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Abs t rac t .  Provably correct software can only be achieved by basing the 
development process on formal methods. For most industrial applications 
such a development never terminates because requirements change and 
new functionality has to be added to the system. Therefore a formal 
method that supports an incremental development of complex systems 
is required. The project CoCoN (Provably Correct Communication Net- 
works) that is carried out jointly between Philips Research Laboratories 
Aachen and the University of Oldenburg takes results from the ESPRIT 
Basic Research Action ProCoS to show the applicability of a more for- 
mal approach to the development of correct telecommunications soft- 
ware. These ProCoS-methods have been adapted to support the devel- 
opment of extensible specifications for distributed systems. Throughout 
this paper our approach is exemplified by a case study how call handling 
software for telecommunication switching systems should be developed. 

keywords: extension of existing formal methods, combination of methods, 
incremental development 

1 I n t r o d u c t i o n  

During the last few years there has been an ever increasing demand for the fast 
and flexible introduction of value-added services and new features into private 
as well as into public telecommunications networks. Intelligent networks (IN), 
personal communications, computer-supported telecommunications applications 
(CSTA) are just a few areas from which these services are emerging. Adding 
more and more services to the telecommunications network leads to a situa- 
tion where not only the software part of the separate network components but 
also the structure of the network is becoming increasingly complex. Today, it is 
already difficult to maintain and to extend the systems. It becomes more and 
more difficult to understand and to predict the behaviour of the system, e.g. in 
situations when interactions between services occur. 

Therefore it becomes a key issue to design communications system software 
that  provably - -  not only arguably - -  meets its requirements. Aim of the project 
CoCoN (Provably Correct Communication Networks) is to support a stepwise 
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and verified development of communications systems from the requirement phase 
over the specification phase to an implementation. The vision that we have in 
mind is an engineering approach for the development of correct communications 
networks. 

The method presented here results from the project CoCoN, carried out 
jointly by Philips Research Laboratories Aachen and the Department of Com- 
puter Science at the University of Otdenburg since April 1993. CoCoN is based on 
the ESPRIT Basic Research Action ProCoS (Provably Correct Systems) where 
formal methods for the design of embedded, distributed real-time systems are 
developed. CoCoN thus aims to show that ProCoS methods - -  suitably adapted 
- -  can contribute to solve problems of industrial relevance. 

CoCoN extends the ideas of ProCoS [1, 2, 5] with a method for the develop- 
ment of extensible systems. An approach for the reuse and extension of proofs 
(produced by model-checking or an interactive verification tool) is suggested. 

In this paper we identify steps of a general methodology for the incremental 
development of correct specifications for distributed systems. We show how sev- 
eral individual results and techniques can be combined to a method. Full details 
are suppressed in favour of an overview of the methodology. However, the formal 
background is outlined in 14 figures. 

To illustrate the typical design steps, a system which describes a simple 
version of call handling is developed throughout the main text. A more detailed 
elaboration of our approach can be found in [14]. At the top-level view the 
system in our example consists of n telephones which are connected by a basic 
switch (see figure 1). Each call shall be represented by a different process in the 
network. 

basic switch 

Fig. 1. Architecture of the network 

The next section gives a survey of the applied methods. Section 3 describes 
the development of a first provably correct specification. The sections 4 and 
5 describe how verified specifications can be decomposed and extended. The 
conclusions contain a short summary and possible further steps. 

2 Approach 

The main steps of the design are sketched in figure 2 and can be described 
as follows: The complete development begins with describing the main task of 
the desired system. This task is analyzed and split into subtasks. Tasks can be 
described in natural language. These tasks are structured as a set of informal 
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spe Sl 
extension 

decomposition 

Fig. 2. Summary of the design steps 

requirements. Then, informal requirements are translated into formal ones. A 
system (or specification) is provably correct if and only if the system fulfils these 
formal requirements. 

The next step is the development of a first specification which already takes 
into account the architectural idea, i.e. it specifies the components and the inter- 
faces between them. It is then proven that  this specification fulfils the require- 
ments and is therefore provably correct. 

At this point two cases have to be considered. Either this specification is 
the final desired result and no changes are needed. Then this specification can 
be transformed into correct code. Or the specification is an intermediate result. 
Then, next possible steps are a decomposition of the components into sets of 
smaller ones or an extension of the functionality. An extension begins with an 
informal description of the changed behaviour of the system or one component. 
Typical extension tasks have the form "The following sequence of actions shall 
be possible, too".  Here, the loop of the development from informal requirements 
to a verified specification begins again. This loop leads to an incremental design 
and therefore it is possible to start  with the development of a very simple system 
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and to finish with a complex specification of a distributed system. Note that an 
extension may also include that old requirements have to be changed. 

