 
ation). 

- v The generators performs invisible action r and stays in the same state. 
- repa i red_genera tor?  The generator receives (from the operator) signal re- 

paired_generator and goes to the state S. 
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From unstable state gTBt the generator can perform only the output action ko! 
and go to state Bt. 
From unstable state gTBp the generator can perform only the output action ko! 
and go to state Bp. 
From unstable state gTs the generator can perform the following actions. 

- h a l t O k !  The generator signals it is going to halt and go to state S. 
- r The generator performs invisible action ~- and stays in the same state. 
- r e p a i r e d _ g e n e r a t o r ?  The generator receives (from the operator) signal re- 

paired_generator and goes to the state S. 

4 P r o p e r t i e s  

4.1 Bas ic  de f in i t ions  

We carry out automatic verification using (BDD based) model checking on the 
Boolean Domain Boole = (0, 1}. Thus, as far as automatic verification is con- 
cerned, each property is represented with a computation on boolean functions 
(namely those defining the transition functions of the processes). One way of 
defining such computations is by using p-calculus. Many temporal logics can be 
uniformly translated into p-calculus (see [BCMDH 92]). E.g. temporal operators 
are just p-terms. Thus temporal logics can also be used to define properties in 
our setting. Note, however, that in general there are many p-terms represent- 
ing the same temporal operator. Thus using directly p-calculus rather then a 
temporal logic allows a finer control on the verification process. In our case this 
was essential to succesfully complete our verification task. To define properties 
we use p-calculus as defined in [BCMDH 92]. Roughly speaking we can say that  
p-calculus on a Boolean Domain can be seen as First Order Logic on a Boolean 
Domain augmented with the least fixpoint operator p. In the following symbol 
= denotes syntactic equality. 

We use vectors of boolean variables to represent actions and states. We usu- 
ally denote boolean vectors with capital letters (e.g. X, Y). Let X - x l , . . .  Xk, 
and Q be a binding operator (e.g. 3, V, ~). We write Q X  for Q x l , . . . x k .  Let 
Y -- y l , . . . Y k  and op be a binary boolean operator (e.g. V, A, =). We write 
(X op Y) for ((x 1 OR Yl) A ...(Xk oi9 Yk)). We write F(~gl,. . .xm) to denote 
a formula which free variables are among x l , . . . x ,~ .  Moreover we denote with 
F ( t l , . . . t i n )  the formula obtained from F ( x l , . . . x , n )  by simultaneosly substi- 
tuting variables xl,  �9 .. xm with terms t l , . . ,  tin. 

To use model checking we need to represent a process algebra as a p-calculus 
model. We do this as in [EFT 91]. We use boolean vectors of size r (= 15) to 
represent actions and boolean vectors of size n (= 174) to represent states. We 
represent the initial state with a boolean vector having all components equal 
to 0. Thus the set of initial states (a singleton) is represented by the formula 
S 0 ( ~ 1 , . . . ~ )  =- (xl = 0 ) A . . . ( ~ ,  = 0). 

The transition relation of the overall system is represented with a predicate 
symbol S with arity r + 2 * n (= 363). Thus S (X ,  A, X ' )  holds iff from state X 
performing action A it is possible to reach state X'.  



438 

Because of the size of the BDD representing S time/space performance of 
automatic verification of a property strongly depends on the logic formula we 
choose to represent such property. To speed up teachability analysis it was our 
intention to use the iterative squaring technique in [BCMDH 92]. However we 
could not follow such approach because of memory overflow. We saved memory 
space (at the expense of computation time) by representing our properties with 
carefully chosen logic formulas. In particular we avoided building fixpoints of 
predicate symbols with arity greater than, say, r + n(=  15 + 174 = 189). Lack 
of space prevents us from illustrating all of the properties we verified. In the 
following we give the logic formulas we used to define and automatically verify 
some of the properties we studied. This should be sufficient to illustrate our 
approach. 

It will be useful to consider the set of states reachable in one step from a given 
state. Such set can be represented with the formula St(X,  X') =_ 3A S(X, A, X'). 

We will be interested in the set of states reachable from a given state without 
performing a given action, say B. Such set can be represented with the formula 
S2(B, X, X') =_ 9A (-~(A = B) A S(X, A, X')). 

Let V(X) be a formula representing a set of states. The set of states 
reachable from a state satisfying V(X) is the least solution to the fixpoint 
equation (unknown: G) G(X) = (V(X) V ~Z[G(Z) A SI(Z,X)]). Such so- 
lution can be denoted with the #-calculus formula G(X) defined as follows: 
G(X) = #g[AX[V(X) V 3ZIg(Z) A SI(Z,X)]]](X). E.g. the set V0 of states 
reachable from the initial states can be represented with the formula GO(X) 
defined as follows: G0(X) - ~g[~X[SO(X) V 3g[g(g) A Sl(Z, X)]]](X). 

