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A b s t r a c t .  In this article we describe the theoretical foundations for 
the VVT-RT test system (Verification, Validation and Test for Reac- 
tive Real-Time Systems)which supports automated test generation, test 
execution and test evaluation for reactive systems. VVT-RT constructs 
and evaluates tests based on formal CSP specifications [6], making use 
of their representation as labelled transition systems generated by the 
CSP model checker FDR [3]. The present article provides a sound for- 
mal basis for the development and verification of high-quality test tools: 
Since, due to the high degree of automation offered by VVT-RT, human 
interaction becomes superfluous during critical phases of the test pro- 
cess, the trustworthiness of the test tool is an issue of great importance. 
The VVT-RT system will therefore be formally verified so that  it can be 
certified for testing safety-critical systems. The present article represents 
the start ing point of this verification suite, where the basic strategies 
for test generation and test evaluation used by the system are formally 
described and verified. VVT-RT has been designed to support automa- 
tion of both untimed and real-time tests. The present article describes 
the underlying theory for the untimed case. Exploiting these results, the 
concepts and high-level algorithms used for the automation of real-time 
tests are described in a second report  which is currently prepared [14]. 
At  present, VVT-RT is applied for hardware-in-the-loop tests of railway 
and tramway control computers. 

K e y w o r d s :  CSP - -  FDR - -  may tests - -  must tests - -  reactive systems 
- -  refinement - -  test  evaluation - -  test generation 

1 I n t r o d u c t i o n  

Design,  execu t ion  and  eva lua t ion  of t r u s t w o r t h y  tes ts  for sa fe ty-cr i t i ca l  sys t ems  
requi re  cons iderab le  effort and  skil l  and  consume a large pa r t  of  t o d a y ' s  de- 
ve lopmen t  costs  for so f tware-based  sys tems .  I t  has  to  be expec ted  t h a t  wi th  
conven t iona l  techniques ,  the  tes t  coverage to  be requi red  for these sys t ems  in 
the  near  fu tu re  will  become  techn ica l ly  u n m a n a g e a b l e  and  lead  to  u n a c c e p t a b l e  
costs.  Th i s  hypo thes i s  is s u p p o r t e d  by  the  growing c omple x i t y  of  a pp l i c a t i ons  
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and the increasingly strict requirements of certification authorities with respect 
to the verification of safety issues. For these reasons methods and tools helping 
to automize the test process gather wide interest both in industry and research 
communities. "Serious" testing - not just playing around with the system in an 
unsystematic way - always has to be based on some kind of specification describ- 
ing the desired system behaviour at least for the situations covered by the test 
cases under consideration. As a consequence, the problem of test automation is 
connected to formal methods in a natural way, because the computer-based de- 
sign and evaluation of tests is only possible on the basis of formal specifications 
with well-defined semantics. 

Just as it is impossible to build theorem provers for the fully mechanized 
proof of arbitrary assertions, the general problem of testing against arbitrary 
types of specifications cannot be solved in a fully automized way. The situation 
is much more encouraging, however, if we specialize on well-defined restricted 
classes of systems and test objectives. This strategy is pursued in the present 
article, where we will focus on the test of reactive systems. 

The idea to apply the theoretical results about testing in process algebras to 
practical problems was first presented by Brinksma, with the objective to au- 
tomize testing against LOTOS specifications. His concept has been applied for 
the automation of OSI conformance tests; see [1] for an overview. Today, testing 
against different types of formal specifications has gained wide interest both for 
engineers responsible for the quality assurance of safety-critical systems and in 
the formal methods community: To name a few examples, Gaudel [4] investigates 
testing against algebraic specifications, HSrcher and Mikk in collaboration with 
the author [7, 8, 9] focus on the automatic test evaluation against Z specifica- 
tions and Miillerburg [11] describes test automation in the field of synchronous 
languages. 

Rather than presenting a new testing theory for reactive systems, we inves- 
tigate how to construct implementable and provably correct test drivers on the 
basis of results from testing theory. Our approach is based on the untimed CSP 
process algebra and uses Hennessy's testing methodology [5] as starting point. 
To apply the concepts in practice, the VVT-RT tool (Validation, Verification and 
Test for Reactive Real-Time Systems) offers the following possibilities: 

- symbolic execution of CSP specifications 
- formal validation and verification of the specification 
- automized generation of test cases based on the CSP specification 
- automized test execution 
- automized test evaluation, including the check of real-time properties 
- automized test documentation 

Typical applications addressed by our approach are systems with discrete 
interfaces and an emphasis on possibly complex control functionality. Examples 
are railway control systems, telephone switching systems and network protocols. 
At present the VVT-RT system is used for the test of computers controlling com- 
ponents of railway interlocking systems. The first application was the automized 
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test of a PLC system controlling signals, traffic lights and train detection sen- 
sors for a tramway crossing, documented in [2, 12, 13]. VVT-RT makes use of 
the model checker FDR developed by Formal Systems Ltd [3]. 

This article focuses on theoretic results that  are essential for the trustworthy 
practical application of our testing approach. Examples, industrial applications 
and a summary of the benefits to be expected from such a test automation 
concept are described in [16]. 

The article is structured as follows. In Section 2 we introduce notations and 
conventions used in subsequent sections. Section 3 introduces transition graphs 
and results from ttennessy's testing theory. Section 4 contains the main results, 
where we investigate implementable, minimal test classes and trustworthy test 
drivers. The full proofs of the theorems discussed in this paper are contained 
in a technical report [15] which may be obtained from the authors. Section 5 
contains conclusions. 

