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Abstract. Program slices have long been used as an aid to program 
understanding, especially in maintenance activities. Most slicing methods 
involve data and control flow analysis to determine what statements might 
affect a set of variables. Here, we develop a more precise slicing concept, 
called p-slices, defined using Dijkstra's weakest precondition (wp), to 
determine which statements will affect a specified predicate. Weakest 
preconditions are already known to be an effective technique for program 
understanding and analysis, and this paper unifies wp analysis and slicing and 
simplifies existing slicing algorithms. Slicing rules for assigmnent, 
conditional, and repetition statements are developed. The authors are 
currently using these techniques in their work with software maintenance 
teams and are incorporating p-slice computation into a program analysis tool. 

1 Introduction 

The concept of slicing a program in order to aid understanding, maintenance, and 
resuse goes back to Weiser [13, 14]. The basic idea is to create a reduced program 
consisting of only those statements that affect a given variable or set of variables. In 
this way, the software engineer can concentrate on the relevant parts of the code. 
Livadas and Croll [11] review the case for slicing and the related techniques of 
dicing and ripple analysis, showing the benefits for code understanding, code 
simplification, reuse, maintenance, and other tasks. [11] then proceeds to present an 
improved slicing algorithm based on program and system dependence graphs. 

The present authors have become convinced of the value of logical code analysis 
(LCA) in all aspects of software maintenance [8, 9] as well as in earlier phases of 
the software life-cycle. LCA applies the theory of weakest precondition program 
semantics (wp) as developed by Dijkstra [4] and extended in such works as [3, 5, 7]. 
wp theory was originally developed for program synthesis and proofs of correctness, 
but, as mentioned above, we have found that the wp theory, or what we call LCA, is 
extremely effective for program understanding and maintenance. There are a 
number of reasons for this, one of which is that LCA efficiently represents control 
and data flow and precisely captures the relevant information that the slicing 
algorithms capture with dependence graphs. 
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The wp-based definition of a slice (called a p-slice or predicate slice) gives a 
desirable alternative to the classical slice concept, and, in addition, p-slices can be 
computed quickly, assuming reasonable constraints. 

The paper starts by giving a background in slicing and weakest precondition 
semantics. Following that, we define the p-slice and show why it  is a valuable 
alternative to Weiser's classical slice definition. Next, we develop some p-slice 
theorems for alternation and repetition statements and proceed to use the theorems 
to compute p-slices in some examples. We conclude with some comments on 
directions for future work. 

2 Comments on the Relationship to Formal Methods 

This work can be placed in the context of a much larger subject; namely formal 
methods. Frequently, the goal of formal methods research is the formal specification, 
development, and verification of programming systems. These systems may be very 
large and are often mission-critical or even real-time. Formal methods emphasize a 
program's logical properties as opposed to its operational behavior. The goal of 
creating error free software requiring minimal testing is, of course, ambitious. 
Furthermore, the debates on the value of formal methods are frequently polarized 
between advocates and opponents. 

Our goals are less ambitious, as are our claims. We do claim, however, based on [8, 
9] and our own experience in software maintenance, that LCA is indispensable in 
analyzing and understanding the code produced by real programmers. Many 
examples show the value, even the necessity, of this sort of analysis even for very 
small (a few lines) code segments. While one critique of formal methods targets 
scaling problems, it is difficult to comprehend how one could claim to understand 
and trust a large system that contains unreliable short code segments that no one 
comprehends. Furthermore, while many formal systems use different semantic 
models, we feel that Dijkstra's wp is a precise and sharp analytical tool. [5] makes 
the wp argument effectively. 

In turn, classical program slicing as developed in [13, 14, 6, 11] should be 
considered a "formal method" as it, too, is based on code analysis rather than its 
actual execution. Therefore, it is not surprising that we are able to treat slicing in 
terms of wp semantics. Furthermore, the early slicing papers [13, 14] refer to 
analyzing programs backwards from the point of interest, just as wp analysis 
depends on backward analysis. Finally, slicing partially addresses the scaling issue 
by reducing the amount of code under consideration so that other forms of logical 
analysis are more practical. 