Let A be an action. The set H(A) of states from which action A will be 
performed on at least one computation can be described with the formula 
S3(A, X) - ~g[~X[3Z[S(X, A, Z) V (Sl(X, Z) A g(A, Z))]]](X). 

We will need to observe synchronizations between processes. To this end we 
slightly extend CCS/Meije by considering actions of the following forms: a !, a ? 
and a t .  Thus when two processes synchronize on action a we will be able to 
observe aT instead of just r (as in CCS/Meije). In the following we represent 
actions a !, a ? and ar with, respectively, boolean vectors (of size r) a_out ,  a_.in 
and a_tau.  

4.2 A safety property 

We are now ready to define the first property we will study here. It is a safety 
property. Its informal statement is: 

If a generator is out of order because of a persistent block then that 
generator will not be used until the operator has repaired it. 

Using actions the above property (for generator 1) can be expressed as fol- 
lows. If the system performs the following actions: ko_l_in (generator 1 is out of 
order), l ocked_ l_ tau  (the system has detected that  generator 1 is out of order) 
noav i l ab l e_ l_ t au  (generator 1 is declared unusable for automatic administra- 
tion) then action ava i lab le_ l_ tau  (generator 1 is available again for automatic 
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administration) cannot be performed until action repa i red .genera to r_ l_ in  
(the operator repaired generator 1) is performed. 

In the following we build a formula describing such property. 
The set V0 of states reachable from the initial state can be represented with 

the formula GO(X) defined in section 4.1. The set V1 of states reachable from 
V0 by performing action ko_l_in is represented with the formula GI(X) defined 
as follows: a l ( X )  ~ 3z[ao(z)A S(Z, ko_ l Jn ,  X)]. 

The set V2 of states reachable from V1 is represented with the formula 
G2(X) defined as follows: G2(X) _= #g[AX[GI(X) V 3ZIg(Z) A SI(Z, X)]]](X). 

The set V3 of states reachable from V2 by performing action loekedZl_tau 
is represented with the formula G3(X) defined as follows: G3(X) = 3Z[G2(Z) A 
S(Z, locked_l_tau,  X)]. 

The set V4 of states reachable from V3 is represented with the formula 
G4(X) defined as follows: G4(X) -/~g[;~X[G3(X) V 3Z[g(Z) A SI(Z, X)]]](X). 

The set V5 of states reachable from V4 by performing action 
nonavai lab le_l_ tau  is represented with the formula G5(X) defined as follows: 
G5(X) = 3Z[G4(Z) A S(Z, nonavailable_l_tau,  X)]. 

The set V6 of states reachable from V5 without performing action 
repal red_genera tor_l_ in  is represented with the formula G6(X) defined as 
follows: 
G6(X) =- pg[AX[G5(X) V~Z[g(Z)AS2(repaired_generator_l i n ,  Z, X))]](X). 

The set V7 of states reachable from V6 by performing action 
available__l_tau is represented with the formula G7(X) defined as follows: 
GT(X) = 3Z[G6(Z) A S(Z, available_l_tau, X)]. 

Our safety property requires that V7 be empty. This is expressed by the 
formula G8 defined as follows: G8 ~ ",3XGT(X). 

To verify our property we have to check that G8 holds. We do this by com- 
puting a BDD representation for G8 and testing that the result is the (unique) 
BDD representing the boolean function identically equal to 1. 

4.3 A l iveness p r o p e r t y  

The second property we study is a liveness property. Its informal statement is: 

If the plant is managed by the control system and a persistent block occurs 
on generator 1 and the operator repairs it then generator 1 will become 
usable again. 

Using actions the above property can be expressed as follows. If the system 
performs the following actions: c o n s e n t J n  (the plant is managed by the control 
system), locked__l_tau (generator 1 is unusable because of a persistent block), 
repai red_genera tor_l_ in  (generator 1 has been repaired by the operator) then 
action avai lable_l_tau (generator 1 is usable) will be performed on at least one 
computation. 

In the following we build a formula describing such property. 
The set V0 of states reachable from the initial state can be represented with 

the formula GO(X) defined in section 4.1. The set V1 of states reachable from 
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V0 by performing action consent_in is represented with the formula GI(X)  
defined as follows: GI(X) _= 3Z[GO(Z) A S(Z, consent_in, X)]. 

The set V2 of states reachable from V1 is represented with the formula 
G2(X) defined as follows: G2(X) = pg[AX[GI(X) V BZ[g(Z) A SI(Z,  X)]]](X). 

