
The Incremental Development of Correct
Specifications for Distributed Systems

Stephan Kleuker 1 and Hermann Tjabben 2

1 FB Informatik, University of Oldenburg
P.O. Box 2503, 26111 Oldenburg, Germany

E-mail: kleuker@informatik.uni-oldenburg.de
2 Philips Research Laboratories Aachen

Weiflhausstra~e 2, 52066 Aachen, Germany
E-mall: tjabben@pfa.philips.de

Abs t rac t . Provably correct software can only be achieved by basing the
development process on formal methods. For most industrial applications
such a development never terminates because requirements change and
new functionality has to be added to the system. Therefore a formal
method that supports an incremental development of complex systems
is required. The project CoCoN (Provably Correct Communication Net-
works) that is carried out jointly between Philips Research Laboratories
Aachen and the University of Oldenburg takes results from the ESPRIT
Basic Research Action ProCoS to show the applicability of a more for-
mal approach to the development of correct telecommunications soft-
ware. These ProCoS-methods have been adapted to support the devel-
opment of extensible specifications for distributed systems. Throughout
this paper our approach is exemplified by a case study how call handling
software for telecommunication switching systems should be developed.

keywords: extension of existing formal methods, combination of methods,
incremental development

1 I n t r o d u c t i o n

During the last few years there has been an ever increasing demand for the fast
and flexible introduction of value-added services and new features into private
as well as into public telecommunications networks. Intelligent networks (IN),
personal communications, computer-supported telecommunications applications
(CSTA) are just a few areas from which these services are emerging. Adding
more and more services to the telecommunications network leads to a situa-
tion where not only the software part of the separate network components but
also the structure of the network is becoming increasingly complex. Today, it is
already difficult to maintain and to extend the systems. It becomes more and
more difficult to understand and to predict the behaviour of the system, e.g. in
situations when interactions between services occur.

Therefore it becomes a key issue to design communications system software
that provably - - not only arguably - - meets its requirements. Aim of the project
CoCoN (Provably Correct Communication Networks) is to support a stepwise

480

and verified development of communications systems from the requirement phase
over the specification phase to an implementation. The vision that we have in
mind is an engineering approach for the development of correct communications
networks.

The method presented here results from the project CoCoN, carried out
jointly by Philips Research Laboratories Aachen and the Department of Com-
puter Science at the University of Otdenburg since April 1993. CoCoN is based on
the ESPRIT Basic Research Action ProCoS (Provably Correct Systems) where
formal methods for the design of embedded, distributed real-time systems are
developed. CoCoN thus aims to show that ProCoS methods - - suitably adapted
- - can contribute to solve problems of industrial relevance.

CoCoN extends the ideas of ProCoS [1, 2, 5] with a method for the develop-
ment of extensible systems. An approach for the reuse and extension of proofs
(produced by model-checking or an interactive verification tool) is suggested.

In this paper we identify steps of a general methodology for the incremental
development of correct specifications for distributed systems. We show how sev-
eral individual results and techniques can be combined to a method. Full details
are suppressed in favour of an overview of the methodology. However, the formal
background is outlined in 14 figures.

To illustrate the typical design steps, a system which describes a simple
version of call handling is developed throughout the main text. A more detailed
elaboration of our approach can be found in [14]. At the top-level view the
system in our example consists of n telephones which are connected by a basic
switch (see figure 1). Each call shall be represented by a different process in the
network.

basic switch

Fig. 1. Architecture of the network

The next section gives a survey of the applied methods. Section 3 describes
the development of a first provably correct specification. The sections 4 and
5 describe how verified specifications can be decomposed and extended. The
conclusions contain a short summary and possible further steps.

2 Approach

The main steps of the design are sketched in figure 2 and can be described
as follows: The complete development begins with describing the main task of
the desired system. This task is analyzed and split into subtasks. Tasks can be
described in natural language. These tasks are structured as a set of informal

481

spe Sl
extension

decomposition

Fig. 2. Summary of the design steps

requirements. Then, informal requirements are translated into formal ones. A
system (or specification) is provably correct if and only if the system fulfils these
formal requirements.

The next step is the development of a first specification which already takes
into account the architectural idea, i.e. it specifies the components and the inter-
faces between them. It is then proven that this specification fulfils the require-
ments and is therefore provably correct.

At this point two cases have to be considered. Either this specification is
the final desired result and no changes are needed. Then this specification can
be transformed into correct code. Or the specification is an intermediate result.
Then, next possible steps are a decomposition of the components into sets of
smaller ones or an extension of the functionality. An extension begins with an
informal description of the changed behaviour of the system or one component.
Typical extension tasks have the form "The following sequence of actions shall
be possible, too". Here, the loop of the development from informal requirements
to a verified specification begins again. This loop leads to an incremental design
and therefore it is possible to start with the development of a very simple system

482

and to finish with a complex specification of a distributed system. Note that an
extension may also include that old requirements have to be changed.

