
A u t o m a t i c Verification of a Hydroe lec tr ic Power
Plant 1

Rosario Pugliese
Dip. di Scienze dell'Informazione

Universit$ di Roma "La Sapienza"
via Salaria, 113, 00198 Roma, Italy

pugliese�9 uniromal, it

Enrico Tronci
Dip. di Matematica Pura ed Appl.

Universit~ di L'Aquila
Coppito, 67100 L'Aquila, Italy

tronci~univaq, it

Abstract . We analyze the specification of a hydroelectric power plant
by ENEL (the Italian Electric Company). Our goal is to show that for
the specification of the plant (its control system in particular) some given
properties hold.
We were provided with an informal specification of the plant. From
such informal specification we wrote a formal specification using the
CCS/Meije process algebra formalism. We defined properties using p-
calculus. Automatic verification was carried out using model checking.
This was done by translating our process algebra definitions (the model)
and #-calculus formulas into BDDs.
In this paper we present the informal specification of the plant, its formal
specification, some of the properties we verified and experimental results.

1 Introduction

Computer controlled systems are more and more widespread. In safety critical
applications this situation calls for formal verification of correctness with respect
to the given specifications. Because of the cost of modifying the finished product
it is essential that design errors are detected as early as possible in the design
process. For this reason formal verification is also used to guarantee that for the
specification of the plant some given properties hold.

Development of formal methods should go hand in hand with realistic case
studies. Case studies are useful to assess the applicability of a verification tech-
nique and to guide research on new verification techniques.

In this paper we report on the analysis of a hydroelectric power plant by
ENEL (the Italian Electric Company). Our goal is to guarantee that for the
specification of the plant some given properties hold. We were provided with an
informal specification of the plant [ENEL 92]. From this we derived a formal
specification written using the CCS/Meije lAB 84] process algebra formalism. A
previous version of such a formal specification was given in [LP 94]. To define
properties we used p-calculus (see, e.g., [BCMDH 92]) since it is a clean and
expressive logic. Automatic verification was carried out using model checking.

1 This work has been partially supported by the EUROFORM network and MURST
funds.

426

This was done by translating process algebra definitions (the model) amt p-
calculus formulas into Binary Decision Diagrams (BDDs, see [Bry 86]).

In this paper we present the informal specification of the plant, part of its
formal specification, some of the properties we verified and experimental results.
A full version of the formal specification is in [PT 95].

The main difficulties we had to face were: ambiguities in the informal speci-
fication and state explosion (our system has about 1052 states).

We succeeded in automatically verifying relevant properties of the formal
specification. Our experiments were carried out on a SUN Sparc LX with 72MB
RAM. Verification required building BDDs with up to 2.106 vertices. We needed
174 boolean variables to code the state of the system and 15 boolean variables
to code the actions of the system. Thus the transition relation (present state,
action, next state) of the overall system had 363 boolean variables. We did not
have problems in building such transition relation, but its size forced us to be
very careful during verification. In particular to avoid running out of memory
during automatic verification a careful choice of the logic formula representing
the property we wanted to verify was necessary.

The rest of the paper is organized as follows. In section 2 we give an in-
formal description of the plant. In section 3, using CCS/Meije, we present a
formal description of part of the plant. In section 4 we give p-formulas for some
of the formal properties we verified. In section 5 we give experimental results.
In appendix A we define the syntax and sketch the operational semantics of
CCS/Meije.

2 T h e c a s e s t u d y : a n i n f o r m a l d e s c r i p t i o n

Our reactive system is composed of a hydroelectric power plant and its con-
trol system. The control system drives the engines producing electrical power,
handles the basin sluices, checks for safe working of the plant and monitors the
water level in the basin. Moreover the control system interacts with an opera-
tor which solves by hand critical situations arising in the plant administration.
The informal specification of the overall system was provided by ENEL (the
Italian Electric Company) in [ENEL 92]. Such informal specification was quite
ambiguous and incomplete. Since we wanted to study the power of CCS/Meije
as a specification methodology we simplified the original specification by using
small abstract domains as data values. Ambiguities were also removed. Never-
theless the resulting case study is meaningful and nontrivial. In the rest of this
section we present such simplified version of the original specification provided
by ENEL.

The environment of the control system includes a hydroelectric power plant,
an operator and the aspects of the surrounding environment that have a promi-
nent influence on the plant. The plant is composed of a catch basin and a power
plant. The power plant is composed of energy production engines and a penstock
to ensure a pressurized water flow from the basin to the power plant. Each energy
production engine has a generator and an embedded controller.

427

The power plant can be directed by the operator (manual administration) or
by the control system (automatic administration). The main goals of the control
system are:

- Managing hydraulic resources so that the plant produces as much power as
possible;

- Obtaining the best efficiency from production engines during daily produc-
tion periods (which, in turn, are transmitted by the operator);

- Saving up hydraulic power outside of daily production periods without vio-
late plant constraints (e.g. do not exceed minimum and maximum levels in
the basin).

The control system achieves these goals by interacting with the power production
engines and the basin sluices. In the following, we will ignore the interaction
with the sluices and we will only concentrate on interaction with the production
engines.

2.1 The catch b a s i n

The shape and dimensions of the basin are known and, for the sake of simplicity,
we will suppose that the water volume fluctuation can be computed by means of
the water level fluctuation, that, in turn, is evaluated by means of a transducer.
Hence, in the following, we will make no distinction between water volume or
level in the basin. Water level increases due to rain and inflow of water through
affluents. It decreases due to overflow from barrages and outflow through the
penstock connecting the basin to the engines. Some water levels have a particular
importance for the working of the plant. They are:

V M S (*) overflowing level;
V M L maximum working level;
INT_I (*) maximum working level when the transducer is broken;
INT_2 (,) minimum working level when the transducer is broken;
V m l minimum working level;
V M I N (*) minimum capacity level.