The most time consuming part of the development is the verification of the 
specifications against the formal requirements. Therefore a method is needed 
which guarantees that not each new specification has to be verified again. This 
is the basic idea of the so called transformational approach. Verified transfor- 
mation rules (i.e. rules that preserve the correctness w.r.t, the requirements) 
axe used for the system development (e.g. decomposition and extension). If such 
a rule is applied it is guaranteed that the result of the application fulfils the 
same requirements as the initial specification. Therefore, we only have to prove 
the application conditions of the transformation rules and need not repeat the 
complete verification. This approach is studied in the project ProCoS which 
is the foundation of CoCoN. ProCoS emphasizes a constructive approach to 
correctness, using verified transformations between requirements, specifications, 
programs and machine code. 

In CoCoN two different kinds of transformation rules are used. The first ones 
are the fully behaviour (or semantics) preserving rules from ProCoS [29, 30]. 
The other transformation rules preserve only certain important requirements 
like deadlock-freedom. Proofs that other requirements are fulfilled have to be 
done again. But old proofs can be reused to a large extent because our proofs 
annotate the specifications. Therefore it is possible to calculate the changes that 
are needed for the proofs if the changes for the specifications are known. 

The main reason why it is impossible to use only rules of the first kind is that 
we are interested in extending the system in a way that changes its behaviour'. 
This paper demonstrates how the transformational approach is used in a stepwise 
design from an informal task description to the desired system. 

We summarize the application of different kinds of transformation rules to- 
gether with the technique of reusing proofs under the term Specification Engi- 
neering. 

3 A F i r s t  V e r i f i e d  S p e c i f i c a t i o n  

3.1 F rom Informal Requirements to Formal ones 

A correct program shall always be the final result of the development process. 
But, what does correct or verified mean? To be more precise: a system or spec- 
ification is correct with respect to certain requirements, if it is verified that the 
program fulfils each requirement. So, the most important part in a formal system 
development is the question how to get the right formal requirements to begin 

with. 
The following tasks are identified to come to an appropriate initial set of 

requirements. First, we have to specify which kind of process structure is used. 
This architecture is a basis for the informal requirements. Then the interfaces 
(set of possible communications between the processes) are fixed. The informal 
requirements are given in natural language and describe e.g. the interplay of 
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the processes. The next step is the translation of the informal requirements into 
formal ones. Note that  the initial set of requirements is changed in the subsequent 
decomposition and extension steps. 

It must also be taken into account tha t  a bad set of requirements may lead to 
a very complex development process or, even worse, to software with undesired 
behaviour (if an important  requirement is forgotten or formalized in the wrong 
way). Therefore the requirement step is the part  in the development process 
where human faults occur most easily. 

An important  correctness criterion for requirements is also that  of consis- 
tency. A set of requirements is inconsistent if it is impossible for a specification 
to fulfil the set. Informal requirements can be investigated by a human being 
whether an inconsistency exists. For formal requirements it can be proven that  
the requirements are consistent. 

The process of finding requirements, called requirement engineering (see also 
[27]), starts with an informal description of the desired system. Any kind of 
description of the desired system ranging from oral descriptions to documents 
from related projects can be important.  Requirements of the form 'if this hap- 
pens then this must not (has to or might) happen'  and many more have to be 
described. An intensive discussion is needed to come from an informal descrip- 
tion to informal requirements. Informal requirements are simple sentences in a 
reduced natural  language that  can be understood by customers and developers. 
These requirements shall give a description of the initial system that  we have 
in mind as precisely as possible. They are developed by customer and developer 
together. 

For our example, based on the system components a first architectural con- 
cept is fixed (see e.g. figure 1) which will be decomposed into more realistic 
subsystems later. Our first simple system shall consist of n telephones connected 
by one process, called basic switch. 

A typical informal requirement for our call handling system is: 

- If user i dials the number of j and gets a connect signal then he or she cannot 
be connected with others than j .  

In the next step we need to know which events are observed to formalize 
the requirements. Our communications are related to messages from protocols 
like DSS.1 (Digital Subscriber Signaling System No. 1). Table 1 lists the set of 
communications for the originating site (the first letter of these communications 
is therefore an 'O') and their informal meaning. The corresponding communica- 
tions for the terminating part  (starting with the letter 'T')  are omitted. 

