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Abs t rac t .  In this paper we introduce a formal approach to architec- 
tural design patterns based on an object-oriented model integrated with a 
process-oriented method for describing the patterns. The object-oriented 
model is based on the Abstract Data View (ADV) concept, which is a 
formal model for subjectivity in that it explicitly distinguishes between 
two kinds of objects, namely application objects and object views. The 
formalism allows the definition and application of design patterns by 
considering both the process program for the pattern tasks and the in- 
terconnected objects and views resulting from a particular pattern in- 
stantiation. The approach can be used to describe design patterns at 
many different architectural levels, and this is illustrated by presenting 
patterns for the master-slave, pipes-and-filters, layered systems, adapter, 
observer, and composite. 

1 Introduction 

Design patterns can be viewed as a means to achieve large-scale reuse by captur- 
ing successful software development design practice within a particular context 
[12, 7, 6]. Patterns should not be limited in what they can describe and can be 
used to encapsulate good design practices at both the specification and imple- 
mentat ion levels. Thus, design patterns can be applied at many different levels of 
abstraction in the software development life-cycle, and can focus on reuse within 
architectural design as well as detailed design and implementation. In fact, a 
system of patterns for software development should include patterns covering 
various ranges of scale, beginning with patterns for defining the basic architec- 
tural structure of an application and ending with patterns describing how to 
implement a particular design mechanism in a concrete programming language. 

Most published research [12, 6] in design patterns has been described in a 
structured but informal notation, and has focused on implementation-oriented 
patterns rather than architectural ones. For example, one publication [12] con- 
tains descriptions of patterns using text and diagrams, and has grouped patterns 
into three major  categories. These descriptions can be viewed as an informal 
recipe or process for producing instantiations of specific patterns in languages 
such as Smalltatk or C + + .  Even when architectural issues are considered [7], 
the software architectural design is expressed only through informal patterns. 
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An architectural pat tern is based on selected types of components and connec- 
tors, together with a control structure that  governs their execution. 

In this paper we describe a formal approach to design patterns which encom- 
passes patterns at different levels of granularity ranging from architectural to 
implementation descriptions. There are two aspects to design patterns that  are 
considered in this presentation: the process of producing specific instantiations 
of a design pattern,  and the use of formally defined components or objects to 
substitute in these instantiations. 

If the process is defined through a process language with formal syntax and 
semantics, then any ambiguities in the process of design pat tern instantiation 
should be eliminated. Reducing or even eliminating ambiguity should make it 
easier to derive code consistently and perhaps even lead to some automat ion 
of the code production for the particular instantiation of a design pat tern [1]. 
Substituting formally defined components into an instantiation could permit  a 
formal reasoning process about the resulting system. We currently have estab- 
lished two different frameworks for reasoning about designs[3, 5] of this type. 

Recent investigations[5] have shown how both a formal model and a prototype 
can be derived from a single component-based specification, thus providing a 
strong link between formalism and implementation. 

The formally defined components are based on the Abstract Data  View 
(ADV) approach[& 9, 10] which uses a formal model [3, 4] to achieve separa- 
tion by dividing designs into two types of components: objects and object views, 
and by strictly following a set of design rules. Specific instantiations of views as 
represented by Abstract Data Views (ADVs) and objects called Abstract Data  
Objects (ADOs) are substituted into the design pattern realization while main- 
taining a clear separation between view and object. Currently the ADV and 
ADO components are specified using temporal  logic and the interconnection 
between components is described in terms of category theory. 

Each design pat tern has an associated process program that  describes how 
to substitute these components to create a specific instantiation. In fact, this 
framework can be seen as a formal approach for a system of design patterns.  

2 A b s t r a c t  D a t a  V i e w s :  t h e  M o d e l  a n d  I t s  S c h e m a  

In this section we describe the Abstract Data  View (ADV) model and associated 
schema. This model allows us to create design patterns at various levels of granu- 
larity ranging from program design to software architectures, while maintaining 
a clear separation of concerns among the components. 

A model of the ADV/ADO concept showing how these two types of objects 
interact is presented in Figure 1. An ADO is an object in the object-oriented 
sense, but has no direct contact with the "outside" world. As an object, an ADO 
has state and a public interface that  can be used to query or change this state. 
An ADO is abstract since we are only interested in the public interface. An ADV 
is an ADO augmented to support the development of general ~views" of ADOs, 
where a view could include a user or network interface or an adaptat ion of the 
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Fig. 1. An ADV/ADO interaction model 

public interface of an ADO to change the way the ADO is "viewed" by other 
ADOs. A view may  change the state of an associated ADO either through an 
input action (event) as found in a user interface, or through the action of another  
ADO. 