The most time consuming part of the development is the verification of the
specifications against the formal requirements. Therefore a method is needed
which guarantees that not each new specification has to be verified again. This
is the basic idea of the so called transformational approach. Verified transfor-
mation rules (i.e. rules that preserve the correctness w.r.t, the requirements)
axe used for the system development (e.g. decomposition and extension). If such
a rule is applied it is guaranteed that the result of the application fulfils the
same requirements as the initial specification. Therefore, we only have to prove
the application conditions of the transformation rules and need not repeat the
complete verification. This approach is studied in the project ProCoS which
is the foundation of CoCoN. ProCoS emphasizes a constructive approach to
correctness, using verified transformations between requirements, specifications,
programs and machine code.

In CoCoN two different kinds of transformation rules are used. The first ones
are the fully behaviour (or semantics) preserving rules from ProCoS [29, 30].
The other transformation rules preserve only certain important requirements
like deadlock-freedom. Proofs that other requirements are fulfilled have to be
done again. But old proofs can be reused to a large extent because our proofs
annotate the specifications. Therefore it is possible to calculate the changes that
are needed for the proofs if the changes for the specifications are known.

The main reason why it is impossible to use only rules of the first kind is that
we are interested in extending the system in a way that changes its behaviour'.
This paper demonstrates how the transformational approach is used in a stepwise
design from an informal task description to the desired system.

We summarize the application of different kinds of transformation rules to-
gether with the technique of reusing proofs under the term Specification Engi-
neering.

3 A F i r s t V e r i f i e d S p e c i f i c a t i o n

3.1 F rom Informal Requirements to Formal ones

A correct program shall always be the final result of the development process.
But, what does correct or verified mean? To be more precise: a system or spec-
ification is correct with respect to certain requirements, if it is verified that the
program fulfils each requirement. So, the most important part in a formal system
development is the question how to get the right formal requirements to begin

with.
The following tasks are identified to come to an appropriate initial set of

requirements. First, we have to specify which kind of process structure is used.
This architecture is a basis for the informal requirements. Then the interfaces
(set of possible communications between the processes) are fixed. The informal
requirements are given in natural language and describe e.g. the interplay of

483

the processes. The next step is the translation of the informal requirements into
formal ones. Note that the initial set of requirements is changed in the subsequent
decomposition and extension steps.

It must also be taken into account tha t a bad set of requirements may lead to
a very complex development process or, even worse, to software with undesired
behaviour (if an important requirement is forgotten or formalized in the wrong
way). Therefore the requirement step is the part in the development process
where human faults occur most easily.

An important correctness criterion for requirements is also that of consis-
tency. A set of requirements is inconsistent if it is impossible for a specification
to fulfil the set. Informal requirements can be investigated by a human being
whether an inconsistency exists. For formal requirements it can be proven that
the requirements are consistent.

The process of finding requirements, called requirement engineering (see also
[27]), starts with an informal description of the desired system. Any kind of
description of the desired system ranging from oral descriptions to documents
from related projects can be important. Requirements of the form 'if this hap-
pens then this must not (has to or might) happen' and many more have to be
described. An intensive discussion is needed to come from an informal descrip-
tion to informal requirements. Informal requirements are simple sentences in a
reduced natural language that can be understood by customers and developers.
These requirements shall give a description of the initial system that we have
in mind as precisely as possible. They are developed by customer and developer
together.

For our example, based on the system components a first architectural con-
cept is fixed (see e.g. figure 1) which will be decomposed into more realistic
subsystems later. Our first simple system shall consist of n telephones connected
by one process, called basic switch.

A typical informal requirement for our call handling system is:

- If user i dials the number of j and gets a connect signal then he or she cannot
be connected with others than j .

In the next step we need to know which events are observed to formalize
the requirements. Our communications are related to messages from protocols
like DSS.1 (Digital Subscriber Signaling System No. 1). Table 1 lists the set of
communications for the originating site (the first letter of these communications
is therefore an 'O') and their informal meaning. The corresponding communica-
tions for the terminating part (starting with the letter 'T') are omitted.

The developer formalizes the requirements in a formal language which allows
the verification of the derived specifications. The customer needs to understand
the formal language to the extent that it can be guaranteed that customer and
developer are sure of an appropriate set of requirements. A requirement language
is needed that is easy to understand and in which it is possible to formalize com-
plex parts in small formulas. We use trace logic [32] (traces are finite sequences of
communications) as our requirement language. Trace logic is used because it is

484

from an originating site Tio~g to a process C a l l i - j that represents a call from i to j
inside the process n e t w o r k :

Osetup~
Oin f ormationi
Odiscon~
Odiscompl'~

(capital letter 0 for originating) initial message to the network
transmission of the complete number of the called party
originating site initiates call termination (~ for "from user")
originating site acknowledges a call termination signal from network
(indicated by ~)

from Calli-j to Tio , . iq :
Oaborti
Oalertingi
Oconnectl
Odiseon~
Odiscompl~

call is aborted by some reason like no free line or called site is busy
network indicates that it rings at terminating site
terminating site has gone off-hook
network indicates that terminating site has gone on-book
network acknowledges a call termination signal from originating site

From T j ~ m to C a l l ~ - j and vice versa the dual communication to the explained one.

Tab le 1. Communications of the first specification

quite easy to formalize given requirements abou t relations between communica -
t ions in such an expressive language. It is another advantage tha t the semantics
of our specification language (introduced in a following subsection) is also based
on t race logic. Verification boils down to reasoning in t race logic. An example of
a formalized requirement is given in figure 3.