2 P r e l i m i n a r i e s  

2.1 C S P  O p e r a t o r s ,  S e m a n t i c s  a n d  R e f i n e m e n t  

In this section we introduce some notation and conventions used throughout the 
paper. 

Tests and test drivers will be specified in the process algebraic framework 
of Communicating Sequential Processes (CSP) [6]. We use the following set of 
CSP operators: STOP (deadlock process), SKIP (terminating process), 
-+ (prefixing), [7 (internal choice), ~ (external choice), II (parallel composition 
with synchronization on common events), Itl (interleaving operator without syn- 
chronization), \ (hiding),  and ^(interrupt). Operator ( x :  {a l , . . . ,  a~}-+P(x)) 
abbreviates al--~P(al)[7 . . .  ~ an --~ P( an ), and Vl~:{a 1 ..... a~}(x--~P(x)) is an 
abbreviation for al --+ P(al) n . . .  ~ an ~ P(a~). As basic programming opera- 
tors we use i f  t h e n  else, c? (input from channel c) and g~B (guarded com- 
mand, g is the guard and B the body). 

For the specification of recursive processes we use sets of recursive equations 
rather than an explicit H-operator. The alphabet of a process P is denoted by 

We use the standard semantics for CSP processes: Traces(P) C ~(P)* (trace 
semantics), Fail(P) _ ~(P)* • P ~(P) (failure semantics, P denotes the power 
set operator), and Div(P) C c~(P)* (divergences of process P). The elements 
s E Traces(P) are the observable traces generated by P. A failure (s, A) E 
Fail(P) records the fact that  process P may refuse to engage in any action of 
set A after having performed trace s. Due to nondeterminism there may be 
several A, A' C ~(P)  with (s, A) E Fail(P) and (s, A') E Fail(P). The refusals 
of a process P are defined by Itef(P) =dr {A I (( >, A) E Fail(P)}, where ( > 
denotes the empty trace. A divergence s E Div(P) denotes the situation that  
process P may diverge after having engaged in trace s. Diverging processes show 
completely unpredictable behaviour, denote by CHAOS in CSP. 
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Infinite behaviours are defined as limites of prefix closed sets of finite be- 
haviours [6, p. 132]. We use the standard fixpoint semantics for recursive pro- 
cesses. The set maxTraces(P) denotes the union of the set of all terminated 
behaviours and the set of infinite behaviours of P. 

In this paper we consider the following refinement relations: 

- trace refinement: P E_T Q iff Traces(Q) c_ Traces(P) 
- failures refinement: P EF Q iff Fail(Q) C_ Fail(P) 
- failure-divergence refinement: P E_FD Q iff 

Fail(Q) C Fail(P) A Div(Q) C_ Ply(P). 

For x E (T,  F, FD} we define process equivalence P =~ Q by 
P E_xQAQ E~P.  

For s E Traces(P) P/s denotes the process that  behaves like process P after 
having engaged in trace s. For arbitrary (finite) sequences s = (al,. . . ,  an) the 
function first(s) returns al and last(s) returns a~. The functions tail(s), front(s) 
are defined by s = (first(s))~ail(s) and s = front(s)~(last(s)), where ~ denotes 
concatenation on sequences. Function ~ returns the length of a sequence, func- 
tion IA projects traces to set A, e.g. (a, b, b, a, c)[{b, c} = (b, b, c). The set [p]0 
is defined as [p]0 =d/ {e E (~(P) l (3u e Traces(P/s) �9 head(u) = e)}. Predi- 
cate a in  ( a l , . . . ,  a~) is true iff there exists i e { 1 , . . . ,  n} with a = a,. Relation 
s _~ t denotes the prefix relation on sequences. Operator \ stands for minus on 
sets. 

2 . 2  A l t e r n a t i v e  R e f i n e m e n t  D e f i n i t i o n s  

The notion of correctness of an implementation IMP w.r.t, a specification SPEC 
is given by the different refinement relations introduced above, depending on the 
semantics which is currently investigated. However, in this paper we will slightly 
re-phrase these refinement notions in order to emphasize their relationship to 
the test classes introduced by Hennessy. (We assume without loss of generality 
that  IMP and SPEC use the same set of visible interface events, while their 
internal hidden events may differ). 

1. Sa fe ty :  The implementation only generates traces alowed by the specifica- 
tion. This corresponds to the notion of trace refinement: 

SPEC E_s IMP iff Traces(IMP) C Traces(SPEC) 3 

2. R e q u i r e m e n t s  C o v e r a g e :  After having engaged in trace s, the implemen- 
tat ion never refuses a service which is guaranteed by the specification. 

SPEC E_c IMP iff 
(V s: Traces(SPEC)n Traces(IMP) �9 

t~ef(IMP/s) C_ R~ef(SPEC/s)) 

3 We have introduced a new subscript for trace to indicate the correspondence to the 
safety notion 
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Since ( ) E Traces(SPEC) n Traces(IMP), this implies that a trace which 
can never be refused by SPEC will also be guaranteed by IMP. 

3. Non-Divergence:  The implementation may only diverge after engaging in 
trace s if also the specification diverges after s. 