3 Program Slices 

The objective of slicing program S at some location, p, is to create a smaller 
program, S', that has exactly the same effect as S (at point p) on a predicate relating 



559 

a set of variables, or slicing criterion. S' is formed from S by removing statements so 
that every statement in S'  is also in S, and statement order remains unchanged. 
Declaration statements can also be removed, but S '  should be syntactically correct 
and executable. 

Livadas and CroU [11] give the following "classical" definition, which they say is 
less general than Weiser 's  definition [13, 14] but is sufficient for practical purposes. 

Let S be a program, let p be a point in S, and let v be a variable of S that is 
either defined (Author Note: "defined" means "assigned a value" rather than 
"declared") or used at p. A static slice or simply a slice of S relative to the 
slicing criterion (p, v) is defined as the set of all statements and predicates of 
S that might affect the value of variable v at point p. 

Weiser's definition [14] allows for a set of variables, V, and slicing criteria (17, V). 
The definition is ambiguous in referring to statements that might affect the variable, 
and our p-slices will differ from classical slices by tightening up the definition. In 
this way, we will be able to create smaller slices than those produced by the classical 
method. 

GaUagher and Lyle [6] have an interesting example based on the source code for the 
UNIX we utility, which counts characters, words, and lines in text files. Using 
different slicing criteria, they produce separate word counter, character counter, and 
line counter programs. 

4 Weakest  Precondit ion Semantics  

The weakest precondition predicate transformer can be regarded as a function of two 
arguments. The first argument is a program, S, the second is a logical predicate, P, 
and the arguments are separated by periods. The value of the predicate transformer 
is, of  course, another predicate. We say: 

wp.s.p: Q 

to mean that it is necessary and sufficient that program S start in state Q (that is, the 
predicate Q is true) to reach state P. (Note: We will confine our attention to 
deterministic programs.) 

A few examples and wp calculation rules will help and will also hint at the p-slice 
definition. In all our examples we will use the following conventions, often with 
subscripts: 

S, T, ... denote programs (statements), possibly compound statements. 

P, Q . . . .  denote predicates, often in simple propositional calculus and occasionally 
in first order predicate calculus with quantifiers. These predicates axe not part of a 
program; rather they are used to express the state of program variables. 

B will denote a predicate, or logical expression, that is part of a program and is 
evaluated as part of  the execution of alternation and repetition statements. 
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Sample programs are written in ANSI C [10], much as they might appear to a 
software engineer. 

Dijkstra's language of guarded commands (DGC) [3, 4, 5, 7] is used as an 
intermediate language as the wp is defined in this language. This conforms to the 
operation of our analysis tool which converts the program source (C, PL/I, COBOL, 
FORTRAN . . . .  ) into DGC as an intermediate language. We will explain DCd2 as 
required. 

Initially, we will compute the wp on DGC programs, but, later in the paper, we will 
go directly from C source language to the wp predicate. 

We will use the terms "statement" and "program" interchangeably in most cases. 
Therefore, a statement can be a compound of many other statements. Where there is 
a difference, we imply that a program has all the required declarations and other 
features to make it completely executable. 

Except where explicitly stated, we will ignore overflow and other issues associated 
with computer arithmetic, but one example indicates how to treat these issues. 

Example 1:$1 is the single statement program: 

In C: x = x + x~ or x++~ 

InDGC:  x : = x + l  
Note: := is the DGC assign operator 

Here are the weakest preconditions for two predicates: 

wp.Sl.(x = 2) = (x = 1) 

wp.Sl.(x > 0) = (x > -1)  

In words, program S will terminate in the state (x = 2) if and only if it starts in the 
state (x = 1), and it will terminate with x greater than 0 if and only if it starts with x 
greater than -1. While these results are obvious for these simple examples, it is 
necessary to have a more general rule. 

wp Assignment Statement Semantics: The semantics of the assignment statement 
x := e, for any expression e, is def'med to be: 

wp.(x := e).P = P(x ~ e) 

where the notation P(x +-- e) means that all occurrences of the variable x in 
predicate P are textually replaced by (e). The parentheses are required to resolve 
operator precedence issues. It could be, of course, that the variable does not occur in 
the predicate so the predicate is unchanged by the wp predicate transformer. The 
next example is an instance of this. 