Vtl, t2, i, j . (([X][tl.(Oin f ormationi, j).t2.0connectl / tr]
A t2 $ Comm(T~) e { e , Oalertingi})

t2 $ {Tconnectj } • ~)

(1)
(2)
(3)

This is a second order trace logic predicate with free variable X which stands for a
s imple trace predicate with one free variable tr, [t/tr] denotes the substitution of tr
with t, - $ - denotes the projection, Comm(Ti) denotes the set of communications of
Ti, e denotes the empty word (sequence).
The variables tr, tl and t2 range over traces, i.e. sequences of communications. The
predicate formalizes that (1) if terminal i calls terminal j after a trace tl and i gets a
connect signal after t2 and (2) there is at most one alert signal in between these two
communications w.r.t, terminal i then (3) terminal j has gone off-hook in between
these two communications. (The ~ in the second line denotes the possibility that j
goes immediately off-hook without alert signal.)
The typical structure of a requirement looks like:

V t l , . . . , t ~ �9 ((l [X l [t l . t 2 t ~ / t r]
h side_conditions(t1,..., tk))

desired_behaviour(tl, . . . , tk))

Fig. 3. An informal requirement formalized in trace logic

If the kind of requirements engineering as described in this paper should

485

be applied by engineers then it must be easy for them to write requirements.
Trace logic uses many mathematical symbols which look at the first glance quite
strange. It is necessary to change some parts of the syntax and /o r to add a
graphical representation to make the formulae more readable. Our approach
will be a 'semi-graphical' representation to support engineers. As mentioned
by Lamport [19] and others it seems to be impossible to describe each kind of
set of requirements and their combination with a graphical representation. The
graphics are either not powerful enough or one has to use too many different
symbols. Therefore we want to choose a presentation which supports the reader
to understand a requirement, but describes maybe only a subset of the expressed
behaviour. For the requirement explained in figure 3 a graphical presentation can
look like the diagram presented in figure 4.

t~
'~ /~ l I(Oinformationi, j)

/ k

t2

~.+Oalerting i

O c o n n e c t i

Comm(Ti)

{Tconnecti }

The figure shows the trace variables and their relation. The long horizontal line is
used to express implication ('=~z'). The left margin is used to describe the relations
and the right margin to describe the projections.

Fig. 4. Graphical representation of a requirement

3.2 F i r s t Specification

Our approach for this step can be summarized as follows: A superset of the
possible system behaviour is described with finite automata and is reduced by
examining the requirements to disable undesired behaviour. Finally, it is verified
that our specification fulfils the requirements. The following text explains these
steps in detail and shows how to come to a first specification for our example. It
also includes an introduction to the ProCoS-specification language SL [23, 25].

We start with a description of a superset of all possible traces for all pro-
cesses. Note that au tomata can only be used to describe a superset because their
expressive power (regular languages) are not powerful enough. Finite au tomata
(related to approaches like [11, 21]) are used to describe the behaviour of each
telephone and the switch. The automata are given in figure 5. Each communi-
cation is marked to show whether it is an input (> c) or an output (c >).

Every automaton starts in its initial state, marked by an initial arrow at the
top. A communication can only happen if it is possible as the next communi-

486

Ti orig ~(
(terminal - OsetuPi>
originating side)

Oinformation i >

/ >Oc~ ~)>Oalerting i

>Oaboeti (. . . . k,,,~ >Oconnecti

" .~re ~ > Tsempj
Termlnal -

terminating side) Tconnect~ >./~
I ~Talerfingj >

> Tdiscon ~ Tdiscon~' >

composition of automata:

terminal: basic switch: net:
n

T~ = Tior,g+ T~ t e BS = Ill Cal/ i. J N = T 1 1 1 .. .11 T , , I I BS

(alternative) (interleaving) (parallel composition}

Cal/bj
(network - > OsenlPi

process))>Oinformation i ~ Oaborti>

,f.,e,,pj>
> Talerting j /

> Tconnect j { Oa/erting i >

\ > Tconnect j

)Oconnect i >

)

> r eis~on,r } "% ./>o~' pt 7

Fig. 5. Automata for each component of a call and the composition

cation by the sender and the receiver (fully synchronized communication). The
automaton changes its state to the following state after performing a communi-
cation. If a process described by an automaton terminates (no communication
can follow) it returns immediately to its initial state. These final states and
the first state can be seen as equal or connected by an C-arc denoting a silent
transition. There is no graphical presentation of this fact in our representation
because it would be the same for each automaton and because in this way we
can emphasize that one cycle of the protocol has terminated.

There exists one automaton for each possible call in the specification of the
network, called Calli_j (i # j, 1 < i, j < n). This is a possibility to represent a
dynamic number of processes (calls) in a static model.