SPEC E-D IMP iff Div(IMP) C_ Div(SPEC) 

4. Robus tness :  An implementation is robust w.r.t, a specification if every 
traces that can be performed by the specification is also a valid trace of the 
implementation. 

SPEC E-~ IMP iff Traces(SPEC) C Traces(IMP) 

The notion of robustness, introduced in [1], can also be expressed as IMP GT 
SPEC. This relation has not received much attention in the literature about 
CSP refinement, though it is a common requirement in practical applications: 
For example, robustness covers the situeition where the specification contains 
nondeterminism for exception handling. Failures refinement only requires that 
every guaranteed behaviour of the specification will also be performed by the 
implementation. Robustness additionally requires that exceptional behaviours 
of the specification are also covered by the implementation. 

The advantage of the new refinement notions is the possibility to give ele- 
gant alternative characterizations of these notions by means of mutually distinct 
test classes. Before introducing these test classe we state the following obvious 
relations between the standard and the new refinement notions. 

L e m m a  1. 

1. E_s = ET 
~. Es n E c = E F  
3. Es n Ec n ED=E~D 

[] 

Furthermore we define EFDI~=dI ES n E c n ED n E_n (failure-divergence 
refinement plus robustness) . 

3 T r a n s i t i o n  G r a p h s  a n d  T e s t  C l a s s e s  

In this section we describe an implementable encoding of the semantics of CSP 
processes by means of transition graphs. Afterwards we discuss those results of 
Hennessy's testing theory [5] that are relevant for the development of imple- 
mentable test drivers. 
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3.1 T r a n s i t i o n  G r a p h s  

Automated test generation will be performed by mechanized analysis of the spec- 
ification, which results in a choice of traces and possible continuations to be 
exercised as test cases on the target system. Automated test evaluation will be 
performed by observing traces and their continuations in the target system and 
checking mechanically, if these behaviours are correct with respect to the spec- 
ification. Obviously, these tasks are fundamentally connected to the problem 
of mechanized simulation of the specification which is in general based on the 
following theorem [5, p. 94]. 

T h e o r e m  2 ( N o r m a l  F o r m  T h e o r e m ) .  Let P be a CSP process, interpreted 
in the failures-divergence model. 

1. If  ( ) ~ Div(P), then P =FD n R:R~/(p)(x : ([p]0 \ R) --+ P/{x}) 
2. I f  Div(P) -- 0,  then P / s  =EL) P(s) with 

P(s) =dI n R:n~f(p/~)(x : ([P/s] ~ \ R)--+ P(s"(x)))  
3. For arbitrary P, P E_F D P( ( ) ) holds. 

[] 

This theorem shows how CSP specifications can be symbolically executed: 
choose a vMid refusal set R of P/s  at random, engage into any one of the remain- 
ing events e E [P/s]~ and continue in state PisS(e). Given an implementation 
of a simulator, the problem of test generation for a given specification can be 
related to the task of finding executions performable by the simulator. Test eval- 
uation can be performed by determining whether an execution of the real system 
is also a possible execution of the simulator. 

With these general ideas in mind, the first problem to solve is how to re- 
trieve the semantic representation - i. e., the failures and divergences - of a 
specification written in CSP syntax. This has been solved by Formal Systems 
Ltd and implemented in the FDR system [3], for the subset of CSP specifications 
satisfying: 

- The specification only uses a finite alphabet. As a consequence, each channel 
admits only a finite range of values. 

- Each sequential process which is part of the full specification can be modelled 
using a finite number of states. 

- The CSP syntax is restricted by a separation of operators into two levels: 
The lower-level process language describes isolated communicating sequential 
processes by means of the operators ---~, 9 ,  ~,  ;, X = F(X).  The composite 
process language uses the operators II, Itl, ^, \ ,  f* to construct full systems 
out of lower-level processes. 

Under these conditions the CSP specification may be represented as a labelled 
transition system [10] which can be encoded as a transition graph with only a 
finite number of nodes and edges. Basically, the nodes of this directed graph are 
constructed from Hennessy's Acceptance Tree representation [5] by identifying 
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semantically equivalent nodes of the tree in a single node of the transition graph. 
The edges of the graph are labelled with events, and the edges leaving one node 
carry distinct labels. Therefore, since the alphabet is finite, the number of leaving 
edges is also finite. A distinguished node represents the equivalence class of the 
initial state of the process P. A directed walk through the graph, starting in the 
initial state and labelled by the sequence of events ( e l , . . . ,  e~) represents the 
trace s = ( e l , . . . ,  en) which may be performed by P.  The uniquely determined 
node reached by the walk s represents the equivalence class of process state 
P/s .  The labels of the edges leaving this node in the graph correspond to the 
set [P/s]  ~ of events that  may occur for process P after having engaged in s. The 
set of internal states reachable in process P after s is encoded in one node of the 
transition graph as the collection of their refusal sets, one for each internal state. 
If two directed walks s and u lead to the same node in the transition graph, this 
means that  P / s  = P / u  holds in the failures model. 

The problem of automatic test evaluation now can be re-phrased as follows: A 
test execution results in a trace performed by the implementation. Evaluating the 
transition graph, it may be verified whether this execution is correct according 
to the specification. The problem of test generation is much more complex: 
Theoretically, the transition graph defines exactly the acceptable behaviours 
of the implementation. But at least for non-terminating systems, this involves 
an infinite number of possible executions. Therefore the problem how to find 
relevant test cases and how to decide whether sufficiently many test executions 
have been performed on the target system has to be carefully investigated. 