Note: Assignment statement semantics assume that Hoare's axiom (see below) 
holds, which causes problems in certain situations involving pointers, variable 
aliasing, and the like. Bijlsma [2] and Manna and Waldinger [12] discuss this 
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problem. For now, assume that we can use assignment statement semantics as 
defined above. 

Hoare's axiom is stated in [12] as a state transition, but it is essentially equivalent to 
the wp assignment semantics. 

Example 2:$2 is the composition of two statements (all variables are signed 
integers): 

In C: x = x + 1; 
y = y * y; 

In DGC: x : = x +  1; 
y := y * y; 

First, here is the rule for the composition of statements: 

wp Composition Semantics: For any two statements Sa and Sb, the semantics of the 
composition of the two statements, Sa; Sb is: 

wp.S~; Sb.P = wp.Sa.(wp.Sb.P ) 

This is the "backward computation." The wp of the last statement is the predicate 
used in the wp computation of the first statement. 

Continuing with Example 2 for several predicates: 

wp.(x : = x +  1;y :=y * y).(x > 1) = (x> 0) 

wp.(x:=x+ 1;y : = y * y ) . ( y > 4 ) = ( y > 2 v y < - 2 )  

wp.(x:=x+ 1;y : = y * y ) . ( x >  1 A y > 4 ) =  

(X > 0  A (y > 2 V y<--2))  

Example 3: S~ is the program: 

InC: if (x > O) x = x - I; 

In DGC: i fx>O---~x:=x-1;  

I]x<-O ~ skip; 

fi 

This example introduces the (guarded) alternation statement. In general, a list of 
guards (arbitrary predicates) and statement pairs are separated by [] ("fat bar") and 
surrounded by if...fi. A statement will be executed only if its guard is true; if more 
than one guard is true, a single statement is selected nondeterministically. If no 
guards are true, the program aborts and no postcondition is possible since the 
program never reaches the end of the statement. We will define guarded command 
semantics in a later section; for the time being, it is fairly straightforward to verify 
the following. (For several of these examples, the fact that x is an integer is 
important.) 
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wp.S3.(x > 2) = (x > 3) 

wp.Ss.(x > 0) = (x > 1) 

wp.&.(x _> o) = (x _> 0) 

wp.&.(x < o) = (x < o) 

The only remaining DC~ construct is the repetition (loop), which is described later. 
There are also two important special DGC statements: skip (used above) and abort. 
They are defined by their wp semantics. 

wp.abort.P =false 

for any P because the program never reaches the end. 

wp.skip.P = P 

for any P because the skip does not change anything. 

Here are several other simple but important wp facts that we will use from time to 
time. 

wp.S.false =false for any program S. 

This is the "law of the excluded miracle." 

wp.S.true = true for any program S, if S contains no abort 
and all repetitions are assured of termination 

Program S and program T are semantically equivalent if and only if, for all 
predicates, P, 

wp.S.P = wp.T.P 

Equivalent programs need not be textually equal, of course; they simply are equiva- 
lent as predicate transformers. 

For any program S, the following three programs are semantically equivalent: 

S 

skip; S and 

s; skip 

skip, then, by itself, is the null program. We will eliminate extra skip statements 
without comment. 

In summary, the language of DGC statements can be defined recursively, as follows: 

�9 Assignment statements, skip, and abort are DGC statements, sometimes called 
primitive statements. 

�9 Compound DGC statements can be formed from other DGC statements by 
composition, alternation statements, and repetition statements. 
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�9 Nothing else is a DGC statement. 

This definition corresponds to the way in which statements in C and other languages 
are defined recursively with BNF or some other grammar; see, for instance, Aho, 
Sethi, and Ullman [1]. Whenever we use the term statement, we mean it in this 
sense, regardless of whether we are discussing C or DGC programs. 

We will complete the semantic definitions as required, and, what is more, we will 
define the p-slice for each type of DGC statement. 

5 Weakest Precondition Slices 

The examples above give a good hint as to how to define slices in terms of the 
weakest preconditions. Our definition slices code that does not affect a predicate, 
rather than on the basis of potential effect on a variable, as in the classical 
definition. First, it is necessary to define a partial order on statements so that we 
have a concept of  removing statements from a compound statement or program. 