Since an ADV is conceived to be separate from an ADO and yet specify 
a view of an ADO, the ADV should incorporate a formal  association with its 
corresponding ADO. The formal  association consists of: a naming convention, 
a method  of ensuring that  the ADV view and the ADO state are consistent, 
and a method  of changing the ADO state from its associated ADV. Because 
an ADV is an object with properties which assist the designer in maintaining a 
clear separation of concerns we have chosen to give this "special" object a unique 
identity. 

In order to mainta in  a separation of concerns, an ADV knows the name of 
any ADO to which it is connected, but an ADO does not know the name of its 
a t tached ADVs. The name of the ADO connected to an ADV is represented in 
the ADV by a placeholder variable called "owner" which is shown in Figure 1. 

If  the state of an ADO is changed then any part  of the state that  may  
be viewed by a connected ADV through the ADO's  public interface must  be 
consistent with tha t  change. A morphism or mapping  is defined between the 
ADV and ADO tha t  expresses this invariant, and of course, uses the naming 
convention previously described. In addition, an ADV may  query or change the 
state of a connected ADO through its normal  public interface. 

Figure i illustrates many  of these concepts. The user depicted in the Figure 
causes an input action that  is received by the ADV acting as a user interface. 
This action can cause a method invocation in which the ADV changes or queries 
its own state or the state of its associated ADO. If  the state of ~he ADO changes 
through some other action, then the mapping  ensures that  the ADO and the user 
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interface ADV are consistent. The other ADV in Figure 1 acts as an interface 
between two ADOs, and changes in the ADO are similarly reflected in this ADV 
through the mapping.  Thus, the mapping  can force a method invocation to occur 
which changes another  ADO. 

ADV ADV__Name [For I On] 
Declarations 

Data Signatures 
Attributes 
Causal Actions 
BJyectual Actions 
Nested AD Vs 

Static Properties 
Constraints 
Derived Attributes 

Dynamic Properties 
Interconnection 

Valuation 
Behavior 

End ADV_Name 

ADO__Name 

- sorts and functions 
- observable properties of objects 
- list of possible input actions 
- list of possible effectual actions 
- allows composition, inheritance, sets, ... 

- constraints in the attributes values 
- non-primitive attribute descriptions 

- description of the communication process among 
objects 

- the effect of events on attributes 
- behavioral properties of the ADV 

Fig. 2. A descriptive schema for an ADV. 

In summary  we observe that  there are two types of ADVs: an ADV which 
acts as an interface between two different media, and an ADV which acts as an 
interface between two ADOs operating in the same medium.  Although there are 
two types of ADVs, they are natural  extensions of each other. 

The A D V / A D O  model was originally conceived to address the same concerns 
as the MVC [19] paradigm. However, the A D V / A D O  model is more general in 
its approach in tha t  it explicitly models both  interfaces to the externM world 
and interfaces between objects. Emphasis  on the interface as a speciM type of 
object encourages the designer to address separation of concerns explicitly in a 
design. In addition, the ADV/ ADO model is formally defined and can support  
both  reasoning and implementat ion with the same model. 

The separation between views and objects makes it possible to use several 
ADVs to create different views for a single collection of ADOs. In this case, 
both  ADOs and their associated views must  be consistent. For example,  a clock 
ADO could have a digital view, an analog view, or both.  We call consistency 
among the different ADVs horizontal consistency, while consistency between the 
visual object (ADV) and its ADO is called vertical consistency. These consistency 
properties must  be guaranteed by the specification of ADVs, ADOs, and their 
environment.  

ADVs and ADOs have distinct roles in a software system. As a consequence, 
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they are described by different schemas. These schemas are not the actual ob- 
jects of the system, but rather provide descriptions of their static and dynamic 
properties and declarations of entities that are used within the scope of the 
object. Such schemas are presented in detail in [4]. 

The specification syntax of the whole schema which is based on ones described 
in [13] is presented essentially through a temporal logic formalism [4, 22]. Every 
ADV or ADO structure is subdivided into three sections. A declaration part 
contains a description of all of the elements that compose the object including 
sorts, functions, attributes, and actions. The static properties part defines all 
the properties which do not affect the state of the object. Dynamic properties 
establish how the states and attribute values of an object are modified during 
its lifetime. 

Figure 2 shows the structure of the schemas to be used in the specification 
of ADVs. Causal actions correspond to input events while effectual actions cor- 
respond to method invocations. The header of the schema has the name of the 
ADV and the name of its associated ADO. ADO schemas, which are not illus- 
trated here, have a similar structure to ADVs, except that ADOs do not support 
causal actions, and they do not contain references to any ADVs. 