3.2 Te s t  Classes  

Tes t s  t o  C h a r a c t e r i z e  R e f i n e m e n t  In this section we recall results of tten- 
nessy's testing theory [5] that  are relevant for the construction of the test drivers 
in Section 4.3. 

Hennessy introduced processes U, so-called experimenters, with a(SPEC)  = 
a ( U )  \ {w}, where w is a specific event denoting successful execution of the 
experiment which consists of U running in parallel with the process to be tested 4. 
Experimenters coincide with our notion of test cases, so we will only use the latter 
term. An execution of the test case U for the test of some system P is a trace 
s E Traces(P H U). The execution is successful if (w / in  s. Depending on U and 
P,  two satisfaction relations may be distinguished with respect to the outcome 
of test executions: 

D e f i n i t i o n  3. For a process P and an associated test case U we say 

1. P may U ~-d/ (3s  : Traces(P [] U) �9 (w / in  s) 
2. P must U =-d/ (Vs : maxTraces(P [] U) �9 (w / in  s) 

O 

4 In [5] also another local experimenter event '1' has been introduced which enables 
the experimenter to control the course of a test execution. However, for the specific 
Hennessy test classes referenced in this article, this event is not needed. 
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P may U holds if there exists at least one successful execution of (P  H U). 
Only if every execution of (P  II U) leads to success P must U holds. 

Note that  in general we cannot construct test cases that  indicate failure in 
addition to success, because the failure may materialize as a situation where 
the test execution is blocked or diverges. Even if only non-diverging processes 
are tested we would need a priority concept for transitions. We are currently 
elaborating a corresponding theory for reactive real-time systems. Here, expected 
events always have to occur within certain time bounds, so failures may be 
detected by means of timeouts. 

Based on the introduced refinement notions we classify test according to their 
capability to detect certain implementation faults. 

D e f i n i t i o n 4 .  Let U be a test case. 

1. U detects safety failure s iff (V P * P must U ~ s ~ Traces(P)) 
2. U detects requirements coverage failure (s, A) 

iff (V P �9 P must U ~ (s, A) ~ Fail(P)) 
3. U detects divergence failure s iff (V P �9 P must U ~ s ~ Div(P)) 
4. U detects robustness failure s iff (V P * P may U ~ s E Traces(P)) 

[] 

A main result of [5] is the definition of test classes which detect exactly the 
failures introduced in the previous definition. 

D e f i n i t i o n 5 .  For a given specification SPEC, let s E a( SPEC)*, a E a( SPEC), 
and A C a(SPEC).  The class of Hennessy Test Cases is defined by the following 
collection of test cases: 

1. Safety Tests Us(s, a): 

Us(s, a) =dr i f  s = ( ) 

t h e n  (w --~ SKIP Oa --+ SKIP) 
else (w SKIP (head(s) Us( ail(s), a)) 

2. Requirements Coverage Tests Uc(s, A): 

Uc(s, A) =dr i f  s = ( ) 
t h e n  (a : A --+ w ---* SKIP) 

else  (w -~ SKIP [t head(s) --~ Uc(tail(s), A)) 

3. Divergence Tests UD(S): 

Uv(s) =dr i f  s = ( ) 
t h e n  w--~ SKIP 
else  (w --~ SKIP ~ head(s) -+ Up(tail(s))) 
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4. Robustness Tests Up(s): 

Up(s) =all i f  s = ( ) 
t h e n  w --~ SKIP 
else head(s)-~ Up(tail(s)) 

[] 

Definition 5 is motivated by the following lemma: 

L e m m a  6. 

1. Us(s, a) detects safety failure s~(a). 
2. Uc(s, A) detects requirements coverage failure (s, A). 
s. y (s) detects divergence failure s. 
4. Up(s) detects robustness failure s. 

[] 

Note that  the Hennessy test classes even characterize the associated failure 
types: If s ~ (a) ~ Traces(P) then P must Us(s, a) follows. Analogous results 
hold for Uc(s, A), Up(s), Up(s). However, we are less interested in this property, 
because test cases of practical relevance should be able to detect more than one 
failure type during test execution. 

In our context s E Div(P) means P/s  = CHAOS in the sense of [6], that  is, 
P / s  may both diverge internally (livelock) and produce and refuse arbitrary ex- 
terualevents. The tests Up(s) have been designed by Hennessy to detect internal 
divergence only. Conversely, the tests Us(s, a) and Uc(s, A) can detect exter- 
nal chaotic behaviour but cannot distinguish internal divergence from deadlock. 
However, using the three test classes together enables us to distinguish deadlock, 
livelock and external chaotic behaviour. Note that  P must Us(s, a) also implies 
s ~ Div(P), because divergence along s would imply that  every continuation of 
s, specifically s~(a) would be a trace of P. P must Uc(s, A) implies s ~ Div(P), 
because divergence along s implies the possibility to refuse every subset of (~(P) 
after s. 

Hennessy's results about the relation between testing and refinement can be 
re-phrased for our context as follows: 

T h e o r e m  7. 