Definition (Statement Portion): Let S be a statement and let S'  be the same as S 
except that a single statement (not necessarily primitive) in S is replaced by skip. 
Then S'  is a reduction of S. Let c be the transitive, reflexive closure of the reduction 
relation. If  T is a statement with T _ S, we say that T is a portion of S. T c S is used 
to indicate the additional fact that the two statements are not the same. 

A slice can now be defined as a portion that has the exact same behavior (semantics) 
with respect to a given predicate. 

Definition (p-slice): Let P be a predicate and S and T be programs. I f  T c S and 
wp.T.P= wp.S.P, then Tis  ap-slice of S with respect to P. 

It will turn out that there can more than one p-slice, so we write: 

T e PSlice(S, P) 

A p-slice of S is simply a statement with some statements replaced by skip without 
changing the behavior with respect to P. Again, redundant skips are omitted without 
comment. 

It follows immediately from the definition that: 

skip e PSlice(S, P) 

skip ~ PSlice(S, true) 

skip e PSlice(S, false) 

if and only if wp.S.P = P 

for any statement S, if  S contains no abort and all 
repetitions are assured of termination 

for any statement, S 

Example 4: Let $4 (in DGC) be x := 2 * x where * denotes multiplication and x is an 
integer. Then: 

skip ~ PSlice(S4, x > O) 
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However, $4 has no slices at all with respect to the predicate (x > 2). 

This example immediately shows that the p-slice is not the same as the classical 
slice, which would not slice the statement if x were part of the slicing criteria. 
Example 4 shows that a statement can sometimes be eliminated even if it assigns a 
value to a variable in the slicing predicate. 

Note: This result ignored the realities of computer arithmetic; i.e., we made the 
implicit assumption that x was relatively small. Removing this assumption on a 
machine with 16-bit signed (2's complement) arithmetic gives: 

wp.S4.(x > 0) = (x > 0 ^ x < 16384) 

v (x > -32767 ^ x < -16384) 

Therefore, the slice really could not be performed in Example 4 without the under- 
lying assumption that x is small. Programmers, of course, commonly make such 
assumptions, and programs often break when the hidden assumptions no longer 
hold. 

It is tempting to expect that there would be a unique minimal slice (in the sense of 
the portion relation) for any statement and predicate. Weiser [14] argues that there is 
no minimal slice on decidability grounds. A simple example will also suffice to 
show that there are local minimum slices, but no unique minimum slice. 

Example 5: Consider the DGC statement: 

S s : x : = x -  1 ; x : = x +  1 ; x : = - I  + x  

Two statements, x := x - 1 and x := -1 + x are both minimal slices with respect to 
any predicate involving x. 

Example 6: Recall Example 2 where we had: 

S 2 : x : = x +  1;y  : = y * y  

Using the predicates in Example 2, we have: 

x := x + 1 e PSlice(S2, x > O) 

y := y * y ~ PSlice(S2, y > 4) 

However, $2 has no slices with respect to the predicate (x > 0 ^ y > 4). 

Example 6 is typical of the situation that slicing was probably intended to address 
originally where program statements can be clearly distinguished by the variables 
that they affect. Slicing removes those statements that do not affect variables in the 
slicing predicate. 

Classical Slices and P-slices: Example 4 showed how predicate slices can differ 
from the classical slices which are defined in terms of statements that might affect a 
variable. There is no straightforward way to obtain classical slices from p-slices, 
even by using free variables (which show all statements that affect a variable in any 
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way at all). A free variable is one that does not occur in the program and is usually 
denoted by a Greek letter, as in the next example. 

Example 7: Consider (in C) 

$7: y = 2 * y; if (y > 0) x = 2 * x; Then: 

wp. S7.(x= 0) = ( y > 0  ^ 2  * x =  r/) v (y___0 ̂ x =  7/) 

The wp is exactly the same without the first assignment statement (y = 2 * y), so 
this statement can be sliced (using p-slicing), even though it might affect variable x. 
Classical slicing would not remove this assignment. 

The next step is to complete the semantic definitions of alternation and iteration 
statements and then show our principal slicing theorems. Following that, we will 
give an algorithm to obtain a minimal p-slice for any predicate. 

6 Alternation Semantics And Slicing 

Following Dijkstra [4], Cohen [3] and Gries [7], the "if '  or alternation statement 
takes the form: 

if  B1 --> $1 

fl B2---> S2 
. . .  