These formal ADV/ADO schemas are based on temporal logic and some 
tools from category theory (institutions). This approach is strongly based on 
Maibaum and Fiadeiro's combination of temporal logic and category theory 
[11] that was initially developed for the purpose of formalizing modularization 
techniques for reactive systems. We capture the ADV semantics in logic by using 
temporal logic to describe the ADV and ADO components and their properties, 
morphisms (or mappings) to describe the relationship between these components 
(through a concept related to interpretation between theories), and tools from 
category theory (institutions) to specify systems of interconnected ADVs and 
ADOs (the structuring mechanisms). For more details on the issues treated in 
this section see [3]. 

The formal category theory tool used here, called the theory of institutions 
(and its associated tools), was introduced by Goguen and Burstall [15] and al- 
lows the theories of a logic to be shown to constitute a category whose mor- 
phisms correspond to property preserving translations between their languages. 
These translations or mappings are Mso known as interpretations between the- 
ories, and have been used to model relationships between abstract and concrete 
specifications [25], or to model mappings between different notions of software 
architecture [23]. 

We adopt a temporal logic with a (global) discrete linear time structure 
similar to those used in [21], since this allows easier assessment of the support 
for modular specification that is described. We also use the fact that temporal 
logics may be defined that satisfy, to some extent, institution [14], and hence, that 
temporal theories may be used as modularization units for concurrent system 
specification. 

The formal specifications of ADVs and ADOs are provided as theory presen- 
tations [3] and a categorical account of the ADV/ADO specifications is provided 
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through a category of temporal  theories. A morphism or mapping of theory pre- 
sentations is a signature morphism that  defines a theorem preserving translation 
between the two theory presentations and a locality property. Morphisms cap- 
ture the relationship that exists between two ADV/ADO theory presentations. 
Thus, morphisms can be used to express a system as a diagram showing an 
interconnection of its parts. Formally, this diagram is a directed multigraph in 
which the nodes are labeled by ADV/ADO specifications, and the edges by the 
specification morphisms. 

3 A Formal Description of Design Patterns 

The ADV model supports reuse since it divides an application into a set of spe- 
cialized objects (separation of concerns) each of which may be used in other de- 
signs. However, we would like to "glue" these objects into reusable systems, that  
is, systems which are easily maintained over time. Design patterns as proposed 
in [12] support this form of reuse. Each design pattern is a meta-description of a 
solution for a problem that  occurs frequently in software design. The application 
of the meta-description results in several objects connected together to form a 
specific instantiation of such a design solution. 

Operator :Pattern Name  
Objective 
Parameters 
Subtasks 
Consequences 
Product Text 

End Operator 

- description of the intent of the pattern 
- external elements used in the pattern definition 
- description of pattern in primitive constructors 
- how the pattern supports its objective 
- language-dependent specification of pattern 

Fig. 3. Development constructor structure for a design pattern. 

The acceptance of reusable descriptions, such as design patterns, is highly 
dependent on easily comprehensible definitions and unambiguous specifications. 
We address both issues in a single formalism for design pat tern application. 

In order to formalize the application of design patterns we introduce develop- 
ment constructors which are based on schemas that  indicate how to apply a pat- 
tern. We define design pat tern constructors to consist of a language-independent 
part and a product text specification, where a specific language is adopted; this 
approach is similar to that  described in [20]. 

The language-independent part of the structure should clearly define the 
characteristics of a design pattern.  According to [12], a pat tern is composed of 
four essential elements: pattern name, problem statement, solution, and conse- 
quences. 
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Appropriate pat tern names are usually important  factors to assist developers 
in the specification of a system. In the case of reusable modules, the vocabulary 
of patterns could be one way of guiding the user to choosing suitable modules 
for the solution of particular problems. 

A problem statement is a description of the circumstances in which to ap- 
ply a design pattern,  and clarifies the pattern objectives. In the development 
constructor structure shown in Figure 3, such a statement is described by an 
Objective section. 

Applying a pat tern in the context of a specific problem requires a process 
description, and so we specify this process in terms of primitive development 
constructors and parameters.  The primitive constructors applied to pat tern con- 
struction are organized in a section of the schema called Subtasks, while input 
parameters used in this process are declared in the Parameters section. 

The consequences of an application of a pattern provide a description of the 
results of using such structure in a software system. The roles of the components 
within the pat tern objectives are also illustrated. This section may be helpful in 
evaluating the suitability of a pat tern in a specific context. These ramifications 
are specified in the Consequences section of a pattern schema. 