The developer formalizes the requirements in a formal language which allows 
the verification of the derived specifications. The customer needs to understand 
the formal language to the extent that  it can be guaranteed that  customer and 
developer are sure of an appropriate set of requirements. A requirement language 
is needed that  is easy to understand and in which it is possible to formalize com- 
plex parts in small formulas. We use trace logic [32] (traces are finite sequences of 
communications) as our requirement language. Trace logic is used because it is 
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from an originating site Tio~g to a process C a l l i - j  that represents a call from i to j 
inside the process n e t w o r k :  

Osetup~ 
Oin f ormationi 
Odiscon~ 
Odiscompl'~ 

(capital letter 0 for originating) initial message to the network 
transmission of the complete number of the called party 
originating site initiates call termination (~ for "from user") 
originating site acknowledges a call termination signal from network 
(indicated by ~) 

from Calli-j  to Tio , . iq :  
Oaborti 
Oalertingi 
Oconnectl 
Odiseon~ 
Odiscompl~ 

call is aborted by some reason like no free line or called site is busy 
network indicates that it rings at terminating site 
terminating site has gone off-hook 
network indicates that terminating site has gone on-book 
network acknowledges a call termination signal from originating site 

From T j ~  m to C a l l ~ - j  and vice versa the dual communication to the explained one. 

Tab le  1. Communications of the first specification 

quite easy to  formalize given requirements  abou t  relations between communica -  
t ions in such an expressive language.  It  is another  advantage  tha t  the  semantics  
of  our  specification language ( introduced in a following subsection) is also based 
on t race  logic. Verification boils down to  reasoning in t race  logic. An  example  of  
a formalized requirement  is given in figure 3. 

Vtl, t2, i, j . ( ([X ][tl.( Oin f ormationi, j).t2.0connectl / tr] 
A t2 $ Comm(T~) e { e ,  Oalertingi}) 

t2 $ {Tconnectj } • ~) 

(1) 
(2) 
(3) 

This is a second order trace logic predicate with free variable X which stands for a 
s imple  trace predicate with one free variable tr, [t/tr] denotes the substitution of tr 
with t, - $ - denotes the projection, Comm(Ti) denotes the set of communications of 
Ti, e denotes the empty word (sequence). 
The variables tr, tl and t2 range over traces, i.e. sequences of communications. The 
predicate formalizes that  (1) if terminal i calls terminal j after a trace tl and i gets a 
connect signal after t2 and (2) there is at most one alert signal in between these two 
communications w.r.t, terminal i then (3) terminal j has gone off-hook in between 
these two communications. (The ~ in the second line denotes the possibility that  j 
goes immediately off-hook without alert signal.) 
The typical structure of a requirement looks like: 

V t l ,  . . . , t ~  �9 ( ( l [ X l [ t l . t 2  . . . . .  t ~ / t r ]  
h side_conditions(t1,..., tk)) 

desired_behaviour(tl, . . . , tk ) ) 

Fig.  3. An informal requirement formalized in trace logic 

If  the  kind of  requirements  engineering as described in this paper  should  



485 

be applied by engineers then it must be easy for them to write requirements. 
Trace logic uses many mathematical  symbols which look at the first glance quite 
strange. It is necessary to change some parts of the syntax and /o r  to add a 
graphical representation to make the formulae more readable. Our approach 
will be a 'semi-graphical' representation to support  engineers. As mentioned 
by Lamport  [19] and others it seems to be impossible to describe each kind of 
set of requirements and their combination with a graphical representation. The 
graphics are either not powerful enough or one has to use too many different 
symbols. Therefore we want to choose a presentation which supports the reader 
to understand a requirement, but describes maybe only a subset of the expressed 
behaviour. For the requirement explained in figure 3 a graphical presentation can 
look like the diagram presented in figure 4. 

t~ 
'~ /~  l I(Oinformationi, j) 

/ k  

t2 

~.+Oalerting i 

O c o n n e c t  i 

Comm(Ti ) 

{Tconnecti } 

The figure shows the trace variables and their relation. The long horizontal line is 
used to express implication ('=~z'). The left margin is used to describe the relations 
and the right margin to describe the projections. 

Fig. 4. Graphical representation of a requirement 

3.2 F i r s t  Specification 

Our approach for this step can be summarized as follows: A superset of the 
possible system behaviour is described with finite automata and is reduced by 
examining the requirements to disable undesired behaviour. Finally, it is verified 
that  our specification fulfils the requirements. The following text explains these 
steps in detail and shows how to come to a first specification for our example. It 
also includes an introduction to the ProCoS-specification language SL [23, 25]. 