A typical call can be described with the following sequence of actions: User
i goes off-hook (an Osetupl message is sent to the basic switch). User i dials
the number j (the number is t ransmitted with (Oinformation~,j)) . The ter-
minating site is informed (Tsetupj). The switch is informed that it rings at
the terminating site (Talertingj). The originating site is informed about tha t
(Oalerting~). The terminating site goes off-hook (Tconnectj) and the originating
site is informed (Oconnect~). Now, it is possible for both sites to terminate the
call, e.g. the terminating site goes on-hook (Tdiscon~). This is acknowledged by
the switch (Tdiscompl~). The originating site is informed (Odiseon~) and sends

487

an acknowledge message (Odiscompl~).
The automata are composed with the following operators of process algebra

(see e.g. CSP [13]):

- parallel composition (ll), the possibility of a trace in a parallel composition
of two or more automata requires synchronization on common symbols

- interleaving (]l), a trace is possible in an interleaving of n au tomata iff it is a
shuffle of traces where each is possible in one of the automata, the difference
between interleaving and parallel operator is that no synchronization has to
take place

- alternative (+), a trace is possible in an alternative if[it is possible in one
of the composed automata.

Our requirements are now analyzed to determine whether there are traces
possible in the parallel composition of the automata which are not allowed by
the requirements. We determine from the parallel composition that it is possible
tha t Tio~g initiates a call to Tj but can be connected to any other telephone.
The reason is that the transmitted value (the called number) is not visible in
the automata and that the communication Oinformation~ is one of the first
communications of each automaton in the switch that describes a call with orig-
inating site Ti. The interleaving operator produces a nondeterministic choice to
continue with any communication Tsetup~ with 1 < x < n, i ~ x.

The number of the terminating site j is t ransmitted with the communication
Oinformationi. The next communication w.r.t, this call shall be Tsetupj. The
value j has to be stored and Tsetupj activated (i.e. Tsetupy has to become the
only possible next Tsetup communication).

For this reason local variables are added to our specification. We then can
formulate that a communication can happen only if a certain pre-condition over
the local variables (an enable-predicate) is fulfilled. After the execution of a
communication a post-condition (an effect-predicate) in which values of local
variables may change must be fulfilled. Local variables are introduced for each
process to formulate these predicates. Altogether a communication can happen
if and only if

(a) it is the next possible communication of the related automata (the automata
where the communication belongs to)
and

(b) the enable-predicate for this communication of each related automaton is
fulfilled.

The enable- and effect-predicate for a communication are summarized in a
communication assertion. Possible communication assertions for our example are
given in figure 6.

We summarize the specification and describe it in the syntax of the specifi-
cation language SL [23, 25] developed in the ProCoS project:

488

var set[1..n] of bool init false
corn Oinformationi write set

uhen true then set[QOinformation~]'
corn Tsetupj write set[j]

~hen set~] then ~set[j]'

In our example Boolean variables set[i], 1 <_ i < n, are used, one for each
telephone inside the basic switch. Their initial values are false. If a commu-
nication (Oinformation~,j) happens (we refer to the communicated value as
@Oinformation~), the value of set[j] is set to true. The communication Tsetup~
is possible only if the value of set[j] is true. The value of set[j] is reset to false after
the communication Tsetupj is executed.

Fig. 6. Communication assertions

B S = spec
<interface>
<trace assertions>
<local variables>
<communication assertions>

end

The interface consists of the communications explained above together with
the type of the communicated values. The trace assertions are simple regular
expressions over a subset of communications of the interface. Together they
describe a superset of all possible traces. An au tomaton is an equivalent repre-
sentation of a trace assertion. Therefore we can say tha t the derived au toma ta
describe the trace assertions. The local variables represent the local state. They
are used inside the communication assertions in the enable and effect predicates.
Trace assertions, local variables and communication assertions are optional par ts .

3.3 Verif icat ion

The verification tha t a specification fulfils the given requirements is usually the
most complicated par t in the formal development. The result of this effort is
tha t verified properties needs not to be tested for the final implementat ion. If
formal steps are applied then the correctness of the implementat ion w.r.t, to
the formalized requirements follows immediately from the correctness of the
specification. Therefore t ime spent with the verification is at least regained in a

test phase.
Several techniques have been developed as support for a verifier. The verifi-

cation of complex specifications has to be supported by computers. Two main
approaches are studied in this field:

- The fully automatic approach. The specification and the requirements are
the input to a computer program which checks whether the requirements are

489

fulfilled or not. If the requirements are not fulfilled then a counter example
is presented. The advantage of this model checking [6, 8, 9] approach is that
the verifier needs no detailed knowledge of the applied verification technique.
The disadvantage is that model checking usually only works for systems
with a small state space because time (and storage) which is needed for the
verification usually grows exponentially in the number of components (states
of the automata, numbers of variables). This state space explosion problems
lead also to the fact that the verifier has to decide in which way he or
she prepares the specification and requirements as input for the verification
algorithm. This is a big restriction of the advantage mentioned before.