The set V3 of states reachable from V2 by performing action locked_I_tau  
is represented with the formula G3(X) defined as follows: G3(X) =_ 3Z[G2(Z) A 
S(Z, locked_l_tau,  X)]. 

The set V4 of states reachable from V3 is represented with the formula 
G4(X) defined as follows: G4(X) -- #g[AX[G3(X) V 3ZIg(Z) A SI(Z,  X)]]](X). 

The set V5 of states reachable from V4 by performing action 
repaired_generator_l_in is represented with the formula G5(X) defined as 
follows: G5(X) =- 3Z[G4(Z) A S(Z, repaired_generator__tAn, X)]. 

The set V6 of states reachable from V5 is represented with the formula 
G6(X) defined as follows: G6(X) _-- pg[AX[G5(X) V 3Zig(Z) A SI(Z, X)]]](X). 

The set V7 of states from which action avai lable_l_tau wilt be per- 
formed on at least one computation can be represented with the formula 
S3(available_l_tau, X) (see section 4.1). 

Our liveness property requires that if a state is in set V6 then it is also 
in set V7. This can be represented with the formula G8 =_ VX[G6(X) --+ 
$3 (available_l_tau, X)]. 

To verify our property we have to check that G8 holds. We do this by com- 
puting a BDD representation for G8 and testing that the result is the (unique) 
BDD representing the boolean function identically equal to 1. 

4.4 One more property 

The informal statement of this property is: 

If  the control system sends a signal to stop generator 1 then in at most 6 
minutes either generator 1 is stopped or an alarm is sent to the operator. 

A logic formula for such property can be obtained as in the previous sections. 

5 Experimental  Results 

In this section we describe our experimental results. We represent process P 
by representing, with BDDs, the transition relation of the automata defined by 
P. The BDD representing a process is obtained (manually) from the CCS/Meije 
syntax as illustrated in [EFT 91]. We only use standard BDD manipulation func- 
tions. Thus any BDD package can be used to carry out automatic verification. 
We used an in-house BDD package developed as part of a Boolean Functional 
Programming language [Tro 95]. Our BDD package is similar to the one de- 
scribed in [BRB 90], but we use shifted BDDs as in [MIY 90]. The main reason 
to use an in-house BDD package is source code availability. This allowed us to 
tune our package parameters to avoid running out of memory. We use a cache 
size of 19,997 and a hash table size of 200,003 with a load factor of 10. Garbage 
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collection is called each t ime there is at least a deletable BDD vertex and BDD 
size is greater than 2,000,030. This is the main reason for our long verification 
times. In fact, after about  half an hour of computat ion most  of the computa t ion  
t ime is spent doing garbage collection. 

To convince ourselves that  our formal specification was a faithful represem 
tat ion of the given informal specification we ran experiments on subsystems of 
the overall system. This was done by trying to verify suitable properties (e.g. 
of set of reachable states, of admissible traces, . . . )  for each subsystem. This 
allowed us to find errors in the formal specification (i.e. our formal specification 
did not correctly represent the considered subsystem) as well as in the formu- 
lations of the properties we expected to hold. On the base of such experiments 
we revised our formal specification. The formal specification thus obtained was 
used to carry out the verification experiments (for the overall system) reported 
in this paper.  

We define properties with p-calculus formulas. We carry out au tomat ic  verifi- 
cation via model checking. Our model is the transition relation S (present state, 
action, next state) of the overall system. We use 15 boolean variables a0 , . . . a14  
to code actions. State coding requires 174 boolean variables: x0, . . .x173.  Thus 
S is a boolean function of 15 + 2 '174 = 363 boolean variables and represents 
a system with about  1052 states. Variable ordering was as in [EFT 91], i.e.: 
a0, �9 �9 �9 a14, x0, Y0, xl ,  Yl, �9 �9 �9 x 173, Y173, where Y0, �9 �9 Y173 are boolean variables rep- 
resenting the "next state".  

When using BDDs the state space size is not a good measure of complexity 
since BDD size depends on the (symmetries of the) system transition relation 
(not just on its arity). Nevertheless it is worth noting that  our state space size 
(1052) is quite big compared to usual academic examples and to other published 
case studies in the process algebras area. E.g.: an 18 process Milner scheduler 
has about  5 * 106 states (e.g. see [DB 95]); the alternating bit protocol (with 
buffer capacity 4 x 2) has 18278 states (e.g. see [DB 95]); the security man-  
agement system verified in [CRB 94] has 312 states. Moreover our system does 
not have a symmetr ic  structure (e.g. as Milner scheduler). Note however that  
for hardware systems industrial applications larger than ours have been studied. 
E.g. see [BCLMD 94, C GHJ LM N 95]. 