1. I f  SPEC must Us(s, a) implies IMP must Us(s, a) for all a E ~(SPEC), 
s E (~(SPEC)*, then SPEC C s IMP. 

2. I f  SPEC must Uc(s, A) implies lMP must Uc(s, A) for all s E Traces(SPEC) 
and A C ~(SPEC), then SPEC E_c IMP. 

3. I f  SPEC must UD(S) implies IMP must UD(S) for all s E ~(SPEC)*, then 
SPEC E_D IMP. 

4. I f  SPEC may Up(s) implies IMP may Un(s) for all s E ~(SPEC)*, then 
SPEC E_n IMP. 

[] 
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If SPEC  E_D IMP holds, the four implications of the theorem become equiv- 
alences. Theorem 7 shows that  only requirements-driven test design is needed: 
It is only necessary to execute test cases that  will succeed for the specification. 
Due to possible nondeterminism in SPEC,  IMP and U the properties covered 
by Theorem 7 cannot be verified by means of black-box tests alone, because 
they require the analysis of every possible execution of S PEC II U and IMP II U. 
Therefore a test monitor collecting information about the executions performed 
so far is, in general, unavoidable. Note, that  this is no disadvantage of the de- 
fined classes of tests but  inherent in every testing approach that  is sensitive to 
nondeterminism. 

4 Minimal  Test Classes and Test Drivers 

The previous section summarized the relevant theoretical aspects of testing for 
our approach. However, when constructing test drivers one is also confronted 
with pragmatical concerns, such as implementability. Moreover, pragmatics in- 
clude the definition of minimal test classes to avoid redundancy, characterization 
of test strategies that  eventually reveal every possible implementation failure, 
and last but  not least the implementation of such strategies by test drivers that  
simultaneously simulate the operational environment of the process to be tested. 
These topics will be discussed in this section. 

4.1 A d m i s s i b l e  Tes t s  

First of all we characterize a class of tests that  is particularly well-suited for 
implementation. These tests satisfy the following requirements: 1) If the test 
execution is successful success will be indicated within a bounded number of 
events, 2) as test drivers have to know when a test execution has been successfully 
completed, these tests perform a termination event after signalling success, 3) 
success is signalled at most once during a test execution, and 4) the tests can 
be successfully passed (according to the must interpretation) by at least one 
process. 

This leads to the following definition: 

D e f i n i t i o n 8 .  An admissible test case for the test against SPEC is a CSP pro- 
cess U satisfying 

1. (~(U) = (~(SPEC) U {w), w ~ (~(SPEC) 
2. U sat  S u ( s , R )  with 

Su(~, R) - 
(3 n E N * V s E Traces(SPEC) ,, V R E R e f ( S P E C / s )  �9 

E [U/s] ~ 
w ~ ~ ^ #s  < ,~ ^ ~ ((~) i~ s) ^ u / s - ( ~ )  = sK• 

where n C N is a constant not depending on s or R. 
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3. There exists a process P such that  P must U. 

[] 

The following examples illustrate the intuition standing behind the above 
definition by presenting test cases tha t  are not admissible. 

Example 1. The test case U = a --* S K I P  ~ b --~ (w --+ SKIP  ~ U) would not be 
admissible in the sense of Definition 8, because it is uncertain whether success 
will be indicated after event b. 
[] 

Example 2. The test case U = a --~ w -~ SKIP  ~ S T O P  would not be admissible 
in the sense of Definition 8, because no process can satisfy U as a must- tes t .  
[] 

Example 3. The test case 

u = n.:N U(n) 

U(n) = (n > O)&a -+ U(n - 1) ~ (n = 0)&w --4 SKIP  

would be well-defined in the infinite traces model of Roscoe and Barret [17], and 
P must  U holds for process P - a -+ P. Moreover, if success w is possible after 
U / s  it will never be refused. However, U would not be admissible in the sense 
of Definition 8, because no global upper bound exists after that  every execution 
of (P [l would show success. 
[] 

L e m m a 9 .  The Hennessy tests specified in Definition 5 are admissible in the 
sense of Definition 8. 
[] 

4.2  M i n i m a l  T e s t  C l a s s e s  

When performing a test suite to investigate the correctness properties of a sys- 
tem, a crucial objective is to perform a minimal number  of test cruses. The 
following definition specifies minimal  sets of Hennessy test, which are still trust- 
worthy in the sense tha t  if the implementat ion passes these tests then it is a 
refinement of the specification w.r.t, the currently chosen semantics. 

D e f i n i t i o n  10. For a given specification SPEC,  we define the following collec- 
tions of test cases: 

1. ~ s ( S P E C )  = ( Us(s, a) I s E T r a c e s ( S P E C ) - D i v ( S P E C )  A a ~ [SPEC/s]  ~ 
2. 7 t c ( S P E C )  = ( Ue(s,  A) [ s ~ Traces(SPEC) - D iv (SPEC)  A 

A C_ [SPEC/s]  ~ A 
(V R :  R e f ( S P E C / s )  * A ~: R) A 
(V X : P A -  {A}* ( 3 R :  R e f ( S P E C / s )  * X C - R))} 
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3. 7tD(SPEC) = { UD(S) t s E Traces(SPEC) - Div(SPEC) A 
(V u :  Traees(SPEC) - Div(SPEC) * 

s <_ u A [SPEC/u] ~ = ~ ~ s = u)} 
4. ~R(SPEC)  = { Un(s) I s C Traces(SPEC) A 

(V u :  Traces(SPEC). 
s <  u A [SPEC/u] ~ = O ~ s = u)} 

U] 

The following theorems state that  in order to characterize the refinement 
notions addressed by Theorem 7, it suffices already to exercise the tests specified 
in Definition 10 on the implementat ion.  Compared  to the full set of ttennessy 
tests, defined for all sequences s E a (P)*  of events and sets A C a ( P ) ,  this 
represents a considerable reduction of the test cases to be considered. 