[] B. ---~ S. 
: 

Each Bi is a guard, that is, an arbitrary predicate, and each Si is a guarded 
statement. Operationally speaking, a statement is executed for some true guard, and 
the statement aborts if the guards are all false. The alternation is nondeterministic as 
several guards may hold, but only one statement is executed. 

Alternation semantics are then defined as: 

wp.(if...fi).p- 
3i: 1 < i < n: B / ^  (Vi: 1 < i < n: Bi ~ wp. Si.P) 

That is, to obtain the postcondition, the necessary and sufficient precondition 
requires that at least one guard must hold (or else the alternation aborts) and, for 
every guard that is true, the wp of  the guarded statement must hold. 

In the practical, but special, case of deterministic programs derived from 
syntactically correct compound if...then...else statements (in C or nearly any other 
programming language), the guards are mutually exclusive and exactly one will 
hold. Be certain, however, to include skip statements for missing else clauses, as we 
did in Examples 3 and 7. Dijkstra and Scholten [5, p. 144] prove what we call the 
"ITE" (if...then...else) rule; namely, if the alternation is derived from compound 
conditional statements in a deterministic language, then: 
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wp.( i f . . . f i ) .P-  
~ i :  1 < i < n: (Bi ^ wp. Si.P)) 

That is, to obtain the postcondition, it is necessary and sufficient that there is at least 
one true guard (in fact, there is only one) and the wp of the guarded statement holds 
(for the postcondition). We implicitly used the ITE rule in Examples 3 and 7. 

Note: PL/I is the only common language that implements a deterministic conditional 
statement that resembles the DGC alternation. The C switch statement is much 
different as the cases are not general predicates and, unless there is a break after 
every case group, the semantics are different. 

There are two possibilities when determining p-slices of an alternation statement (in 
the standard form at the start of this section) with respect to a slicing predicate, P. 
The first possibility is that one of the conditionally executed statements, Si, can be 
sliced, even though the entire alternation cannot be sliced. This gives: 

Alternation Slicing Theorem: For an alternation, if, for some j,  By ~ (wp. Sj.P - P), 
then Sy may be sliced (replaced with a skip). This is immediate, since: 

wp.( i f  . . .fi ).P 

=- ( WP o f  alternation ) 

qi:: B / ^  (Vi:: Bi =* wp. Si.P) 

=<p.c. > 
3i:: Bi ^ (Vi: i , j :  Bi ~ wp.Si. P)  ^ (B~ ~ wp.S~.P) 

= ( p.c., 8j ~ (wp.S~P = t') > 

3i:: Bi ^ (Vi: i * j :  Bi ~ wp.Si. P)  ^ (Bj ~ P)  

This later expression is readily seen to be the wp of the alternation with S~ replaced 
with skip. 

Note: We have used the calculational proof style developed and advocated by 
Dijkstra and Scholten [5]. The bracketed comments are an aid to understanding the 
calculation step, and when we write "p.c." we have used common predicate calculus 
identities. 

Alternation Slicing Corollary: If all the S i can be sliced, then the entire alternation 
can be sliced if P =~ qi:: Bi. That is, if P implies the disjunction of the guards 
(equivalently, at least one guard is true, which is always the case when starting from 
compound conditionals in languages such as C). 

This is immediate, since: 

wp.( i f  . . .fi ) .P 

- ( WP o f  alternation ) 

3i:: Bi ^ (Vi:: Bi =~ wp. Si.P) 

- ( Vi:: Bi =~ (wp. Si.P - P )  ) 

3i:: Bi ^ (Vi:: Bi ~ P)  
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-(p.c. ) 
qi:: Bi ^ P 

- ( P ~ qi:: Bi ) 
P 

Thus, we may cut an alternation entirely if: 

P ~ 3i:: Bi ^ { (Vi:: Bi =~ (wp. Si.P =- P) } 

This latter result is not that important in practice since it is usually simple enough to 
directly check whether: 

wp.( if . . .fi ).P =- P 

7 R e p e t i t i o n  S e m a n t i c s  a n d  S l i c i n g  

The DC~ repetition statement (or "do loop," or, in C, the "while loop") is of the 
form: 

do B ---> S od 

B guards the "loop body," S, which is repeated so long as B evaluates to true. If B is 
initially false, then S is never executed. To be useful, of course, S must have 
"progress properties" that assure that B will eventually be false (although many 
systems, such as an operating system, loop forever without any progress). 