We start  with a description of a superset of all possible traces for all pro- 
cesses. Note that  au tomata  can only be used to describe a superset because their 
expressive power (regular languages) are not powerful enough. Finite au tomata  
(related to approaches like [11, 21]) are used to describe the behaviour of each 
telephone and the switch. The automata  are given in figure 5. Each communi- 
cation is marked to show whether it is an input (> c) or an output  (c >). 

Every automaton starts in its initial state, marked by an initial arrow at the 
top. A communication can only happen if it is possible as the next communi- 
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Ti orig ~( 
(terminal - OsetuPi> 
originating side ) 

Oinformation i > 

/ >Oc~ ~)>Oalerting i 

>Oaboeti ( . . . .  k,,,~ >Oconnecti 

" .~re .... ~ > Tsempj 
Termlnal - 

terminating side) Tconnect~ >./~ 
I ~Talerfingj > 

> Tdiscon ~ Tdiscon~' > 

composition of automata: 

terminal: basic switch: net: 
n 

T~ = Tior,g+ T~ t e .... BS = Ill Cal/ i. J N = T 1 1 1  .. .11 T , , I I  BS 

(alternative) (interleaving) (parallel composition} 

Cal/bj 
(network - > OsenlPi 

process) )>Oinformation i ~  Oaborti> 

,f.,e,,pj> 
> Talerting j / 

> Tconnect j { Oa/erting i > 

\ > Tconnect j 

)Oconnect i > 

) ..... 

> r eis~on,r } "% ./>o~' ..... pt 7 

Fig. 5. Automata for each component of a call and the composition 

cation by the sender and the receiver (fully synchronized communication). The 
automaton changes its state to the following state after performing a communi- 
cation. If a process described by an automaton terminates (no communication 
can follow) it returns immediately to its initial state. These final states and 
the first state can be seen as equal or connected by an C-arc denoting a silent 
transition. There is no graphical presentation of this fact in our representation 
because it would be the same for each automaton and because in this way we 
can emphasize that  one cycle of the protocol has terminated. 

There exists one automaton for each possible call in the specification of the 
network, called Calli_j (i # j, 1 < i, j < n). This is a possibility to represent a 
dynamic number of processes (calls) in a static model. 

A typical call can be described with the following sequence of actions: User 
i goes off-hook (an Osetupl message is sent to the basic switch). User i dials 
the number j (the number is t ransmitted with (Oinformation~,j)) .  The ter- 
minating site is informed (Tsetupj). The switch is informed that  it rings at 
the terminating site (Talertingj). The originating site is informed about tha t  
(Oalerting~). The terminating site goes off-hook (Tconnectj) and the originating 
site is informed (Oconnect~). Now, it is possible for both sites to terminate the 
call, e.g. the terminating site goes on-hook (Tdiscon~). This is acknowledged by 
the switch (Tdiscompl~). The originating site is informed (Odiseon~) and sends 
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an acknowledge message (Odiscompl~). 
The automata  are composed with the following operators of process algebra 

(see e.g. CSP [13]): 

- parallel composition (ll), the possibility of a trace in a parallel composition 
of two or more automata  requires synchronization on common symbols 

- interleaving (]l), a trace is possible in an interleaving of n au tomata  iff it is a 
shuffle of traces where each is possible in one of the automata,  the difference 
between interleaving and parallel operator is that  no synchronization has to 
take place 

- alternative (+), a trace is possible in an alternative if[ it is possible in one 
of the composed automata.  

Our requirements are now analyzed to determine whether there are traces 
possible in the parallel composition of the automata  which are not allowed by 
the requirements. We determine from the parallel composition that  it is possible 
tha t  Tio~g initiates a call to Tj . . . .  but can be connected to any other telephone. 
The reason is that  the transmitted value (the called number) is not visible in 
the automata  and that  the communication Oinformation~ is one of the first 
communications of each automaton in the switch that  describes a call with orig- 
inating site Ti. The interleaving operator produces a nondeterministic choice to 
continue with any communication Tsetup~ with 1 < x < n, i ~ x. 

The number of the terminating site j is t ransmitted with the communication 
Oinformationi. The next communication w.r.t, this call shall be Tsetupj. The 
value j has to be stored and Tsetupj activated (i.e. Tsetupy has to become the 
only possible next Tsetup communication). 