- T h e interactive approach by using an interactive verification tool like
LAMDBDA [3, 4, 10]. The verifier develops a proof for a requirement step
by step supported by the verification tool. The tool checks automatically
whether preconditions for verification steps are fulfilled and offers sugges-
tions for next verification steps. The verifier needs explicit knowledge about
the verification techniques and needs experiences to become an effective ver-
ifier. On the other hand, it is shown in that this approach works for more
complex specifications.

markings markings

for trace t I for trace 12

(1) (2)

Oabon i >

>O~

I

b(t 1) : posstale bngln of the trace ~ t : impos.~bta part for the trace

t I :possiblelntermediatapartofthetrace e([l) :possibfeendofthetrace

Calli-J b(f2) ~T~e lup j>

reduc~on > Talertmgj
to pans t 2
important for >Tconnect O~ >
trace t 2 J I Q'~f t2

- - {3) " ~>Tconnectj
ell 2) 12

i

Oabort i > (4) I
projection

to { Tconnectj]

~o..~,~ (~ I o k

~l>Tconnetv]

it ts proven that each trace from the initial to
the retorn state contains a communication
T~mw~q

Fig. 7. Verification of the requirement in figure 3 in four steps

A third approach is the combination of the two other approaches [12, 22]. A
model checker can be integrated in an interactive verification tool. The model
checker solves problems of an appropriate size and the results are combined to
a more complex proof.

490

CoCoN uses the third approach. A model checking algorithm is developed
which can be used for the automatic verification of a subclass of trace logic
formulae. For formulae outside of this subclass the algorithm calculates the par t
of the specification which has to be t reated an interactive verification.

A marking algorithm is used in which proofs annotate the states of the au-
tomata. These annotated states can be reused if the same requirement has to
be checked for an extended version of the specification. The idea of marking a
specification is well-known from the model-checking approach or more general
from program verification [26].

The verification of the requirement in figure 3 is sketched in figure 7. Par ts
of a proof which are not successful do also annotate the states. This information
can be used later on for the verification of extensions.

The verification follows the schema: First, it is calculated which parts of the
automata can be chosen for the trace variables tl and t2 of the formal require-
ment in figure 3. Then the side conditions and finally the desired behaviour are
checked. (For full details see [18].)

4 D e c o m p o s i t i o n

i

 '{Ori ij i ,
I .s I .t

Call i-j

basic switch

A process in the switch is split into two parts: one is responsible for the originating
site and the other for the terminating site in the network.

Fig. 8. Architecture after decomposition

After verifying the simple system, the question arises how to use our speci-
fication for the next steps. Our intention is to split up the network process in a
distributed system where originating and terminating site are represented sep-
arately by local processes. These processes could then be allocated at different
switches inside the network.

Decomposition is usually done in 3 steps:

(1) determining the new local communications for the interface between the de-
sired components,

(2) augmenting (extending) the automaton by these local channels,
(3) parallel decomposition of the augmented automaton.

491

Suppose tha t in the example we add a requirement that each process Calli_j
should consist of two parts , one related to the originating and one to the termi-
nat ing site (see figure 8).

Before we decompose Calli_j into two separate processes we have to think
about the new local communications between the new processes. We observe
every s tate of Calli_j and t ry to find out which protocol is useful between the
new processes.

setuplj]initial message between new processes
abort~j for an abort of a call I
alert~j for ringing at the terminating site I
connectlj Ifor a completed connection I
discon~j for disconnect initiated
diseompl~j for d sconnect complete (acknowledge)

Table 2. Communications between originating and terminating part in the network

The interface of table 2 is introduced (a subscript ij indicates tha t this is a
communicat ion from site i to site j, a superscript o will indicate "from originating
site" and a superscript t will indicate "from terminat ing site" in the terminat ion
procedure).

The new communications are still not included in the au tomaton Calli_j.
Therefore it is the next subtask to extend the au tomaton with the new commu-
nications. The decomposition of the network process is continued later.

,,,p, []

Oabort i >

, []
>Osetllpi

) . \ Oaborti>
setup i3

s > Tolerting j

Oalertingt >

> []
>Osel Ipi

>Oi~fo.~otton i ~ >
semp /j abort ii 1

i Tsetupj> r~" ~ O a b o r t i >

> Talerting j

Oalening i >

, []
>Osemp i

>OInforTnalion i

u alerlji

I Oalerting t >

Fig. 9. Extension with local channels

The new communications are local ones. They do not have to be synchronized
with the other processes. A local communication of a subprocess of a parallel
composit ion can happen if it is a next possible communication.

The new au tomaton for Calli_j is the result of applying a t ransformation rule
for adding new local communications several times. The first three applications
are described in figure 9.

492

A local setup communication is added in par t 2 of figure 9 between the
transmission of the dialed number and informing the terminat ing site. Then, a
local communication is added for a local abort after the setup communication.
Finally, a local alert communication is added between the communicat ion in-
dicating tha t it rings at the terminat ing site and informing the originating site
about that .

The new specification is deadlock-free because t ransformation rules are used
which preserve deadlock-freedom. (The application criteria which have to be
checked are omit ted here.) The old requirements are still fulfilled because no
changes are done tha t are relevant for these requirements.

Now, we have the possibility to use a verified semantics-preserving SL-
Transformation rule to decompose the process. The processes after decompo-
sition are described in figure 13 (with ignoring the dotted parts) . The process
Calli_j is split into Orig~_j and Termj_~.

5 E x t e n s i o n

The previous sections described a complete pa th from informal requirements to a
provably correct specification of a distributed system. But this specification is not
likely to be a final result because the development process for large distr ibuted
systems like telephone networks never comes to an end. One impor tant point
is the extension of the existing specification. An approach is needed tha t takes
verified specifications and the desired extensions as an input and produces a
verified extension of the specification.