T h e o r e m  11. If  

7-I(SPEC) =d] 7-ls(SPEC) U :Hc(SPEC) U 7-~D(SPEC) U :HR(SPEC) 

for a given specification SPEC, then SPEC must U holds for all U E Tl(SPEC). 
[] 

T h e o r e m  12. Given SPEC and the corresponding r classes H~( SPEC), x E 
{S, C, D, R}, the following properties hold: 

1. I f  lMP must U for all U E ?-ls(SPEC) , then SPEC E s IMP. 
2. I f  IMP musf U for all U E ?-lc(SPEC), then SPEC E c IMP. 
3. I f  lMPmust  U for all U C ~D(SPEC),  then SPEC U_D IMP. 
4. I f  IMP may U for all U E ~R(SPEC),  then SPEC ~R IMP. 

[] 

This theorem shows that  for terminat ing systems, refinement properties can 
be verified by performing a finite number  of tests. (Note, that  all processes have 
only finite internal nondeterminism.)  

The  definitions of ?-/s, 7-/c, ?-/D indicate further that  it is not necessary to 
perform any tests for traces s after which SPEC diverges ~, since in such a case 
SPEC/s  will allow chaotic behaviour which does not restrict the admissible 
behaviours of IMP/s.  For the test of safety properties, the definition of ?-/s 
states that  we only have to use those test cases Us(s, a), where s is a trace of 
SPEC, but SPEC/s  does not admit  event a. For the requirements coverage tests 
Uc(s, A), ?iv indicates that  only the smallest sets A, such tha t  SPEC/s  can 
never refuse A completely, have to be tested. As a consequence, it is not necessary 
to exercise any tests Uc(s, A), if SPEC/s  may refuse the full alphabet.  

The  definitions of 7-/D and ~ n  are mot ivated by the fact that  for the test of 
divergence and robustness properties we only have to analyze maximal traces: 

Of course, it is questionable if specifications allowing divergence will be used in 
practice at all. 
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I f  SPEC terminates  or blocks after a trace u, the tests corresponding to proper 
prefixes of u are covered by UD(U) and UR(u), so only the latter are contained 
in T/D and T/R respectively. 

The  next theorem investigates minimali ty  of the test classes T/s and T/c  
defined above. 

T h e o r e m l 3 .  Given SPEC and the corresponding test classes 7~s,T/c, the fol- 
lowing properties hold: 

1. I f  T~ C T/s there exists a process P satisfying P must U for all U E T~ but 
not refining SPEC in the trace model. 

2. I f  T~ C T/c there exists a process P satisfying P must U for all U E T/s UT/ 
but not refining SPEC w.r.t, requirements coverage. 

3. If Uc(s, A) E T/c and B C A then -~ (SPEC must Uc(s, B)). 

[] 

Theorem 13 shows tha t  T/s and T /c  are indeed minimal:  I f  one test U(s, a) 
is removed from T/s, a process with safety failure s~(a) could be constructed, for 
which all the remaining tests would succeed. Removing a test Uc(s, A) from T/c  
would admit  processes P satisfying the remaining tests without refining SPEC 
in the failures model.  Moreover, the set A cannot be reduced in Uc(s, A) in 7-/c, 
since otherwise SPEC would no longer pass this test. 

The test collections "~D and T/R, however, cannot be defined as minimal  sets, 
as soon as SPEC describes a non-terminat ing system: If  s E maxTraces(SPEC) 
is an infinite computa t ion  of SPEC, T/D and T/R must  contain infinitely many  
tests associated with prefixes sl < s~ < s3 < . . .  of s, and each infinite subset 
of these tests would suffice to verify correct behaviour along s. At least we can 
state that  any T/~ C T/D satisfying 

(V u :  Traces(SPEC) - Dw(SPEC) * B s: T/~ D * u ~ s) 

is sufficient to detect divergence failures against SPEC and any 7_/o C 7/R 

satisfying 

(V u: Traces(SPEC) - Div(SPEC) * 3 s: T/o . u ~ s) 

is sufficient to detect robustness failures. 

4.3 T e s t  D r i v e r s  

T h e  C o n c e p t  o f  T e s t  D r i v e r s  Test Drivers are hardware and /or  software 
devices controlling the executions of test cases for a target  system. To formalize 
this notion, recall tha t  a context in CSP is a te rm C(X) with a free identifier 
X.  Apar t  f rom the free identifier X, C(X) may contain other CSP processes as 

parameters .  
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D e f i n i t i o n 1 4 .  A Test Driver for the test against SPEC is a context :D(X) using 
admissible test cases Ui satisfying c~(SPEC) = a(Ui) \ {w} as parameters. 
[] 

We will focus on test drivers of the form 

:D(X) = (i := 0); * ( Ui N XA( w ~ monitor?next 
--. (if next t h e n  i :-- i + 1; SKIP else SKIP))); 

with admissible test cases Ui. A test driver of this type will execute the test cases 
in a certain order U1, U2,.. . ;  one test case at a time and with only one copy of 
the target system X = IMP running. As soon as a test case signals success w, 
the execution will be interrupted. An input monitor?next will be required from 
a process monitoring the test coverage achieved so far with the actual test Ui ~. 
If the monitor signals next = true, the next test case Ui+l will be performed, 
otherwise Ui will be repeated. If Ui is a may-test, next is always set to true. 