Repetition semantics must be defined in terms of a "loop invariant" which is a 
predicate that holds before and after S; that is, S does not transform the invariant 
predicate. A necessary and sufficient condition for predicate Pt to be an invariant of 
S is that: 

B A PI =~ wp.S.P! 

This states that, once past the guard, we know that both B and the invariant hold, 
and, if the invariant is to hold after the loop body, we must have the wp. 

When the statement terminates, the guard will be false, but the invariant must still 
hold. Furthermore, the invariant must hold initially. These observations lead to the 
semantics (wp) of the repetition statement in the special case of loops that make 
progress and are therefore guaranteed to terminate: 

wp.( do B ---> S o d  ).(-~B ^ PI) = PI 

Invariants are not unique. If a loop body does not contain any abort statements or 
non-terminating loops, then true is a trivial invariant. Furthermore, the conjunction 
of two invariants is also an invariant. In order to understand a loop completely, it is 
necessary to determine the "strongest" invariam. Needless to say, this is not always 
an easy, or even possible, task (computational complexity and decidability issues can 
come into play). In many practical situations, such as isolating defects, partial 
invariants are sufficient [8, 9]. 



568 

In the following theorem about repetition statements, S is the repetition body. We 
also use Gries' Hk (P) [7], which is defined recursively by: 

Ho(P) ---~B A P 

Hk (e)  -- Ho(P) v B ^ wp.S.Hk_l (e)  

Hk (P) holds if and only if the repetition terminates with P true in k or fewer 
iterations. 

These definitions permit a more general expression of repetition statement 
semantics, wp.( do B ---> S od).P. 

Specifically: 

wp.(do B ---> S od) .P =-- qk: 0 <_ k: Hk(P)  

We first prove a Lemma that will be fun~_mental to subsequent work. 

Iteration Termination Lemma: 

{ B A wp.S.P - B A P } =~ { Vk: 0 < k: (Hk (P) - (P A Hk (true))) } 

Note: A is a higher precedence operator than - .  Also notice that wp.S.P =- P is a 
stronger form of the left side of this implication. Saying that P is an invariant is a 
weaker statement than the left hand side of the implication. 

We prove this by induction. First, we have: 

Ho(true) ^ P 

- ( D e f o f H ~  p.c. ) 

~ B  A P 

- ( D e f o f H o  ) 

no (P)  

Next we have: 

Ilk (true) A P 

=- ( D e f  o f  Hk ) 

(Ho(true) v B A wp.S.Hk.1 (true)) A P 

= ( p . c . , B  A w p . S . P - B  A P )  

Ho(true) A P v B A wp.S.Hk.1 (true) A wp.S.P 

- (Ho(true) A P - Ho(P), Conjunctivity o f W P  ) 

Ho(P) v B A wp.S.(Hk.1 (true) A P)  

- ( Induction step ) 

Ho(P) v B A wp.S.(Hk-1 (P)) 

- ( D e f o f H k  ) 

Hk(P)  

Armed with this Lemma, we immediately have: 
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Since: 

{ B A w p . S . P = B A P  } 

{ wp.(do B ---> S od).P = P A wp.(do B ---> S od).(true) } 

wp.(do B ---> S od).P 

- (Defofwp.(do. . .od)  in terms ofHk ) 

3k: 0 < k: Hk (P) 

- (  B A wp.S.P - B A P, Lemma ) 

3k: 0 <_ k: (Hk(true) A P) 

-(p.c.) 
P ASk: 0 <- k: Hk (true) 

- ( Defofwp.(do B ---> Sod)  in terms ofHk ) 

P A wp.(do B ---> S od).(true) 

From this last result, we immediately have: 

{ B A w p . S . P - B A P  } ~ { wp.(doB --->Sod).P=:>P } 

In words, if P isn't changed by the repetition body, then the wp of the entire 
repetition implies P. From the above Lemma we can also derive: 

Repetition Slice Theorem: 

{ (B A wp.S.P - B A P) A P ~ (wp.(do B --> S od).(true)) } =~ 

{ w p . ( d o B - - > S o d ) . e - e }  

Again, in words, if P isn't changed by the repetition body, and P implies the 
repetition terminates, then the repetition may be eliminated (sliced with respect 
toP) .  