L e t -+Ai be the transition relation of an automaton Ai, let Ai and Aj be two au-
tomata that are directly connected, with initial states q0~ and q0j. Let ql be a state of
Ai and qj be a state of Aj. Then qi is in K-relation (K for german "Kommunikation")

i to qj (abbreviated q~ Ai K Aj qj) iff

~ t , t ' : (q0~ ~ ~' --~Ai qi A qo~ "~Aj qj
A t $ (Comm(A~) N Comm(Aj)) = t' $ (Comm(Ai) N Comm(Aj))

Informally, q~ is in K-relation to qj iff there exists a possible trace t to q~ in A~ and
a possible trace t' to qj in Aj such that the same sequence of communications w.r.t.
Comm(A~)AComm(Aj) is used. Communications outside of Comm(Aj)AComm(Ai)
can be added everywhere in t and t'.

Fig. 10. The K-relation

For the formalization of the effects of an extension and for the calculation of
necessary changes an auxiliary relatio.n between states of different processes is
defined. I t formalizes tha t if a certain subprocess is in the state p another sub-
process might be in the state q (formalized in figure 10). This K-relation is used

493

e.g. to describe how an existing specification can be extended with preserving

deadlock freedom.

A B C

2 I

i
~. ..4 ~, .4

"'"" " ."" connections

The change of the behaviour of the subantomata A at state I can influence many
states in B and C. These states are calculated by the K-relation (The dashed arrows
denote K-related states, e.g. 1 AKB 2). Thus a small change in one small component
can have a big influence in a component that is far away from the original change.

Fig. 11. A small system with an example of K-related states

Figure 11 shows an informal example for the fact that the change of the
behaviour at one state can have substantial influences to many other states
of the system. The system in figure 11 consists of three connected processes.
The dotted arrows describe the connections between the components. Dashed
arrows represent the K-relation and therefore possible states where a change
in one component may lead to a different behaviour in another component. A
change at state 1 of subautomaton A may lead to a new behaviour at the states
{1,2,3,4,5} of subantomaton C.

Now, we explain the extension of a system where the result is deadlock-free,
too. The requirement 'deadlock freedom' is emphasized because we have observed
the following: if deadlock freedom is guaranteed it can be easily shown in many
cases that other requirements are fulfilled.

Let us take the example that another requirement is added to the system:
we allow that the originating site can terminate a call after dialing a number.
The new call termination can be described by a trace t that shall be possible in
the new system. The idea is to extend each automaton A with the part of the
trace which belongs to the automaton (t $ Comm(A)).

Such a trace is added to the automaton by taking two existing states and
connecting them with the new (added) trace. Then each related state of the other
au tomata of other subprocesses is calculated. These states are also extended to
make the new trace possible in the presence of synchronization and to guarantee
that no new deadlocks are introduced. This idea is sketched in figure 12 and an

494

A B

: - . ~ _ _ _ _ _ / / _ _

- - - 6 _:.-._

"-..- '"

system S

C

- ~ t3 t3
..~"

"" """ connections

This figure sketches the general idea of extension. First, we choose a state (here
state 1 of A) where a new trace t shall be possible, a trace t l = t $ C o m m (A) is
added from this state to a final state. Then, the K-related states of the extended
state in B axe calculated (here 3 and 6, the K-relation is painted as dashed arrows).
These states are extended with t2 = t $ C o m m (B) to final states of B. Finally the
K-related states of 3 and 6 are calculated in C and these states are extended with
t3 = t $ Comm(C) . If S is deadlock free before the extension then it is deadlock-free
afterwards, too.

Fig. 12. Extension of a distributed system with a new trace

example is presented in figure 13. The task is to extend the system in such a way
tha t it is possible for the user to go on-hook after dialing a number. The s tate 3
of T~o~g has to be extended. The new terminat ion is described with a new trace
which is added stepwise to the automata . The extension algorithm which is used
here is described with optimizations in [16].

The new specification is deadlock free because a deadlock freedom preserving
t ransformat ion rule is used. The new trace is possible because the extended s ta te
is reachable. If we want to prove the other requirements we can reuse the old
proofs. The markings of the old proofs are used to calculate the markings for the
added part . In most cases, the old markings need not be changed. If changes for
these markings are needed, they are calculated by a back-tracking algorithm.

The idea to reuse (parts of successful) proofs is adopted from approaches for
sequential programs (like [28] and related to the work of summarizing small proof
steps to a large step or tactics). An example for the extension of an existing proof
is given in figure 14. (The formal requirement described in figure 3 is decomposed
into two requirements, the K-relation is used as auxiliary information in the

proof.)

6 C o n c l u s i o n s a n d F i n a l R e m a r k s

The previous sections describe a general methodology based on several individual
approaches for the incremental development of distributed systems. Specification

495

T; ~ OsetuPi>

~__._ ._~Obl f~176

/

-- - I \ & > Oconnect i "
. ,i I .. "~5 s "

~ . . ~d~..~ -- .
. . . . ~ ~'~>Odlscomp/ .
tpatscomp! i > ~ , . 0 ~ 7 I

./
/
/

i
\

12

?,
Tjterm : l >Tsetupj

Tcon,,ectj >~ t ~/erting j >

Tcolltlectj > ~.~4 .
5 0 - - 0 7 L

T d i s c o n ~ ~ s c o , q, l j

Term j - i ~I
r >setup.