Some sensors send signals to the control system when one of the levels labelled
with �9 is reached by the surface of water. When the transducer is broken it is
possible to control the plant, even if in a less accurate way, using such sensors.

2.2 The hydroe lec t r i c p o w e r p l a n t

The hydroelectric power plant is formed by some energy production engines,
each of which contains a generator and an embedded controller.

428

The g e n e r a t o r A generator is characterized by a finite state automaton whose
states can be partioned into two classes: stable states and unstable states. Here
are the generator states accordingly to such partition.

- stable states:

S (stopped): the generator is stopped;
G (generating): the generator is working;
B t (temporary block): the generator is blocked because of a fault that can

be automatically removed (i.e. without the intervention of the operator);
Bp (persistent block): the generator is blocked because of a failure that

only the operator can fix. After removing such failure the operator has
to restart the generator and signal to the control system that recovery
has taken place.

- unstable states:

sTg: transition state from S to G (representing the situation in which the
generator is going from state S (stopped) to state G (working));

gTs: transition state from G to S (representing the situation in which the
generator is going from state G (working) to state S (stopped));

gTb t : transition state from G to Bt (representing the situation in which
the generator is going from state G (working) to state B t (temporary
block));

gTbp: transition state from G to Bp (representing the situation in which
the generator is going from state G (working) to state Bp (persistent
block)).

To each generator the control system can send two kind of commands:

- state commands: s t a r t / h a l t to change the state of the generator;
- position commands: i n c / d e c to increase/decrease electric power production.

During the generation phase (state G), a generator may produce different
amounts of power at different times, accordingly to the energy production plan.
The working point of a generator can be adjusted on different positions. Each
position selects a different amount of water intake and thus a different amount
of power that can be produced in a period of time.
A generator can make the following transitions:

- from S to sTg when it receives s ta r t and from sTg to G when the command
is executed;

- from G to gTs when it receives hal t and from gTs to S when the command
is executed;

- from G to g T b t when a temporary fault occurs and from g T b t to B t when
the generator stops;

- from G to g T b p when a failure whose repairing needs the operator inter-
vention occurs and from g T b p to Bp when the generator gets stuck because
of such failure;

- from Bt to S when the trouble causing the block disappears;
- from Bp to S when the operator has repaired the blocked generator.

429

The c o n t r o l l e r The controller behaves as a transparent interface between the
control system and the generator. Indeed, the control system sends a command
to the controller and this one transmits the command to the related generator
and sends to the control system one of the following signals:

- The generator state is changing (until the expected state is reached). This
happens when the generator has received a command asking for a change of
state.

- The generator has not correctly changed its generation position. This hap-
pens when the generator has received a command asking for a change in the
generation position and the generator has not successfully executed it.

The controller accepts and sends one command at a time. Moreover, for
hydraulic reasons, the control system can send only one kind of command (change
state or change position) at a time. This means that at most one generator at
a time may execute fa command to change state and at most one generator at a
time may execute a command to change position.

With respect to the control system, the controller appears in one of two
possible states:

- a v a i l a b l e , when it is prepared to automatic administration: it accepts com-
mands from the control system and transmits them to the generator;

- n o n a v a ~ l a b l e , when the generator is directed by the operator or a (temporary
or persistent) block happened: in such a case the controller will ignore the
commands from the control system.

In te rac t ions be tween power p r o d u c t i o n eng ines , c o n t r o l sys t em and
o p e r a t o r The control system handles the generator and its controller as one
single entity. That is the control system interacts only with the controller which
then transmits commands to the generator.

A production engine goes from the state nonavailable to the state available
when the controller receives an automatic administration signal and no block
(temporary or persistent) occurred. A production engine goes from available to
nonavailable when a manual administration signal arrives or a block occurs.

After a temporary block, a generator is available again as soon as a varia-
tion in the storage curve (see section 2.3: Governing task) is expected. After a
persistent block, a generator is available again only if explicitly required by the
operator (following recovery of the generator).

Hand l ing of s ta te commands The signal busy is the answer of the controller
to a state command. If the control system does not receive such answer it tries
again sending the command at most twice. If both trials fail, it sends ha l t
without verifying its outcome and declares that generator is out of order by
sending a signal alarm_gr_bad to the operator. After having received a signal
busy (following a state command), each minute for at most five minutes, the
control system checks if the generator has reached the expected state. If this is

430

the case then the control system sends a position command accordingly to the
storage curve (see section 2.3: Governing task), otherwise, at the end of the fifth
minute, it sends hal t without verifying the outcome and declares that generator
is out of order by sending a signal alarm_gr_bad to the operator.

Hand l ing of pos i t ion c o m m a n d s Position commands are sent each sampling
time (see section 2.3: Activities of the control system) or, if necessary, after a
successful state command. A minute after a position command has been sent,
the control system checks the actual position of the generator. If such position
is not the one expected, the control system tries again sending the command
for at most two times and waiting for a successful outcome each time. If the
second trial also fails, the system sends hal t without verifying the outcome and
declares that generator is out of order by sending a signal a larm_gr_bad to the
operator.