For this reason local variables are added to our specification. We then can 
formulate that  a communication can happen only if a certain pre-condition over 
the local variables (an enable-predicate) is fulfilled. After the execution of a 
communication a post-condition (an effect-predicate) in which values of local 
variables may change must be fulfilled. Local variables are introduced for each 
process to formulate these predicates. Altogether a communication can happen 
if and only if 

(a) it is the next possible communication of the related automata  (the automata  
where the communication belongs to) 
and 

(b) the enable-predicate for this communication of each related automaton is 
fulfilled. 

The enable- and effect-predicate for a communication are summarized in a 
communication assertion. Possible communication assertions for our example are 
given in figure 6. 

We summarize the specification and describe it in the syntax of the specifi- 
cation language SL [23, 25] developed in the ProCoS project: 
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var set[1..n] of bool init false 
corn Oinformationi write  set 

uhen true then set[QOinformation~]' 
corn Tsetupj write set[j] 

~hen set~] then ~set[j]' 

In our example Boolean variables set[i], 1 <_ i < n, are used, one for each 
telephone inside the basic switch. Their initial values are false. If a commu- 
nication (Oinformation~,j) happens (we refer to the communicated value as 
@Oinformation~), the value of set[j] is set to true. The communication Tsetup~ 
is possible only if the value of set[j] is true. The value of set[j] is reset to false after 
the communication Tsetupj is executed. 

Fig. 6. Communication assertions 

B S  = spec  
<interface> 
<trace assertions> 
<local variables> 
<communication assertions> 

end 

The interface consists of the communications explained above together  with 
the type of the communicated values. The trace assertions are simple regular 
expressions over a subset of communications of the interface. Together they 
describe a superset of all possible traces. An au tomaton  is an equivalent repre- 
sentation of a trace assertion. Therefore we can say tha t  the derived au toma ta  
describe the trace assertions. The local variables represent the local state.  They  
are used inside the communication assertions in the enable and effect predicates.  
Trace assertions, local variables and communication assertions are optional par ts .  

3.3 Verif icat ion 

The verification tha t  a specification fulfils the given requirements is usually the 
most  complicated par t  in the formal development. The result of this effort is 
tha t  verified properties needs not to be tested for the final implementat ion.  If 
formal  steps are applied then the correctness of the implementat ion w.r.t, to 
the formalized requirements follows immediately from the correctness of the 
specification. Therefore t ime spent with the verification is at  least regained in a 

test phase. 
Several techniques have been developed as support for a verifier. The verifi- 

cation of complex specifications has to be supported by computers. Two main 
approaches are studied in this field: 

- The fully automatic approach. The specification and the requirements are 
the input to a computer program which checks whether the requirements are 
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fulfilled or not. If the requirements are not fulfilled then a counter example 
is presented. The advantage of this model checking [6, 8, 9] approach is that 
the verifier needs no detailed knowledge of the applied verification technique. 
The disadvantage is that model checking usually only works for systems 
with a small state space because time (and storage) which is needed for the 
verification usually grows exponentially in the number of components (states 
of the automata, numbers of variables). This state space explosion problems 
lead also to the fact that the verifier has to decide in which way he or 
she prepares the specification and requirements as input for the verification 
algorithm. This is a big restriction of the advantage mentioned before. 

- T h e  interactive approach by using an interactive verification tool like 
LAMDBDA [3, 4, 10]. The verifier develops a proof for a requirement step 
by step supported by the verification tool. The tool checks automatically 
whether preconditions for verification steps are fulfilled and offers sugges- 
tions for next verification steps. The verifier needs explicit knowledge about 
the verification techniques and needs experiences to become an effective ver- 
ifier. On the other hand, it is shown in that this approach works for more 
complex specifications. 

markings markings 

for trace t I for trace 12 

(1)  (2)  

Oabon i > 

>O~ 

I 

b(t 1 ) : posstale bngln of the trace ~ t  : impos.~bta part for the trace 

t I :possiblelntermediatapartofthetrace e([ l) :possibfeendofthetrace 

Calli-J b(f2 ) ~T~e lup j> 

reduc~on > Talertmgj 
to pans t 2 
important for >Tconnect O~ > 
trace t 2 J I Q'~f  t2 

- -  {3) " ~>Tconnectj  
ell 2 ) 12 

i 

Oabort i > (4) I 
projection 

to { Tconnectj ] 

~o..~,~ (~ I o k  

~l>Tconnetv] 

it ts proven that each trace from the initial to 
the retorn state contains a communication 
T~mw~q 

Fig. 7. Verification of the requirement in figure 3 in four steps 

A third approach is the combination of the two other approaches [12, 22]. A 
model checker can be integrated in an interactive verification tool. The model 
checker solves problems of an appropriate size and the results are combined to 
a more complex proof. 
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CoCoN uses the third approach. A model checking algorithm is developed 
which can be used for the automatic verification of a subclass of trace logic 
formulae. For formulae outside of this subclass the algorithm calculates the par t  
of the specification which has to be t reated an interactive verification. 