2 c) - - . - - - - -
t Tsetup)

3 .I

> Tcom~ect j

> Tdiscon !

a.co,,/i> [-
l o o . . .

>discompl i

> Talerting j
4

> Tco,nec U
abort

2-...~d,:~co,,}
o i

The trace O d i s c o n ~ . O d i s c o m p l ~ . d i s c o n ~ . d i s c o m p l ~ j . T d i s c o n 2 . T d i s c o m p l 2 is added
to the system. Black and gray states show K-related states that are used during
the extension. The extension is described by the dotted parts. Gray states are not
extended because an optimization algorithm is applied.

Fig. 13. Extension of the system

engineering is shown as a way to come to large verified specifications by small
intuitive steps. It offers solutions to typical problems like system decomposit ion
and extension of distributed systems. In contrast to other formal methods where
only static systems can be developed, our approach enables us to develop exten-
sible systems. Other approaches for an incremental design of systems like [7, 31]
describe only the development of asynchronous protocols with the restriction
that new communicat ions are added one at a time.

The basic ideas of specification engineering can be transferred to other lan-
guages that are based on extended finite state machines (like LOTOS [20]). Fu-
ture research will cover possibilities and limitations of this idea. Typical phases
of the development of extensible systems are summarized in table 3. The way to
come to a first verified specification are steps 1 and 2. An extension of a system
deals with a sequence of steps 1 and 3. Note that not every typical task must be
performed, e.g. in step 3 we can decide for a decomposit ion or an extension of

496

r i ~ "_ �9 >OsetuPi _

b(t 2) ()

.:/'" > tJa l s con i t2 ~) tJ :~'0~ -"
: >abor t l i . . '~ u ~ >aler t i i a b ~ I

." * J a l s c ~ / J ,-~ ' \ I
/ ~ 2j
/' >connectji(/lOalert,ng,>/ ,,~ ~]

\
- - U : >connec t" "
,..~, > O d / s c o n i ./,z~, ~ " f _ _ J/ ~ , . . \
, - ' . ' , , .< : . . . s'~ 72 'e~tz I O a b o r t i > \

........... ~ b~o~e.i> ' \
?- -, . .Od i scomplU.> ..q vr

...... "" / - u ~ > a l s c ~ I
.. ~ . ~ . . . - " ~ O d i s c o n i ~ " ~'

' d i w o n o > . u a,; �9 o

"". tsc~ .I. ~ s , I O d i s c o n .> /
"" >. "'~ . o . ~ t

.. ~:

This figures shows the necessary extensions of a proof after the extension of the
specifications. Markings in dashed boxed are re-calculated or new markings as a
result of the marking algorithm.

Fig. 14. Extending an old proof

the functionality and if we use semantics-preserving t ransformation rules then
no additional verification needs to be done. Otherwise requirements tha t are not
guaranteed by the rule need to be proven again.

step name of phase

requirement
engineering

initial
specification

specification
engineering

related subjects
informal description
informal requirements
formal requirements
typical system behaviour
superset of all possibilities
restriction
verification
decomposition
extension of functionality
transformation
verification of new parts

Table 3. Phases in the development of extendable systems

We applied our approach to show the extensibility of a given Private Auto-
mat ic Branch Exchange (PABX)-specification and are working on a specification

497

of a multi-user mult imedia system [17]. By calculating which changes are needed
in the existing software and whether any interaction (problems if more than one
additional service is active at a time) occur the introduction of new services and
features becomes much more easier.

Our case studies show tha t formal methods of ProCoS and CoCoN seem
to be suitable for problems from the teIecommunications area. Experiences of
academic case studies [15, 24] can be scaled up to industrial-size problems. Nev-
ertheless research is needed to complete each par t of our method. The idea of
reusing proofs has to be studied in more detail. The new t ransformat ion rules
for the extension have to be rewrit ten for specifications with arbi t rary local vari-
ables. Tools have to be built tha t support the proofs of requirements and the
incremental development by designers.

This paper emphasizes tha t approaches from different areas (like the trans-
formational approach, interactive verification tools, model-checking) must come
together to build a formal method which can be used for the development of
large scale extensible industrial applications.

A c k n o w l e d g m e n t s . The authors thank Martin El ixmann of Philips Re-
search Laboratories and Ernst-R/idiger Olderog and the other members of the
ProCoS Group in Oldenburg for helpful and detailed discussions.