2.3 The cont ro l sy s t em

Act iv i t ies of the control sy s t em All control system activities are timed: the
operations are executed each minute or each five minutes or each sampling time.
For example, each minute or each five minutes, the control system records the
evaluations of some quantities, and, each sampling time, computes their expected
values and takes the appropiate actions.

P a r a m e t e r s When the control system is activated, it receives the initialization
values for parameters from the operator. These parameters are: water level in the
basin, sampling time, time, daily production periods and connection priorities of
generators.

Work ing The control system usually monitors the basin and the power plant;
but, if it receives a managing consent from the operator, then it has also to
actively manages them.

At any moment the control system can receive data from the operator (e.g.
time and water level), a managing agreement or its annulment, and a signal
saying that a bad generator has been repaired.

Mon i to r ing t ask The monitoring task is reading and updating periodically
data about water level, state and position of generators.

Govern ing task The governing task consists of the following operations:

- check if there exist available generators;
- check the state and position of each available generator;
- if there is at least a generator available then

�9 compute the basin fluent discharge;

431

�9 recompute the production program by using the data previously ac-
quired.

We now examine in more detail the above mentioned activities. When the
control system is enabled to direct the plant, it computes a production program
and then, conforming to such program, establishes the amount of power the plant
must produce during the day and sends the appropriate commands to genera-
tors. Production program inputs are the initialization values for parameters and
fluent discharge. Fluent discharge is the average value of the variation of water
volume in the basin (owing to rain and affluents) as recorded in the previous
24 hours. Production program output is the storage curve, that is a set of pairs
(volume, time) specifying the average value of water volume each sampling time.
To each pair (volume, time) is associated information about the expected state
and position of generators.

The production activity of the plant should maintain water level in the in-
terval between Vml and VML. This is the normal working range. If fluent dis-
charge deviates from the expected values and the water level is not in the normal
range then the control system has to take measures in order to drive the level
back into the normal range. In such a case, it sends a signal alarm_level_bad
to the operator, leaves the daily program for power production and follows a
program trying to comply with the expected variations of water volume. In par-
ticular the control system estimates volume fluctuation in the next time interval
on the basis of fluent discharge in the previous sampling time. It does not use
the average fluent discharge from the previous 24 hours since in this situation
it is not a reliable forecast. Finally the control system establishes a power (not
greater than the maximum one the plant admits) to drive the volume back into
the normal working range and sends appropriate commands to the generators.

INT_2 and INT_I are used in place of, respectively, Vml and VML when
the transducer is broken.

T i m e d act iv i t ies There is a clock that sends periodic timeout signals to some
of the processes forming the system. Such timeouts are sent: each minute, each
five minutes and each sampling time.

Act iv i t i e s accompl i shed every m i n u t e

- Update the output buffer towards the operator. If such updating is not suc-
cessful then send a signal alarm_bo_broken to the operator and go on with
the administration.

- Read and update availability of generators.
- Check the result of possible state or position commands previously sent.

Act iv i t i e s accompl i shed every five minutes

- Read transducer and sensors.

432

- If water level is out of the normal working range, send alarm_out_workAnt
and recompute the storage curve (using the fluent discharge evMuated in the
previous sampling time instead of the daily average value (see section 2.3:
Governing task)).

- If the level fluctuation estimated by the transducer disagrees with the sig-
nals coming from sensors, send a signal a la rm_transducer_broken and
compute again the storage curve using INT_2 and INT_I as minimum and
maximum levels.

- If the level is VMS (overflow), order to all available generators to produce
the maximum power.

- If the level is V M I N (minimum level) halt all generators.
- Obtain new parameter values from the operator.

A c t i v i t i e s accompl ished every sampling per iod

- Acquire the value of the level in the basin and behave accordingly to the
storage curve (see section 2.3: Governing task).

- Send state and position commands to the available generators to obtain a
situation in agreement with the one prescribed by the storage curve.

- Compute fluent discharge in the sampling time and update the mean flow in
the last 24 hours.

3 Formal specification

In this section we present the CCS/Meije formal specification for the informal
specification in section 2. A description of CCS/Meije is in appendix A. With
respect to the informal description in sec. 2 we make the following assumptions.

- We assume that the number of production engines is 3 (no value is specified
in the informal description in section 2).

- To simplify clocking we assume that the sampling time is about five minutes.
Note that sampling time is not specified in the informal description in sec.
2.

- We assume that system components synchronize without exchanging values.
This means that we are not considering value dependent computations. Note
that no numerical value is defined in the informal description in section 2.

In the rest of this section we only present the CCS/Meije term we have
used to formally define the specification for the generator in section 2.2. For the
interested reader the complete formal specification is in [PT 95].

Process Generator in figure 1 models the generator described in section 2.2.
Process Generator defines a finite state automaton (see figure 2) with initial
state S. Transitions are defined with equations defining present-state, action,
next-state. Actions have form a? (input action) or a! (output action). Processes
communicate using synchronization. Thus a process can execute action a? (a!)

433

Generator = let rec {
S = startGr?: sTg + stopped!: S + operator?: G

and G = noise!: gTbt + lock!: gTbp + haltGr?: gTs + incGr?: G + decGr?: G
-4- producing!: G + act_gr_pos!: G + repaired_generator?: S
+ operator?: S + operator?: Bt + operator?: Bp

and Bt = noisegone!: S +broken]: Bt + r: Bt
+ repaired_generator?: noisegone!: S + operator?: S

and Bp = repaired_generator?: (lockgone!: S -4- operator?: S)
+ locked!: Bp + r: Bp

and sTg = startOk!: G + r: sTg + repaired_generator?: S
and gTbt = ko!: Bt
and gTbp = ko!: Bp
and gTs = haltOk]: S + r: gTs + repaired_generator?: S

} i n S .