A marking algorithm is used in which proofs annotate  the states of the au- 
tomata.  These annotated states can be reused if the same requirement has to 
be checked for an extended version of the specification. The idea of marking a 
specification is well-known from the model-checking approach or more general 
from program verification [26]. 

The verification of the requirement in figure 3 is sketched in figure 7. Par ts  
of a proof which are not successful do also annotate  the states. This information 
can be used later on for the verification of extensions. 

The verification follows the schema: First, it is calculated which parts of the 
automata  can be chosen for the trace variables tl and t2 of the formal require- 
ment in figure 3. Then the side conditions and finally the desired behaviour are 
checked. (For full details see [18].) 

4 D e c o m p o s i t i o n  

i 

 '{Ori ij i , 
I .s I .t 

Call i-j 

basic switch 

A process in the switch is split into two parts: one is responsible for the originating 
site and the other for the terminating site in the network. 

Fig. 8. Architecture after decomposition 

After verifying the simple system, the question arises how to use our speci- 
fication for the next steps. Our intention is to split up the network process in a 
distributed system where originating and terminating site are represented sep- 
arately by local processes. These processes could then be allocated at different 
switches inside the network. 

Decomposition is usually done in 3 steps: 

(1) determining the new local communications for the interface between the de- 
sired components, 

(2) augmenting (extending) the automaton by these local channels, 
(3) parallel decomposition of the augmented automaton.  
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Suppose tha t  in the example we add a requirement that  each process Calli_j 
should consist of two parts ,  one related to the originating and one to the termi- 
nat ing site (see figure 8). 

Before we decompose Calli_j into two separate  processes we have to think 
about  the new local communications between the new processes. We observe 
every s tate  of Calli_j and t ry  to find out which protocol is useful between the 
new processes. 

setuplj ]initial message between new processes 
abort~j for an abort of a call I 
alert~j for ringing at the terminating site I 
connectlj Ifor a completed connection I 
discon~j for disconnect initiated 
diseompl~j for d sconnect complete (acknowledge) 

Table  2. Communications between originating and terminating part in the network 

The interface of table 2 is introduced (a subscript ij indicates tha t  this is a 
communicat ion from site i to site j, a superscript o will indicate "from originating 
site" and a superscript  t will indicate "from terminat ing site" in the terminat ion 
procedure).  

The new communications are still not included in the au tomaton  Calli_j. 
Therefore it is the next subtask to extend the au tomaton  with the new commu- 
nications. The decomposition of the network process is continued later. 

,,,p, [] 

Oabort i > 

, [ ]  
>Osetllpi 

) . \ Oaborti> 
setup i3 

s > Tolerting j 

Oalertingt > 

> [ ]  
>Osel Ipi 

>Oi~fo.~otton i ~ > 
semp /j abort ii 1 

i Tsetupj> r~" ~ O a b o r t i >  

> Talerting j 

Oalening i > 

, [ ]  
>Osemp i 

>OInforTnalion i 

u alerlji 

I Oalerting t > 

Fig. 9. Extension with local channels 

The new communications are local ones. They do not have to be synchronized 
with the other processes. A local communication of a subprocess of a parallel 
composit ion can happen if it is a next possible communication. 

The new au tomaton  for Calli_j is the result of applying a t ransformation rule 
for adding new local communications several times. The first three applications 
are described in figure 9. 
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A local setup communication is added in par t  2 of figure 9 between the 
transmission of the dialed number  and informing the terminat ing site. Then,  a 
local communication is added for a local abort after the setup communication.  
Finally, a local alert communication is added between the communicat ion in- 
dicating tha t  it rings at the terminat ing site and informing the originating site 
about  that .  

The new specification is deadlock-free because t ransformation rules are used 
which preserve deadlock-freedom. (The application criteria which have to be 
checked are omit ted here.) The old requirements are still fulfilled because no 
changes are done tha t  are relevant for these requirements. 