References

1. D. Bjcrner, H. Langmaack, C.A.R. Hoare, ProCoS I Final Deliverable, ProCoS
Technical Report ID/DTH db 13/1, January 1993

2. D. Bjcrner et al., A ProCoS project description: ESPRIT BRA 3104, Bulletin of
the EATCS, 39:60-73, 1989

3. J. Bohn, H. Hungar, TRAVERDI - Transformation and Verification of Distributed
Systems, in M. Broy, S. J~hnichen, (eds.): KORSO: Methods, Languages, and
Tools for the Construction of Correct Software, LNCS 1009 (Springer-Verlag),
1995

4. J. Bohn, S. RSssig, On Automatic and Interactive Design of Communicating
Systems, in B. Steffen (ed.): Proc. TACAS '95, LNCS 1019 (Springer Verlag),
1995

5. J. Bowen et al., Developing Correct Systems, Bulletin of the EATCS, June 1993
6. J.R. Butch et al., Symbolic Model Checking: 102~ States and Beyond, in Proceed-

ings of the Fifth Annual Logic in Computer Science, June 1990
7. D. Y. Chao, D. T. Wang, An Interactive Tool for Design, Simulation, Verification,

and Synthesis of Protocols, Software - Practice and Experience, Vol. 24(8), 1994
8. E.M. Clarke et al., Automatic Verification of Finite State Concurrent Systems

Using Temporal Logic Specifications, ACM TOPLAS 8, 1986
9. E.M. Clarke, O. Grumberg, D. Long, Verification Tools for Finite-State Concur-

rent Systems, in J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.): Decade
of Concurrency, LNCS 803 (Springer-Verlag), 1995

10. M. Francis et al., LAMBDA Version 4.3, Documentation Set, 1993
11. D. Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Com-

puter Programming 8, 1987
12. H. Hungar, Combining Model Checking and Theorem Proving to Verify Parallel

Processes, in C. Courcoubetis (ed.): Computer Aided Verification, LNCS 697
(Springer-Verlag), 1993

498

13. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, London, 1985
14. S. Kleuker, A. Kehne, H. Tjabben, Provably Correct Communication

Networks (CoCoN), Philips Research Laboratories Aachen, Technical Re-
port, 1123/95, 1995 available by ftp: ftp.informatik.uni-oldenburg.de:
/pub/procos/cocon/lab1123. ps. Z

15. S. Kleuker, Case Study: Stepwise Development of a Communication Processor
using Trace Logic, in D.J.Andrews et al. (eds.): Workshop on Semantics of Spec-
ification Languages, Utrecht 1993, Workshops in Computing (Springer-Verlag),
1994

16. S. Kleuker, A Gentle Introduction to Specification Engineering Using a Case
Study in Telecommunications, in P.D. Mosses, M. Nielsen, M.I. Schwartzbach
(eds.): Proc. TAPSOFT '95, LNCS 915 (Springer-Verlag), 1995

17. S. Kleuker, H. Tjabben, A Formal Approach to the Development of Reliable
Multi-User Multimedia Applications, in R. Gotzhein, J. Bredereke, (eds.): Proc.
of the 5th GI/ITG-Fachgespr~ich "Formale Beschreibungstechniken f/ir verteilte
Systeme", University of Kaiserslautern, 1995

18. S. Kleuker, Model Checking with Trace Logic (Draft), University of Oldenburg,
internal paper, 1995

19. L. Lamport, TLA in Pictures, technical research report, Digital Equipment Cor-
poration, in http://www, research, d i g i t a l , com/SRC/tla/,1994

20. L. Logrippo, M. Faci, M. Haj-Hussein, An Introduction to LOTOS, Computer
Networks and ISDN Systems 23 (1992) 325-342, North-Holland

21. N.A. Lynch, M.R. Tuttle, An Introduction to Input/Output Automata, Technical
Report CWI-Quarterly 2(3), CWI, 1989

22. O. Miiller, T. Nipkow, Combining Model Checking and Deduction for I/O-
Automata, in B. Steffen (ed.): Proc. TACAS '95, LNCS 1019 (Springer Verlag),
1995

23. E.-R. Olderog, Towards a Design Calculus for Communicating Programs, LNCS
527 (Springer-Verlag), p. 61-77, 1991

24. E.-R. Olderog, S. RSssig, A Case Study in Transformational Design on Concurrent
Systems, in M.-C. Gandel, J.-P. Jouannaud (eds.): Proc. TAPSOFT '93, LNCS
(Springer-Verlag), 1993

25. E.-R. Olderog, S. RSssig, J. Sander, M. Schenke, ProCoS at Oldenburg: The Inter-
face between Specification Language and OCCAM-like Programming Language.
Technical Report Bericht 3/92, Univ. Oldenburg, Fachbereich Informatik, 1992.

26. S. Owicki, D. Gries, An Axiomatic Proof Technique for Parallel Programs, Acta
Informatica, 16, 1976

27. H.A. Partsch, Specification and Transformation of Programs, Springer-Verlag,
1990

28. W. Reif, K. Stenzel, Reuse of Proofs in Software Verification, in Shyamasundar
(ed.): Foundations of Software Technology and Theoretical Computer Science,
Bombay, LNCS 761 (Springer-Verlag), 1993

29. S. RSssig, A Transformational Approach to the Design of Communicating Sys-
tems, PhD thesis, University of Oldenburg, 1994

30. S. RSssig, M. Schenke, Specification and Stepwise Development of Communicating
Systems, LNCS 551 (Springer-Verlag), 1991

31. P. Zafiropulo et al., Towards Analyzing and Synthesizing Protocols, IEEE Trans-
actions on Communications, Vol COM-28, No. 4, April 1980

32. J. Zwiers, Compositionality, Concurrency and Partial Correctness - Proof The-
ories for Networks of Processes and Their Relationship, LNCS 321 (Springer-
Verlag), 1989