Fig . 1. Process Generator

only if some other process can execute action a! (a?). E.g. equation "gTbt =
ko!: Bt" , says that if we are in state gTb t then performing output action ko we
reach state Bt. Nondetermininsm is also possible. E.g. equation "S - s tar tGr?:
sTg + stopped!: S + operator?: G" says that from state S we can: perform input
action s t a r tGr and reach state sTg or perform output action stopped and reach
s tate S or perform input action operator and reach state G. Action 7" models an
action tha t is internal to the process performing it. Thus it is invisible to the
other processes. We usually use 7"'s to model stuttering.

In the following we show how the definition of process Generator in this
section links to the informal specification in section 2.2 (The generator). The
informal meaning of all states has been already given in section 2.2 (The gener-
ator). The intended meaning of the signals (actions) is defined in the following.

- s t a r t G r requires the generator to start . This happens via a synchronization
between process Generator and the process modelling the control system.

- h a l t G r requires the generator to halt. This happens via a synchronization
between process Generator and the process modelling the control system.

- i n c G r requires the generator to increase the amount of produced power. This
happens via a synchronization between process Generator and the process
modelling the control system.

- d e c G r requires the generator to decrease the amount of produced power.
This happens via a synchronization between process Generator and the pro-
cess modelling the control system.

- s t a r t O k signals to the process modelling the control system that the gen-
erator has begun producing power.

- h a l t O k signals to the process modelling the control system that the gener-
ator has stopped producing power.

- n o i s e signals to the process modelling the control system that a t empora ry
failure has occurred and that the generator is going to stop.

434

18!

12! ~ 10!,137

15?

121,13?
5!,15?

157

13?

I I ! . " - ' (8!

1],3?,6?,14!

Legend : 1 -- act_gr_pos, 2 ---- broken, 3 -- decGr, 4 -- haltGr, 5 -- haltOk,
6 -- incGr, 7 ~ ko, 8 -- lock, 9 - locked, 10 - lockgone, 11 - noise, 12 _-- noisegone,
13 - operator, 14 _= producing, 15 -- repaired_generator, 16 -- startGr, 17 - star-
tOk, 18 -- stopped, 19 =_ r.

An edge labelled 11,. . . , lk represents k edges labelled, respectively, 11,.. �9 lk.

F i g . 2. Process Generator A u t o m a t o n

- l o c k signals to the process modell ing the control sys tem tha t a pe rmanen t
(i.e. requiring opera tor ' s intervention) failure has occurred and tha t the gen-
era tor is going to stop.

- n o i s e g o n e signals to the process model l ing the control sys tem tha t t empo-
ra ry failure has disappeared and tha t the generator is ready to s tar t produc-
ing power again.

- l o c k g o n e signals to the process modell ing the control sys tem tha t pe rma-
nent failure has been repaired and the generator is ready to s tar t p roducing
power again.

- b r o k e n signals to the process model l ing the control sys tem tha t the gener-
a tor is not producing any power at all due to a t e m p o r a r y failure.

435

- locked signals to the process modelling the control system that the generator
is not producing any power at all due to a permanent failure.

- s topped signals to the process which has the job of sending commands to
generators and to the process modelling the control system that the generator
is not producing any power at all.

- p roduc ing signals to the process which has the job of sending commands to
generators and to the process modelling the control system that the generator
is producing some amount of power.

- aet_gr_pos signals to the process modelling the activity of management of
the produced power and to the process modelling the control system the
amount of power the generator is producing. We do not use a value-passing
calculus. Thus action act_gr_pos is an abstraction for the real actions in
which values are involved.

- ko is a visible (output) signal. That is process Generator does not have to
synchronize with another component of the system in order to execute it.
Action ko is used to signal (e.g. to a human operator) that something wrong
happened and the generator is going to stop (temporarily or permanentely).

- ope ra to r is a visible (input) signal. That is process Generator does not have
to synchronize with another component of the system in order to execute it.
Signal operator is used to represent the possibility that the generator state
changes because of a request coming from outside of the system (i.e. the
operator).

- repa l red_genera tor is a visible (input) signal. It is used to represent the
fact that the generator has been repaired by the operator.

In the following we comment each of the equations defining process Generator
in figure 1.

From state S (stopped) the generator can perform the following actions.

- s t a r t G r ? When this signal is received the generator goes to unstable state
sTg.

- s topped! The generator can output signal stopped and go (i.e. stay) to state
S.

- ope ra to r? When this signal is received (from the operator) the generator
goes in state G.

From state G (generating) the generator can perform the following actions.

- noise! Due to a temporary failure the generator goes to unstable state gTbt.
- lock! Due to a persistent failure the generator goes to unstable state gTbp.
- h a l t G r ? The generator is required to stop. Thus it goes to unstable state

gTs.
- i ncGr? When signal incGr is received the generator has to increase the

power which it is producing going to another generation state. Remember
that we abstract away from any kind of value thus we represent this situation
by using state G again.

4 3 6

- decGr? When signal incGr is received the generator has to increase the
power which it is producing going to another generation state. Remember
that we abstract away from any kind of value thus we represent this situation
by using state G again.

- producing! The generator signals it is producing and stays in the same
state.

- act_gr_pos! The generator signals the amount of power which it is producing
and stays in the same state. Since we abstract away from any kind of value
we represent this situation by using only a signal act_gr_pos.

- repai red_genera tor? The generator receives (from the operator) signal re-
paired_generator and goes to the state S.