The language-dependent part of the pattern constructors describes the result 
of the application of a pattern as a specific formal representation. Since design 
patterns are solution abstractions, a template of the pattern should be a help- 
ful instrument in guiding the user to a particular specification. Such templates 
are illustrated in the pat tern development constructors using the formalism of 
ADV/ADO schematic representations described in Section 2. 

4 Formal  D e s i g n  P a t t e r n s  

In this section we provide a formal description of some design patterns at both 
the program design and architectural levels. We have chosen the adapter,  ob- 
server, and composite design patterns to illustrate formal descriptions of patterns 
used to support program designs and the master-slave, pipes and filters, and lay- 
ers as typical patterns that are used to describe system architectures. In this way 
we illustrate how the same basic formalism may be used to specify software at 
two different levels of abstraction. We present the implementation patterns first, 
since they have appeared elsewhere [12], and the interested reader may wish to 
compare the two different styles of presentation. 

4.1 Program Design Patterns 

We have chosen the adapter, observer and composite patterns from [12], to 
illustrate how the pat tern constructor described in Figure 3 is applied. There 
is a substantial difference between the pattern specifications presented in [12], 
and the specifications introduced in this paper. The patterns in [12] are based 
on OMT diagrams, informal descriptions in English and C + +  templates, and 
are much closer to the implementation level than the version of the pat tern 
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Operator Design Pattern Adapter 
Objective Modify the interface of an object 
Parameters Objects: ADAPTEE, TARGET; 
Subtasks 1 - Specify Adaptation Object: ADAPTEE, TARGET -+ 

ADAPTER 
1.1 - Create Object: -+ ADAPTER 
1.2 - Compose Objects: ADAPTEE, ADAPTER --> 

ADAPTER 
1.3 - Inherit Objects: TARGET, ADAPTER --> 

ADAPTER 
1.4 - Specify Links: ADAPTEE, ADAPTER --+ 

ADAPTER 

Consequences ADAPTER will contain most of ADAPTEE functionality 
available through the TARGET object interface 

Product Text ADV/ADO ADAPTER 
Declarations 

Nes ted A D Vs/A DOs 
Compose ADAPTEE; 
Inherit TARGET; 

Dynamic Properties 

Interconnection 
With ADV/ADO ADAPTEE 

TargetActions ~ AdapteeActions; 
End ADAPTER 

End Operator 

Fig. 4. Specification of adapter pattern constructor. 

descriptions we present in this paper, o u r  version of the patterns is based on 
the pat tern constructors and the specification formalism associated with the 
ADV design approach. Although we only present three patterns from [12] in this 
paper, our notation can handle a much broader range of patterns at the program 
design level as illustrated in [1]. 

In the following design pattern examples, the pattern specifications provide 
explanations and directions to instantiate a design through the use of well-defined 
development operators and incomplete object schemas. The development oper- 
ators are sequentially numbered in a section called Subtasks, while the object 
schemas are defined in the language-dependent section called Product Temt, which 
provides reusable patterns for the program design. Other sections complete the 
design pat tern specifications by providing additional information. 

The first pat tern we describe is the adapter, and its corresponding specifi- 
cation schema is shown in Figure 4. The objective of the adapter is to modify 
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Operator Design Pattern Observer 
Objective Define dependency between objects 
Parameters Objects: SUBJECT; 
Subtasks 1 - Specify Observers to Objects: SUBJECT --+ OBSERVERs 

1.1 - Create Object: --+ OBSERVERs 
1.2 - Compose Objects: SUBJECT, OBSERVERs 

--+ OBSERVERs 
1.3 - Specify Links: OBSERVERs --+ OBSERVERs 

Consequences OBSERVERs monitor changes in the state of SUBJECT to 
update its own state 

Product Text A D V  OBSERVERs for ADO SUBJECT 
Declarations 

. ~  

Attributes 
ObserverA ttributes; 

Actions 
ObserverQueryA ctions; 
ObserverOhangeA etions; 

Dynamic Properties 
Interconnection 

With ADO SUBJECT 
SubjectAttributes ~ ObserversAttributes; 
SubjectQueryAetions ~-+ ObserversQueryActions; 
SubjectChangeActions ~ > ObserversChangeActions; 

~  

End OBSERVERs 
End Operator 

Fig. 5. Specification of observer pattern constructor. 

the interface of a given object to conform to the needs of a client object. It is 
generally used to produce compatibility between two objects. The adapter might 
be seen as an object which is a wrapper for another object, and it can be used for 
adaptations of interface objects (ADVs) as well as application objects (ADOs). 
An adapter object could also be regarded as a view (ADV) for an application 
object (ADO). 