Given a BDD representation for S, verification of a p-calculus formula F 
amounts  to evaluation of F in model S. This is done as in [BCMDH 92]. 

Building a BDD representing S was possible for systems with up to 3 gen- 
erators. Experimental  results are in the left table of figure 3. However when we 
try to automatical ly  verify a property on a system with more than one gen- 
erator  we run out of memory.  Thus to automatical ly verify the properties we 
studied we simplify our system as follows. We assume that  only one generator 
is present in the system and that  the overall system is working in automat ic  
administrat ion mode. Note that  our plant can only work in two administrat ion 
modes: au tomat ic  and manual.  However the safety critical one is the automat ic  
adminis trat ion mode. 

Our experiments were carried out with a SUN Sparc LX with 72MB RAM. 
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Note that this is a relatively small (and easily affordable) machine when com- 
pared with 512MB machines often used for automatic verification. Experimental 
results for verification of the properties in section 4 are in the right table of figure 
3. Column CPU gives the time spent verifying a property after a BDD repre- 
sentation for the system has been built. Note that beside the above mentioned 
semplification of the system our approach is completely automatic and does not 
require any user expertise on the verification tool. 

clocked_sys IICPUIM~• BDD size 
i 

1 generator 20 1,25i,627 
2 generators 41 2,000,031 
3 generators 289 2,611,348 

~1 generator/automaticll CPUIMax BDD size l 

[i 
roperty section 4-2 ~ 2,000, 031 ] 
roperty section 4.3 2,000,0311 
roperty section 4.4 2,000,031] 

Fig. 3. Experimental results on SPARC LX with 72MB RAM. CPU times are 
in minutes. 

6 C o n c l u s i o n s  

We have shown a formal analysis of a specification for a hydroelectric power 
plant. Starting from the informal specification we developed a formal one writ- 
ten using the CCS/Meije process algebra. For such formal specification we auto- 
matically verified that some given properties hold. We defined properties using 
~t-calculus. Verification was carried out using model checking and BDDs. 

Our experience shows that automatic verification of modest size plants is fea- 
sible. However the size of the BDDs we had to handle (> 2- 106 vertices) shows 
that if we want to study larger systems we need global optimization techniques 
to automatically transform a verification problem into an easier one. This is par- 
ticularly true if values (data path) are to be considered. Studying the possibility 
of using global optimization techniques as in [Tro 95] to avoid state explosion 
will be our next step. 
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A Meije: Syntax and Semantics 

In this section, we give a brief presentation of the syntax and informal semantics 
of the CCS/Meije process algebra for reactive systems lAB 84]. More specifically 
we describe the subset of CCS/Meije we used in this paper to give our formal 
description of the ENEL Hydroelectric Power Plant in [ENEL 92]. We adopt the 
syntax used in the AUTO/MAUTO tools [dSV 89]. 
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The syntax of the calculus is based on a set of elementary and uninterpreted 
actions that  processes can perform and on a set of operators that  permit to build 
complex processes from simpler ones. The syntax permits a two-layered design 
of process terms.  The first level is related to sequential regular terms,  the second 
one to networks  of parallel sub-processes supporting communication and action 
renaming or restriction. 

- A c t  is the set of atomic signal names ranged over by alphanumeric strings. 
Such names represent emitted signals if they are terminated by "!" or re- 
ceived ones if they are terminated by "?" ; 

- v denotes a special action not belonging to Act.  Action r representes the 
unobservable action (to model internal process communications); 

- Actr  = Ac t  U {v}, ranged over by a, denotes the full set of actions that  a 
process can perform; 

- X, ranged over by X, is the set of term variables. 

The following grammar generates all regular terms, ranged over by R, and 
all network terms, ranged over by P: 

R : : - - s t o p [ X  [ a : R [ R + R [ l e t  r e e X = R [ a n d X - -  R ] i n X  

P ::= R [ P / / P I  P \ a  I P [ a / b ] [ l e t  X = P [and X -- P] in  X 

where [...] denotes an optional and repeatable part of the syntax. 

We give an intuitive semantics for the above constructs: 

- s t o p  is the process which does nothing; 
- a : R is the term that  first executes action a and then behaves like R; 
- R + R is the nondeterministic composition between two regular terms; 
- the construct X -- R bounds the process variable X to the term R; then the 

le t  r e c  construct allows recursive definitions of processes; 
- P / / P  is the parallel composition between two network processes; 
- P \ a  behaves like P apart from action a that  can only be performed within 

a communication; 
- P[a/b] behaves like P apart from action b that is renaimed with a; 
- the construct X = P bounds the process variable X to the network P; the 

let construct bounds nonrecursive definitions of process variables. 

See lAB 84] for a more complete and formal description of Meije. 