- opera to r? This (input) signal represents the possibility that the generator
is managed by the operator. After receiving this signal the generator can go
in one of states G, Bt or Bp.

From state Bt (temporary block) the generator can perform the following actions.

- noisegone! The generator has recovered from a temporary failure and goes
to state S.

- broken! The generator signals it is not producing due to a temporary failure
and stays in the same state.

- r The generator performs invisible action r and stays in the same state.
- repai red_genera tor? The generator signals that it has been repaired (by

the operator) and goes to an anonymous state from which it can perform
only action noisegone! going to state S.

- ope ra to r? The generator can change state going to state S by perform-
ing the action operator? which represents the possibility the generator is
managed by the operator.

From state Bp (permanent block) the generator can perform the following ac-
tions.

- repa i red_genera tor? The generator has been repaired (by the operator)
and goes to an anonymous state from which it can perform either action
lockgone! going to state S or action operator? going to state S.

- locked! The generator signals it is not producing due to a persistent failure
and stays in the same state.

-- 7" The generator performs invisible action ~" and stays in the same state.

From unstable state sTg the generator can perform the following actions.

- s ta r tOk! The generator outputs signal startOk and goes to state G (gener-
ation).

- v The generators performs invisible action r and stays in the same state.
- repa i red_genera tor? The generator receives (from the operator) signal re-

paired_generator and goes to the state S.

437

From unstable state gTBt the generator can perform only the output action ko!
and go to state Bt.
From unstable state gTBp the generator can perform only the output action ko!
and go to state Bp.
From unstable state gTs the generator can perform the following actions.

- h a l t O k ! The generator signals it is going to halt and go to state S.
- r The generator performs invisible action ~- and stays in the same state.
- r e p a i r e d _ g e n e r a t o r ? The generator receives (from the operator) signal re-

paired_generator and goes to the state S.

4 P r o p e r t i e s

4.1 Bas ic de f in i t ions

We carry out automatic verification using (BDD based) model checking on the
Boolean Domain Boole = (0, 1}. Thus, as far as automatic verification is con-
cerned, each property is represented with a computation on boolean functions
(namely those defining the transition functions of the processes). One way of
defining such computations is by using p-calculus. Many temporal logics can be
uniformly translated into p-calculus (see [BCMDH 92]). E.g. temporal operators
are just p-terms. Thus temporal logics can also be used to define properties in
our setting. Note, however, that in general there are many p-terms represent-
ing the same temporal operator. Thus using directly p-calculus rather then a
temporal logic allows a finer control on the verification process. In our case this
was essential to succesfully complete our verification task. To define properties
we use p-calculus as defined in [BCMDH 92]. Roughly speaking we can say that
p-calculus on a Boolean Domain can be seen as First Order Logic on a Boolean
Domain augmented with the least fixpoint operator p. In the following symbol
= denotes syntactic equality.

We use vectors of boolean variables to represent actions and states. We usu-
ally denote boolean vectors with capital letters (e.g. X, Y). Let X - x l , . . . Xk,
and Q be a binding operator (e.g. 3, V, ~). We write Q X for Q x l , . . . x k . Let
Y -- y l , . . . Y k and op be a binary boolean operator (e.g. V, A, =). We write
(X op Y) for ((x 1 OR Yl) A ...(Xk oi9 Yk)). We write F(~gl,. . .xm) to denote
a formula which free variables are among x l , . . . x ,~ . Moreover we denote with
F (t l , . . . t i n) the formula obtained from F (x l , . . . x , n) by simultaneosly substi-
tuting variables xl, �9 .. xm with terms t l , . . , tin.

To use model checking we need to represent a process algebra as a p-calculus
model. We do this as in [EFT 91]. We use boolean vectors of size r (= 15) to
represent actions and boolean vectors of size n (= 174) to represent states. We
represent the initial state with a boolean vector having all components equal
to 0. Thus the set of initial states (a singleton) is represented by the formula
S 0 (~ 1 , . . . ~) =- (xl = 0) A . . . (~ , = 0).

The transition relation of the overall system is represented with a predicate
symbol S with arity r + 2 * n (= 363). Thus S (X , A, X ') holds iff from state X
performing action A it is possible to reach state X'.

438

Because of the size of the BDD representing S time/space performance of
automatic verification of a property strongly depends on the logic formula we
choose to represent such property. To speed up teachability analysis it was our
intention to use the iterative squaring technique in [BCMDH 92]. However we
could not follow such approach because of memory overflow. We saved memory
space (at the expense of computation time) by representing our properties with
carefully chosen logic formulas. In particular we avoided building fixpoints of
predicate symbols with arity greater than, say, r + n(= 15 + 174 = 189). Lack
of space prevents us from illustrating all of the properties we verified. In the
following we give the logic formulas we used to define and automatically verify
some of the properties we studied. This should be sufficient to illustrate our
approach.

It will be useful to consider the set of states reachable in one step from a given
state. Such set can be represented with the formula St(X, X') =_ 3A S(X, A, X').

We will be interested in the set of states reachable from a given state without
performing a given action, say B. Such set can be represented with the formula
S2(B, X, X') =_ 9A (-~(A = B) A S(X, A, X')).

Let V(X) be a formula representing a set of states. The set of states
reachable from a state satisfying V(X) is the least solution to the fixpoint
equation (unknown: G) G(X) = (V(X) V ~Z[G(Z) A SI(Z,X)]). Such so-
lution can be denoted with the #-calculus formula G(X) defined as follows:
G(X) = #g[AX[V(X) V 3ZIg(Z) A SI(Z,X)]]](X). E.g. the set V0 of states
reachable from the initial states can be represented with the formula GO(X)
defined as follows: G0(X) - ~g[~X[SO(X) V 3g[g(g) A Sl(Z, X)]]](X).