Note: An important way to have P ~ (wp.(do B ---> S od).(true)) is to have 
wp.(do B---> S od).(true) always true; that is, if  the repetition is guaranteed to 
terminate. This is the 

Bounded Repetition Slice Theorem: 

{ (B A wp.S.P - B A P) A wp.(do B ---> S od).(true) } 

{ wp.(doB-->Sod).P---P} 

This theorem is helpful when we are certain that a repetition terminates, as would be 
the case in a C repetition of the common form: 

for (i=O; i < MAX; i++) { /* Loop Body */ } 

8 Computing a p-Slice 

Practical use of p-slices requires an algorithm to find at least one p-slice for a given 
predicate. Also, in practice, users do not want to slice an entire program, but, rather, 
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want to examine a sequence of syntactically complete statements. With this 
requirement in mind, let: 

S: $1; $2; ...; SM 

be a composition of individual statements, Si, each of which is a primitive statement 
(assignment, skip, or abort), an alternation, or a repetition. Further, suppose that we 
want to slice S with respect to the slicing predicate P. That is, we want to compute a 
member of the set PSlice (S, P). 

Our current implementation (in the code analysis tool) proceeds as follows: 

1. Slice (i.e., replace with skip) all statements that do not make assignments to 
variables in P. This assumes, of course, that there is no potential aliasing so that 
Hoare's axiom holds. (Caution: Also, do not slice statements affecting loop 
progress.) 

2. Compute Pi - wp.(Si; S~§ Ss) .P for 1 < i ___ N. Set P~§ -- P. 

3. Starfing with j = N+ l, find the smallest i <_ j such that P ~ - P j a n d s l i c e a l l t h e  
statements from Si to Sy inclusive. (Note: If i = j, there is nothing to slice.) 

4. Setj  = i-1 and repeat from step (3) whilej is positive. 

5. Next, examine all remaining alternation and repetition statements, performing 
steps (1) to (4) to slice each guarded statement and loop body. If yon are 
examining statement S~ (in the original labeling), then Pi.l plays the role of P 
(the slicing predicate). In simplifying alternations, combine guard predicates 
where the guarded statements are the same. 

We have found this algorithm tO be effective for moderately sized code sequences, 
although its time complexity is, of course, O(N2). The first step (removing all 
obviously irrelevant statements) helps in the processing of larger programs. 

Note: By modifying Step 3 to test only whether Pj.~ = Pj, we get a weaker, but faster, 
linear time algorithm. 

9 An Extended Example 

The following code is a simplification of some code that we actually encountered in 
tracing a defect. While one might object that good programmers would never write 
such code, it is an unfortunate fact that they do. Our experience with maintenance 
teams dealing with day-to-day problems shows that there is no need to contrive 
examples. 
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typedef struct connect table { 

int entry; 

int srce; 

int dest; 

} CTABLE; 

#define TSIZE I00 

#define TRUE 1 

#define FALSE 0 

main ( ) 

{ 

CTABLE list [TSIZE]; 

int count, oldc; 

char found; 

int s_target, d_target; 

count = 0; 

oldc = -1; 

found = FALSE; 

while (count < TSIZE && !found) { 

if (list[count].srce == s_target) { 

if (list[count].dest == d_target) 

found = TRUE; 

} else { 
if (list[count].entry > 0) list[count].entry--; 

oldc++; 

) 

count++; 

} 

if (found) { 

i i st [ count- 1 ]. entry++; 

} 

Fig. 1. Code Fragment Before Conversion to DGC 

In dealing with this code and the defects associated with it, we were interested in a 
predicate which we had inferred to be necessary for correct operation. 