Now, we have the possibility to use a verified semantics-preserving SL- 
Transformation rule to decompose the process. The processes after decompo- 
sition are described in figure 13 (with ignoring the dotted parts) .  The  process 
Calli_j is split into Orig~_j and Termj_~. 

5 E x t e n s i o n  

The previous sections described a complete pa th  from informal requirements to a 
provably correct specification of a distributed system. But  this specification is not 
likely to be a final result because the development process for large distr ibuted 
systems like telephone networks never comes to an end. One impor tant  point 
is the extension of the existing specification. An approach is needed tha t  takes 
verified specifications and the desired extensions as an input and produces a 
verified extension of the specification. 

L e t  -+Ai be the transition relation of an automaton Ai, let Ai and Aj be two au- 
tomata that are directly connected, with initial states q0~ and q0j. Let ql be a state of 
Ai and qj be a state of Aj. Then qi is in K-relation (K for german "Kommunikation") 

i to qj (abbreviated q~ Ai K Aj qj ) iff 

~ t , t ' :  (q0~ ~ ~' --~Ai qi A qo~ "~Aj qj 
A t $ (Comm(A~) N Comm(Aj)) = t' $ (Comm(Ai) N Comm(Aj)) 

Informally, q~ is in K-relation to qj iff there exists a possible trace t to q~ in A~ and 
a possible trace t' to qj in Aj such that the same sequence of communications w.r.t. 
Comm(A~)AComm(Aj) is used. Communications outside of Comm(Aj)AComm(Ai) 
can be added everywhere in t and t'. 

Fig. 10. The K-relation 

For the formalization of the effects of an extension and for the calculation of 
necessary changes an auxiliary relatio.n between states of different processes is 
defined. I t  formalizes tha t  if a certain subprocess is in the state p another  sub- 
process might be in the state q (formalized in figure 10). This K-relation is used 
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e.g. to describe how an existing specification can be extended with preserving 

deadlock freedom. 

A B C 

2 I 

i 
~. ..4 ~, .4 

"'"" " ."" connections 

The change of the behaviour of the subantomata A at state I can influence many 
states in B and C. These states are calculated by the K-relation (The dashed arrows 
denote K-related states, e.g. 1 AKB 2). Thus a small change in one small component 
can have a big influence in a component that is far away from the original change. 

Fig. 11. A small system with an example of K-related states 

Figure 11 shows an informal example for the fact that  the change of the 
behaviour at one state can have substantial influences to many other states 
of the system. The system in figure 11 consists of three connected processes. 
The dotted arrows describe the connections between the components. Dashed 
arrows represent the K-relation and therefore possible states where a change 
in one component may lead to a different behaviour in another component. A 
change at state 1 of subautomaton A may lead to a new behaviour at the states 
{1,2,3,4,5} of subantomaton C. 

Now, we explain the extension of a system where the result is deadlock-free, 
too. The requirement 'deadlock freedom' is emphasized because we have observed 
the following: if deadlock freedom is guaranteed it can be easily shown in many 
cases that  other requirements are fulfilled. 

Let us take the example that another requirement is added to the system: 
we allow that  the originating site can terminate a call after dialing a number. 
The new call termination can be described by a trace t that  shall be possible in 
the new system. The idea is to extend each automaton A with the part of the 
trace which belongs to the automaton (t $ Comm(A)). 

Such a trace is added to the automaton by taking two existing states and 
connecting them with the new (added) trace. Then each related state of the other 
au tomata  of other subprocesses is calculated. These states are also extended to 
make the new trace possible in the presence of synchronization and to guarantee 
that  no new deadlocks are introduced. This idea is sketched in figure 12 and an 
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: -  . ~ _ _ _  _ _ / / _ _  

- - -  6 _:.-._ 

"-.. . . . . .  .- '" 

system S 

C 

- ~  t3 t3 
..~" 

"" ........... """ connections 

This figure sketches the general idea of extension. First, we choose a state (here 
state 1 of A) where a new trace t shall be possible, a trace t l  = t $ C o m m ( A )  is 
added from this state to a final state. Then, the K-related states of the extended 
state in B axe calculated (here 3 and 6, the K-relation is painted as dashed arrows). 
These states are extended with t2 = t $ C o m m ( B )  to final states of B. Finally the 
K-related states of 3 and 6 are calculated in C and these states are extended with 
t3 = t $ Comm(C) .  If S is deadlock free before the extension then it is deadlock-free 
afterwards, too. 