Let A be an action. The set H(A) of states from which action A will be
performed on at least one computation can be described with the formula
S3(A, X) - ~g[~X[3Z[S(X, A, Z) V (Sl(X, Z) A g(A, Z))]]](X).

We will need to observe synchronizations between processes. To this end we
slightly extend CCS/Meije by considering actions of the following forms: a !, a ?
and a t . Thus when two processes synchronize on action a we will be able to
observe aT instead of just r (as in CCS/Meije). In the following we represent
actions a !, a ? and ar with, respectively, boolean vectors (of size r) a_out , a_.in
and a_tau.

4.2 A safety property

We are now ready to define the first property we will study here. It is a safety
property. Its informal statement is:

If a generator is out of order because of a persistent block then that
generator will not be used until the operator has repaired it.

Using actions the above property (for generator 1) can be expressed as fol-
lows. If the system performs the following actions: ko_l_in (generator 1 is out of
order), l ocked_ l_ tau (the system has detected that generator 1 is out of order)
noav i l ab l e_ l_ t au (generator 1 is declared unusable for automatic administra-
tion) then action ava i lab le_ l_ tau (generator 1 is available again for automatic

439

administration) cannot be performed until action repa i red .genera to r_ l_ in
(the operator repaired generator 1) is performed.

In the following we build a formula describing such property.
The set V0 of states reachable from the initial state can be represented with

the formula GO(X) defined in section 4.1. The set V1 of states reachable from
V0 by performing action ko_l_in is represented with the formula GI(X) defined
as follows: a l (X) ~ 3z[ao(z)A S(Z, ko_ l Jn , X)].

The set V2 of states reachable from V1 is represented with the formula
G2(X) defined as follows: G2(X) _= #g[AX[GI(X) V 3ZIg(Z) A SI(Z, X)]]](X).

The set V3 of states reachable from V2 by performing action loekedZl_tau
is represented with the formula G3(X) defined as follows: G3(X) = 3Z[G2(Z) A
S(Z, locked_l_tau, X)].

The set V4 of states reachable from V3 is represented with the formula
G4(X) defined as follows: G4(X) -/~g[;~X[G3(X) V 3Z[g(Z) A SI(Z, X)]]](X).

The set V5 of states reachable from V4 by performing action
nonavai lab le_l_ tau is represented with the formula G5(X) defined as follows:
G5(X) = 3Z[G4(Z) A S(Z, nonavailable_l_tau, X)].

The set V6 of states reachable from V5 without performing action
repal red_genera tor_l_ in is represented with the formula G6(X) defined as
follows:
G6(X) =- pg[AX[G5(X) V~Z[g(Z)AS2(repaired_generator_l i n , Z, X))]](X).

The set V7 of states reachable from V6 by performing action
available__l_tau is represented with the formula G7(X) defined as follows:
GT(X) = 3Z[G6(Z) A S(Z, available_l_tau, X)].

Our safety property requires that V7 be empty. This is expressed by the
formula G8 defined as follows: G8 ~ ",3XGT(X).

To verify our property we have to check that G8 holds. We do this by com-
puting a BDD representation for G8 and testing that the result is the (unique)
BDD representing the boolean function identically equal to 1.

4.3 A l iveness p r o p e r t y

The second property we study is a liveness property. Its informal statement is:

If the plant is managed by the control system and a persistent block occurs
on generator 1 and the operator repairs it then generator 1 will become
usable again.

Using actions the above property can be expressed as follows. If the system
performs the following actions: c o n s e n t J n (the plant is managed by the control
system), locked__l_tau (generator 1 is unusable because of a persistent block),
repai red_genera tor_l_ in (generator 1 has been repaired by the operator) then
action avai lable_l_tau (generator 1 is usable) will be performed on at least one
computation.

In the following we build a formula describing such property.
The set V0 of states reachable from the initial state can be represented with

the formula GO(X) defined in section 4.1. The set V1 of states reachable from

440

V0 by performing action consent_in is represented with the formula GI(X)
defined as follows: GI(X) _= 3Z[GO(Z) A S(Z, consent_in, X)].

The set V2 of states reachable from V1 is represented with the formula
G2(X) defined as follows: G2(X) = pg[AX[GI(X) V BZ[g(Z) A SI(Z, X)]]](X).

The set V3 of states reachable from V2 by performing action locked_I_tau
is represented with the formula G3(X) defined as follows: G3(X) =_ 3Z[G2(Z) A
S(Z, locked_l_tau, X)].

The set V4 of states reachable from V3 is represented with the formula
G4(X) defined as follows: G4(X) -- #g[AX[G3(X) V 3ZIg(Z) A SI(Z, X)]]](X).

The set V5 of states reachable from V4 by performing action
repaired_generator_l_in is represented with the formula G5(X) defined as
follows: G5(X) =- 3Z[G4(Z) A S(Z, repaired_generator__tAn, X)].

The set V6 of states reachable from V5 is represented with the formula
G6(X) defined as follows: G6(X) _-- pg[AX[G5(X) V 3Zig(Z) A SI(Z, X)]]](X).

The set V7 of states from which action avai lable_l_tau wilt be per-
formed on at least one computation can be represented with the formula
S3(available_l_tau, X) (see section 4.1).