P- (count == oldc + 1) 

Putting this code into a form approximating DGC (our code analyzer does this 
conversion) gives the code in Figure 2 (the declarations are omitted here). Many 
programmers quickly note the defects once the code is put into this form, and we 
consider this to be evidence of the clarity of DGC. It is unfortunate that most pro- 
gramming languages allow, indeed encourage, coding such as Figure 1. 
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count = 0; 

oldc ffi -1; 

found = FALSE; 

while (count < TSIZE && !found) { 

if (list[count].srce == s_target 

&& list[count].dest == d_target) 

{ found = TRUE; } 

else if (list[count].srce == s_target 

&& list[count].dest !ffi d target) 

{ /* skip */ } 

else if (list[count].srce != s_target 

&& list[count].entry > 0) 

{ list[count].entry--; oldc++; } 

else if (list[count].srce != s_target 

&& list[count].entry <= 0) 

{ oldc++; } 

count++; 

} 

if (found) 

( list[count-1].entry++; } 

else if (!found) 

{ /* skip *] } 

Fig. 2. Code Fragment in a DGC-Like Form 

It is now possible to determine the p-slice slices, shown in Figure 3. The defect (with 
respect to maintaining the slicing predicate) is now clear. 

count = 0; 

oldc ffi -I; 

found = FALSE; 

while (count < TSIZE && !found) { 

if (list[count].srce == s_target 

&& list[count].dest == d_target) 

{ found ffi TRUE; } 

else if (list[count].srce == s_target 

&& list[count].dest != d_target) 

{ /* skip */ } 

else if (list[count].srce l= s target) 

{ oldc++; } 

count++; 

} 

/* Slicing Predicate~ count == oldc + 1 */ 

Fig. 3. A Member of $11ce (Figure 2, count  == o ldc  + 1) 
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Another interesting slicing predicate is one that asserts that all e n t r y  fields are 
positive. 

10 A R e p e t i t i o n  E x a m p l e  

The following simple loop illustrates one of many useful applications of the 
Repetition Slice Theorem. Consider the following code fragment (in C): 

int c; 

char exit; 

while (!exit) { 

O = C - I; 

/* . code that does not affect c . 

C = C + I; 

} 

*/  

Fig. 4. A Loop with a Positive Counter 

Using the slicing predicate: 

c_>0 

the entire loop can be sliced. Generalizing, suppose that instead of incrementing and 
decrementing o (a counter), we instead allocate and free a resource ~ enter and 
leave a critical section. Alternatively, a data structure (such as a search tree) is 
manipulated at the top of the loop and re-assembled at the bottom (consider an 
insertion operation). 

In all these cases, the slicing predicate states a "safety property." The fact that the 
loop can be sliced with respect to this property shows that the loop is correct with 
respect to this safety property, which is useful information. Classical slicing would 
not yield this information. 

Alternatively, consider the following variation, which has a bug with respect to the 
safety property: 

while ('exit) { 

c = c - I; 

if(. .) { 

exit = true; 

} else { 

C = C + I; 

/* other code 

) 

*/  

Fig. 5. A Defective Loop 
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This loop would not be sliced using the slicing, or safety, predicate, c ___ 0, high- 
lighting the defect. 

11 Conclusions and Future Work 

Predicate slicing is a useful logical code analysis technique during software 
maintenance. We also feel that it can be useful daring other parts of the software life 
cycle, including code inspections and quality assurance. We have used this form of 
slicing successfully to isolate code defects and expect to deploy automated, tool- 
based slicing in the near future. 

There are a number of challenging additional problems that we will need to address 
in the future in order to realize the full powers of these techniques. These problems 
appear, in fact, in any use of formal methods to aid program understanding and 
maintenance. These problems include: 

1. Aliasing is a significant problem, and C's liberal use of pointers aggravates the 
problem beyond the issues examined by Bijlsma [2]. We have found Bijlsma's 
approach, however, to be effective. The problem also occurs with arrays, 
especially where indices can go out of bounds. 

2. It can be useful to include assertions in the slicing predicates. These assertions 
typically state "safety properties" to the effect that an array index is within 
bounds, that a pointer only contains addresses of one type of object, that a 
counter is always positive, that an array is sorted, and so on. Then, predicate 
slicing will expose statements that could violate these safety properties. For 
example, the following assertion could be useful in slicing the code of Figure 1. 

0 < count <_ N && -1 < oldc < N 

3. Currently, procedures are processed by including the procedure code in-line, as 
in Gries [7]. We would like to extend our analysis tool to allow the use of 
procedure specifications (in terms of weakest precondition semantics), possibly 
extracted from a library. 
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