The main criterion that test drivers have to satisfy is given in the next 
definition. 

D e f i n i t i o n l b .  Let 7)(X) be a test driver for the test against SPEC, perform- 
ing test cases of a collection/4 in the order U1, [72, U 3 , . . . .  Let E E { E__T , __F 
, E FD, ___R }. Then 7)(X) is called trustworthy for E -test against SPEC, iff the 
following conditions hold: 

1. U contains a subset/4 ~ which characterizes _E-refinement against SPEC. 
2. For every safety-, requirements coverage-, divergence- or robustness-failure 

violating _ ,  there exists an n E N such that Un E / l  E can detect this failure 
in the sense of Definition 4. 

[] 

Definition 15 covers the intuitive understanding of trustworthiness in a formal 
way: whenever a fault may occur for IMP, this can be uncovered by a test case 
which is guaranteed to be chosen by the driver after having selected a finite 
number of other test cases. 

T h e o r e m  16. 

O(X)  = (i := 0); * ( U, II XA( w ~ monitor?next 
--+ (if next t h e n  i :-- i + 1; SKIP else SKIP))); 

applying the tests U C 7-l according to Definition 10, ordered by the length of the 
defining traces, is trustworthy for E_FOR-refinement. 
[] 

Analogous results hold for the other refinement notions E_s, E c ,  _ER, ED , _EF 
E__FD . 

s The implementation of test monitors is not addressed in this paper. 
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T e s t  D r i v e r s  f o r  R e a c t i v e  S y s t e m s  The testing methodology presented so 
far will now be specialized on the development of test drivers for the automated 
test of reactive systems. 

In the context of reactive systems it is useful to distinguish between the target 
system and its operational environment in an explicit way, when investigating 
properties of a specification SPEC and implementation IMP. The very paradigm 
of reactive systems is to interact continuously with their environment. In many 
applications certain hypotheses are made about the environment behaviour. This 
means that  the target system is not expected to act properly in every context. 
Indeed, the objective of the test suite is to ensure the correct behaviour of 
the target system when running in an operational environment satisfying these 
hypotheses. Therefore test drivers have to test the target system behaviour while 
simultaneously simulating the operational environment. 

To formalize the notion of an operational environment we consider expres- 
sions of the type 

SPEC = E(ASYS)  \ (a(E(ASYS)) - I) 

with the following interpretation: E(X) is a context and A S Y S  is the abstract 
specification of the target system to be developed. The processes appearing a~ 
parameters in E represent the operational environment. The correctness of a 
reactive system implementation will only be decided with respect to a subset 
I of interface events. Therefore the specification consists of E(ASYS) with all 
events apart  from I concealed. The implementation can be described by the term 

IMP = E(SYS) \ (a(E(SYS)) - I) 

where SYS  is the target system plugged into environment s It is natural  to 
require that  I C_ a(E(ASYS))  n a(E(SYS)). 

In many applications, the configuration of a reactive system and its environ- 
ment will be appropriately described by the following definition: 

D e f i n i t i o n 1 7 .  A standard configuration (E, ASYS,  SYS,  I) (for reactive sys- 
tems) consists of CSP processes E, ASYS,  SYS  and a set I of events such 
that  I = a ( E ) N  a(ASYS)  = a(E) A a(SYS).  Context Eo(X) = (EIIX)  is 
called the environment. SPEC = Eo(ASYS) \ (a(Eo(ASYS)) - I) is called the 
specification, and IMP = Eo( SYS)  \ (a(Eo( SYS)  ) - I) the implementation. For 
E_ e { E_T, __.F , E_FD, E_FDR, E__a, ___a , _UD }, a standard configuration is called 
E_ -correct, if SPEC E IMP holds. 
[] 

In the following we use the abbreviation P1 = P \  (a(P) \ I). Note that  
in a s tandard configuration (EII ASYS)[  = (Ex I] ASYSI)  and (EII SYS)I  = 
(Ex [I SYSI) holds, because the hiding operator distributes through tl, if none 
of the interface events shared between the parallel components are concealed [6, 
p. 112]. 
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4.4 A T r u s t w o r t h y  ___FD-Test D r i v e r  for  R e a c t i v e  S y s t e m s  

Now we are prepared to state the main result of this article, an implementable 
test driver that  is trustworthy for ~FD-refinement. The test driver uses test 
cases derived from the Hennessy Test Cases introduced in Definition 10 and si- 
multaneously simulates the operational environment of the process to be tested. 
The properties of these test cases are formally expressed by Theorem 18. Their 
main advantage when compared to the Hennessy Test Cases is that  they allow to 
investigate safety, requirements coverage and non-divergence at the same time, 
while the Hennessy Cases require to perform different test suites for each correct- 
ness feature. Therefore our test cases are more efficient in practical applications. 