Our liveness property requires that if a state is in set V6 then it is also
in set V7. This can be represented with the formula G8 =_ VX[G6(X) --+
$3 (available_l_tau, X)].

To verify our property we have to check that G8 holds. We do this by com-
puting a BDD representation for G8 and testing that the result is the (unique)
BDD representing the boolean function identically equal to 1.

4.4 One more property

The informal statement of this property is:

If the control system sends a signal to stop generator 1 then in at most 6
minutes either generator 1 is stopped or an alarm is sent to the operator.

A logic formula for such property can be obtained as in the previous sections.

5 Experimental Results

In this section we describe our experimental results. We represent process P
by representing, with BDDs, the transition relation of the automata defined by
P. The BDD representing a process is obtained (manually) from the CCS/Meije
syntax as illustrated in [EFT 91]. We only use standard BDD manipulation func-
tions. Thus any BDD package can be used to carry out automatic verification.
We used an in-house BDD package developed as part of a Boolean Functional
Programming language [Tro 95]. Our BDD package is similar to the one de-
scribed in [BRB 90], but we use shifted BDDs as in [MIY 90]. The main reason
to use an in-house BDD package is source code availability. This allowed us to
tune our package parameters to avoid running out of memory. We use a cache
size of 19,997 and a hash table size of 200,003 with a load factor of 10. Garbage

441

collection is called each t ime there is at least a deletable BDD vertex and BDD
size is greater than 2,000,030. This is the main reason for our long verification
times. In fact, after about half an hour of computat ion most of the computa t ion
t ime is spent doing garbage collection.

To convince ourselves that our formal specification was a faithful represem
tat ion of the given informal specification we ran experiments on subsystems of
the overall system. This was done by trying to verify suitable properties (e.g.
of set of reachable states, of admissible traces, . . .) for each subsystem. This
allowed us to find errors in the formal specification (i.e. our formal specification
did not correctly represent the considered subsystem) as well as in the formu-
lations of the properties we expected to hold. On the base of such experiments
we revised our formal specification. The formal specification thus obtained was
used to carry out the verification experiments (for the overall system) reported
in this paper.

We define properties with p-calculus formulas. We carry out au tomat ic verifi-
cation via model checking. Our model is the transition relation S (present state,
action, next state) of the overall system. We use 15 boolean variables a0 , . . . a14
to code actions. State coding requires 174 boolean variables: x0, . . .x173. Thus
S is a boolean function of 15 + 2 '174 = 363 boolean variables and represents
a system with about 1052 states. Variable ordering was as in [EFT 91], i.e.:
a0, �9 �9 �9 a14, x0, Y0, xl , Yl, �9 �9 �9 x 173, Y173, where Y0, �9 �9 Y173 are boolean variables rep-
resenting the "next state".

When using BDDs the state space size is not a good measure of complexity
since BDD size depends on the (symmetries of the) system transition relation
(not just on its arity). Nevertheless it is worth noting that our state space size
(1052) is quite big compared to usual academic examples and to other published
case studies in the process algebras area. E.g.: an 18 process Milner scheduler
has about 5 * 106 states (e.g. see [DB 95]); the alternating bit protocol (with
buffer capacity 4 x 2) has 18278 states (e.g. see [DB 95]); the security man-
agement system verified in [CRB 94] has 312 states. Moreover our system does
not have a symmetr ic structure (e.g. as Milner scheduler). Note however that
for hardware systems industrial applications larger than ours have been studied.
E.g. see [BCLMD 94, C GHJ LM N 95].

Given a BDD representation for S, verification of a p-calculus formula F
amounts to evaluation of F in model S. This is done as in [BCMDH 92].

Building a BDD representing S was possible for systems with up to 3 gen-
erators. Experimental results are in the left table of figure 3. However when we
try to automatical ly verify a property on a system with more than one gen-
erator we run out of memory. Thus to automatical ly verify the properties we
studied we simplify our system as follows. We assume that only one generator
is present in the system and that the overall system is working in automat ic
administrat ion mode. Note that our plant can only work in two administrat ion
modes: au tomat ic and manual. However the safety critical one is the automat ic
adminis trat ion mode.

Our experiments were carried out with a SUN Sparc LX with 72MB RAM.

442

Note that this is a relatively small (and easily affordable) machine when com-
pared with 512MB machines often used for automatic verification. Experimental
results for verification of the properties in section 4 are in the right table of figure
3. Column CPU gives the time spent verifying a property after a BDD repre-
sentation for the system has been built. Note that beside the above mentioned
semplification of the system our approach is completely automatic and does not
require any user expertise on the verification tool.

clocked_sys IICPUIM~• BDD size
i

1 generator 20 1,25i,627
2 generators 41 2,000,031
3 generators 289 2,611,348

~1 generator/automaticll CPUIMax BDD size l

[i
roperty section 4-2 ~ 2,000, 031]
roperty section 4.3 2,000,0311
roperty section 4.4 2,000,031]

Fig. 3. Experimental results on SPARC LX with 72MB RAM. CPU times are
in minutes.

6 C o n c l u s i o n s

We have shown a formal analysis of a specification for a hydroelectric power
plant. Starting from the informal specification we developed a formal one writ-
ten using the CCS/Meije process algebra. For such formal specification we auto-
matically verified that some given properties hold. We defined properties using
~t-calculus. Verification was carried out using model checking and BDDs.