Fig. 12. Extension of a distributed system with a new trace 

example is presented in figure 13. The task is to extend the system in such a way 
tha t  it is possible for the user to go on-hook after dialing a number.  The  s tate  3 
of T~o~g has to be extended. The new terminat ion is described with a new trace 
which is added stepwise to the automata .  The extension algorithm which is used 
here is described with optimizations in [16]. 

The new specification is deadlock free because a deadlock freedom preserving 
t ransformat ion rule is used. The new trace is possible because the extended s ta te  
is reachable. If we want to prove the other requirements we can reuse the old 
proofs. The markings of the old proofs are used to calculate the markings for the 
added part .  In most  cases, the old markings need not be changed. If  changes for 
these markings are needed, they are calculated by a back-tracking algorithm. 

The  idea to reuse (parts of successful) proofs is adopted from approaches for 
sequential programs (like [28] and related to the work of summarizing small proof  
steps to a large step or tactics). An example for the extension of an existing proof  
is given in figure 14. (The formal requirement described in figure 3 is decomposed 
into two requirements, the K-relation is used as auxiliary information in the 

proof.) 

6 C o n c l u s i o n s  a n d  F i n a l  R e m a r k s  

The previous sections describe a general methodology based on several individual 
approaches for the incremental development of distributed systems. Specification 
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The trace O d i s c o n ~ . O d i s c o m p l ~ . d i s c o n ~  . d i s c o m p l ~ j  . T d i s c o n 2 . T d i s c o m p l 2  is added 
to the system. Black and gray states show K-related states that are used during 
the extension. The extension is described by the dotted parts. Gray states are not 
extended because an optimization algorithm is applied. 

Fig. 13. Extension of the system 

engineering is shown as a way to come to large verified specifications by small 
intuitive steps. It offers solutions to typical problems like system decomposit ion 
and extension of distributed systems. In contrast to other formal methods  where 
only static systems can be developed, our approach enables us to develop exten- 
sible systems.  Other approaches for an incremental design of systems like [7, 31] 
describe only the development of asynchronous protocols with the restriction 
that new communicat ions  are added one at a time. 

The basic ideas of  specification engineering can be transferred to other lan- 
guages that are based on extended finite state machines (like LOTOS [20]). Fu- 
ture research will cover possibilities and limitations of this idea. Typical phases 
of  the development of extensible systems are summarized in table 3. The way to 
come to a first verified specification are steps 1 and 2. An extension of a system 
deals with a sequence of steps 1 and 3. Note  that not every typical task must be 
performed, e.g. in step 3 we can decide for a decomposit ion or an extension of 
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This figures shows the necessary extensions of a proof after the extension of the 
specifications. Markings in dashed boxed are re-calculated or new markings as a 
result of the marking algorithm. 

Fig. 14. Extending an old proof 

the functionality and if we use semantics-preserving t ransformation rules then 
no additional verification needs to be done. Otherwise requirements tha t  are not 
guaranteed by the rule need to be proven again. 

step name of phase 

requirement 
engineering 

initial 
specification 

specification 
engineering 

related subjects 
informal description 
informal requirements 
formal requirements 
typical system behaviour 
superset of all possibilities 
restriction 
verification 
decomposition 
extension of functionality 
transformation 
verification of new parts 

Table  3. Phases in the development of extendable systems 

We applied our approach to show the extensibility of a given Private  Auto- 
mat ic  Branch Exchange (PABX)-specification and are working on a specification 
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of a multi-user mult imedia system [17]. By calculating which changes are needed 
in the existing software and whether any interaction (problems if more than  one 
additional service is active at  a time) occur the introduction of new services and 
features becomes much more easier. 

Our case studies show tha t  formal methods of ProCoS and CoCoN seem 
to be suitable for problems from the teIecommunications area. Experiences of 
academic case studies [15, 24] can be scaled up to industrial-size problems. Nev- 
ertheless research is needed to complete each par t  of our method.  The idea of 
reusing proofs has to be studied in more detail. The new t ransformat ion rules 
for the extension have to be rewrit ten for specifications with arbi t rary  local vari- 
ables. Tools have to be built tha t  support  the proofs of requirements and the 
incremental development by designers. 

This paper  emphasizes tha t  approaches from different areas (like the trans- 
formational  approach,  interactive verification tools, model-checking) must  come 
together  to build a formal method which can be used for the development of 
large scale extensible industrial applications. 
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