T h e o r e m  18. Let ( E, ASYS,  SYS, I) be a standard configuration of a reactive 
system. Define a collection H = { U(n) I 0 <_ n} of test cases by 

U(n) = U(n, ( ) )  

U(n, s) = (e :  ([Ez/s] ~ \ [ASYS• ~ --+ ~ --+ SKIP) 

D 
(if  # s  < n 
t h e n  [q R:R~I(E~/s) U(n, s, [Ei /s] ~ \ R) 
else ( if  A(s) - 0 

t h e n  (w ~ SKIP) 
else q R:R~f(E+/s),A:A(s) U(n, s, A \ R))) 

U(n, s, M) = (M = O),~(w -+ SKIP) 

(e :  M - +  (if  e E [ASYS1/s] ~ 
t h e n  (if  # s  = n 

t h e n  (w ---+ SKIP) else U(n, s~(e)))  
else ( t -+SKIP)) )  

where 

A(s) = {A: P I I A c_ [(EII ASYS)• ~ A 
(VR:  Ref((EIIASYS)• �9 A ~= R) A 
(VX : P A -  {A} ~ ( 3 R :  Ref((Ell  A S Y S ) I / s )  ~ X C_ R))} 

Then 

1. If SYSx must U (n) for all test eases in U, then ( E II ASZS)~ ~FD ( E tl sYS)~ 
follows. 

2. I f ( E  [I ASYS) I  EFD (E [1 SYS)z  and Div(SYS) = 0 then SYSI must U(n) 
for all test cases in H. 

3. I f  Div(ASYS)  - 0 then ASYSI  must U(n) for all test cases in U. 
4. For all n E N, test U(u) is admissible. 

[] 
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Each test case U(n) explores the behaviour of the target system for traces 
s of length # s  < n. The basic idea of the structure of U(n) is to simulate the 
environment Ef with respect to traces and refusals, in parallel with a combi- 
nation of test cases Us(s, a) and Uc(s,A). U(n, s) represents the state of a 
test execution where trace s has already been successfully performed. At each 
execution step, U(n, s) will detect any event e E ([Ei/s]  ~ \ [ASYSI/s]~ which 
is acceptable according to the environment but corresponds to a failure of the 
target system SYS. Such a safety failure will be indicated by a special event t, if 
the target system does not diverge before indication becomes possible. Note that  
the first alternative ( e :  ([Ez/s] ~ \ [ASYSz/s] ~ ~ t --+ SKIP) in the definition of 
U(n, s) is redundant,  since a safety failure s~(a) would also be detected by the 
tests U(n), n > # s  in the last branch of a process U(n, s, M) satisfying a E M. 
However, for practical reasons it is desirable to detect safety violations as soon as 
possible, therefore U(n) never refuse a safety failure which might be accepted by 
the environment E in the actual state of the test execution. As long as # s  < n, 
U(n, s) will behave as Ei/s with respect to the refusal of events. For # s  = n, 
U(n, s) will only admit events contained in a minimal acceptance set A E A(s), 
so that  U(n) can detect requirement coverage failures of SYS occurring after 
traces of length n, when running in environment E. The nondeterministic N- 
operator  used in the definition of U(n, s) shows where internal decisions with 
respect to the control of the test execution may be taken: At each execution step 
U(n, s), the refusals R or the sets A may be selected according to a test coverage 
strategy implemented in the test driver. Since there are many possibilities for 
suitable strategies, these are hidden in the definition of U(n). Any strategy cov- 
ering all possible executions of U(n) is valid. Using LTS representations for the 
CSP specifications of EI and ASYSI, test U(n) is implementable in a straight 
forward way: U(n) is determined by the traces and refusals of E• and ASYS~; 
and these are contained in the corresponding LTS representations. 

Using the results of Theorem 16 and Theorem 18, now we can state that  test 
drivers using the test eases U(n) have the desired correctness properties: 

T h e o r e m l 9 .  For a given standard configuration (E, ASYS, SYS, I) of a re- 
active system, let the associated tests U(n) be defined as above. Then the test 
driver 

~ ( X )  = (n := 0); * (V(n)  II X^( w ~ monitor?next -+ 
( i f  next t h e n  i := i + 1; SKIP else  SKIP))); 

is trustworthy for E_FD -test. 
[] 

5 C o n c l u s i o n  

This article focused on the development of test drivers performing automized 
generation, execution and evaluation of tests for reactive systems against CSP 
specifications. Given a correctness relation between specifications and implemen- 
tations, a test driver should be capable of 
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- generating test cases for every possible correctness violation, 
- exercising test cases on the target  system, at the same t ime simulating proper 

environment behaviour,  
- detecting every violation of the correctness requirements during test execu- 

tion. 

To obtain test  drivers which are provably correct with respect to these ol~- 
jectives, we anMyzed Hennessy's testing theory in the framework of untimed 
CSP. Hennessy's test classes are suitable for the detection of safety failures, in- 
sufficient requirements coverage, divergence failures and insufficient robustness 
in an implementa t ion and characterize the corresponding refinement notions. 
As a result of this analysis we determined minimal  subsets of Hennessy's test 
classes tha t  are still sufficient for the detection of safety failures and insufficient 
requirements coverage. Furthermore we presented the top-level specification of a 
test driver as implemented in the VVT-RT system. It  was demonstrated that  a 
test driver implementing this specification possesses the three capabilities listed 
above, with respect to testing safety and requirements coverage. 

The work presented in this article reflects a "building block" of a joint enter- 
prise of ELPRO LET GmbH,  :]P Software-Consulting, Bremen University and 
Kiel University in the field of test au tomat ion  for reactive real-t ime systems. An 
overview of these activities is given in [16]. 
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