Our experience shows that automatic verification of modest size plants is fea-
sible. However the size of the BDDs we had to handle (> 2- 106 vertices) shows
that if we want to study larger systems we need global optimization techniques
to automatically transform a verification problem into an easier one. This is par-
ticularly true if values (data path) are to be considered. Studying the possibility
of using global optimization techniques as in [Tro 95] to avoid state explosion
will be our next step.

Ack nowledgemen t s

We are grateful to anonymous referees for helpful comments on a previous version
of this paper.

References

[AB 84] D. Austry, G. Boudol, Algebre de processus et synchronisation, The-
oretical Computers Science, 1(30), 1984.

[BCLMD 94]

[BCMDH 92]

[Bry 86]

[BRB 90]

[CGHJLMN 95]

[CRB 94]

[DB 95]

[EFT 91]

[ENEL 92]

[LP 94]

[MIY 90]

[PT 95]

[dSV 89]

[Tro 95]

443

J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, D.L. Dill, Sym-
bolic Model Checking for Sequential Circuit Verification, IEEE Trans.
on Computer-Aided Design, Vol.13, N.4, pp. 401-424, Apr. 1994.
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Sym-
bolic Model Checking: 102~ states and beyond, Information and Com-
putation, 98, (1992).
R. Bryant, Graph-Based Algorithms]or Boolan Function Manipula-
tion, IEEE Trans. on Computers, Vol.C-35, N.8, Aug. 1986.
K.S. Brace, R.L. Rudell, R.E. Bryant, Efficient Implementation of
a BDD Package, 27th ACM/IEEE Design Automation Conference,
1995.
E.M. Clarke, O. Grumberg, H. Haraishi, S. Jha, D.E. Long, K.L.
McMillan, L.A. Ness, Verification of the Futurebus+ Cache Coher-
ence Protocol, Formal Methods in System Design, Vol.6, N.2, pp.
217-232, Mar. 1995.
O. Cherkaoui, N. Rico, A. Bernardi, Specification and Analysis of a
Security Management System, FME 94, LNCS 873, Springer-Verlag.
A. Dsouza, B. Bloom, Generating BDD Models]or Process Algebra
Terms, CAV 95, LNCS 939, Springer-Verlag.
R. Enders, T. Filkorn, D. Taubner, Generating BDDs for Symbolic
Model Checking in CCS, Proceedings of CAV'91, Lecture Notes in
Computer Science, 575, Springer-Verlag, 1991.
ENEL, Descrizione informale di un caso di studio tratto dalle speci-
fiche funzionali di un automatismo eoordinatore delle manovre degli
impianti idroelettrici, Centro di Ricerca in Automatica, Rapporto
Interno, Febbraio 1992.
S. Larosa, R. Pugliese, Using the specification language CCS/Meije
for a case study: a Software Control System of a Hydroelectric Power
Plant, Nota Interna B4-58, Istituto di Elaborazione dell'Informazione

- CNR, Pisa, 1994.
S. Minato, N. Ishiura, S. Yajima, Shared Binary Decision Diagram
with Attributed Edges for Efficient Boolean Function Manipulation,
27th ACM/IEEE Design Automation Conference, 1995.
R. Pugfiese, E. Tronci, Automatic Verification of a Hydroelectric
Power Plant, Research Report SI/RR - 95/15, 1995.
R. de Simone, D. Vergamini, Aboard Auto, Rapports Techniques 111,
INRIA, Sophia Antipolis, 1989.
E. Tronci, Hardware Verification, Boolean Logic Programming,
Boolean Functional Programming, Proceedings of LICS 95, IEEE
Computer Society.

A Meije: Syntax and Semantics

In this section, we give a brief presentation of the syntax and informal semantics
of the CCS/Meije process algebra for reactive systems lAB 84]. More specifically
we describe the subset of CCS/Meije we used in this paper to give our formal
description of the ENEL Hydroelectric Power Plant in [ENEL 92]. We adopt the
syntax used in the AUTO/MAUTO tools [dSV 89].

444

The syntax of the calculus is based on a set of elementary and uninterpreted
actions that processes can perform and on a set of operators that permit to build
complex processes from simpler ones. The syntax permits a two-layered design
of process terms. The first level is related to sequential regular terms, the second
one to networks of parallel sub-processes supporting communication and action
renaming or restriction.

- A c t is the set of atomic signal names ranged over by alphanumeric strings.
Such names represent emitted signals if they are terminated by "!" or re-
ceived ones if they are terminated by "?" ;

- v denotes a special action not belonging to Act. Action r representes the
unobservable action (to model internal process communications);

- Actr = Ac t U {v}, ranged over by a, denotes the full set of actions that a
process can perform;

- X, ranged over by X, is the set of term variables.

The following grammar generates all regular terms, ranged over by R, and
all network terms, ranged over by P:

R : : - - s t o p [X [a : R [R + R [l e t r e e X = R [a n d X - - R] i n X

P ::= R [P / / P I P \ a I P [a / b] [l e t X = P [and X -- P] in X

where [...] denotes an optional and repeatable part of the syntax.

We give an intuitive semantics for the above constructs:

- s t o p is the process which does nothing;
- a : R is the term that first executes action a and then behaves like R;
- R + R is the nondeterministic composition between two regular terms;
- the construct X -- R bounds the process variable X to the term R; then the

le t r e c construct allows recursive definitions of processes;
- P / / P is the parallel composition between two network processes;
- P \ a behaves like P apart from action a that can only be performed within

a communication;
- P[a/b] behaves like P apart from action b that is renaimed with a;
- the construct X = P bounds the process variable X to the network P; the

let construct bounds nonrecursive definitions of process variables.

See lAB 84] for a more complete and formal description of Meije.