The subtasks which specify how to instantiate a pattern are given in a task 
or function notation of the form: " f  : x --> y" where f is a function, x is a list 
of parameters for the function f ,  and y is the result of applying the function 
f. In the adapter pattern the function "Create Object" returns a copy of the 
A D A P T E R  Product Text while the function "Inherit Objects" takes the two 
arguments T A R G E T  and A D A P T E R  and returns the modified Product  Text 
for ADAPTER.  In the context of C + +  the A D A P T E R  text would have the 
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Operator Design Pa t te rn  Composite 
Objective Compose objects into tree structures to represent part-whole 

hierarchies 
Parameters Objects: COMPONENT;  
Subtasks 1 - Create a Tree Structure. 

1.1 - Instantiate Concrete Object:  C O M P O N E N T  -+ 
COMPOSITE 

1.2 - Instantiate Concrete Object:  COMPONENT --+ 
LEAFs  

1 .3-  Compose Objects: LEAFs,  COMPOSITE --+ 
COMPOSITE 

1.4 - If Subtree is needed: 
1.4.1 - Recursively Create SubTrees (Step 1) 
1.4.2 - Compose Objects: SubCOMPOSITE,  

COMPOSITE -+ COMPOSITE 

Consequences A tree structure composed of LEAF objects and COMPOS- 
ITE objects is created, where the last ones represent the in- 
ternal nodes of the tree 

Product Text ADV/ADO COMPOSITE 
Declarations 

. o .  

Attributes 
ComponentType: ADO COMPONENT;  

Nested ADVs/ADOs 
Set CompSet of ComponentType; 
Inherit Component; 

End COMPOSITE 

ADV/ADO LEAF 
Declarations 

Nested ADVs/ADOs 
Inherit Component; 

F ig .  6. Specification of composite pa t te rn  constructor.  

words  " inher i t  f rom T A R G E T "  inser ted  in the  a p p r o p r i a t e  loca t ion .  

The  observer design p a t t e r n ,  i l l u s t r a t ed  in F igure  5, is an  e x a m p l e  of  a con- 
nec t ing  p a t t e r n .  The  m a i n  ob jec t ive  of  th is  p a t t e r n  is to  define a o n e - t o - m a n y  
d e p e n d e n c y  be tween  objects ,  so t h a t  the  dependen t  ob jec t s  can m o n i t o r  changes  
in one ob jec t .  In  the  speci f ica t ion i n t roduced  here,  we a s sume  t h a t  observer ob-  
j ec t s  a re  views (ADVs)  of  a p p l i c a t i o n  objects ,  which we call  subjectin the  p a t t e r n  
cons t ruc to r .  
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The current specification approach differs from the design proposed in [12], 
in that the link between a view and its application object is represented by 
the ADV mapping design mechanism, which was explained in Section 2. This 
approach does not describe the implementation of the link, but indicates a map- 
ping or morphism between elements of the objects involved. In contrast, the 
design described in [12] proposes a design technique that is closer to the imple- 
mentation than the proposed mapping. 

Figure 6 describes the specification of the composite design pattern. This pat- 
tern defines a hierarchical structure of objects sharing part-whole relationships. 
In such a relationship between objects, a composite object performs the ~'whole" 
role, while leaf and other composite objects represent the "parts." 

The elements composing the resulting tree structure have uniform interfaces, 
since all of them inherit the tree interface from the abstract class called compo- 
nent. Additionally, these elements might be defined by ADVs or ADOs, since the 
composite design pattern might be used to structure both user interface objects 
and application objects. 

The product text in Figure 6 has an attribute that contains the name of an 
ADO. Thus, it is possible to specify dynamic object structures where the names 
change over time. 

4.2 Architectural  Design Patterns 

There are situations in a software system in which it is necessary to replicate a 
particular service in order to achieve fault tolerance, safety, and correctness. The 
redundant services are needed because in these situations it is not desirable to 
have a single supplier for a critical service. In these cases a design pattern called 
Master-Slave can be used. This pattern consists of a master component and a 
set of at least two slave components. The slaves are independent components 
that each provide the same service, but may use different solution strategies for 
providing that service. The master is the only component to which the clients of 
the service communicate, and the service is only accessible through the master's 
public interface. The master is responsible for invoking the slaves and for pro- 
ducing the final result which is computed from the results returned by the slaves. 
Thus, the master does not provide the service directly, but delegates the same 
task (the particular service) to several independent suppliers, and then returns 
the selected result to its clients. 

From this discussion we can see that the Master-Slave design pattern has 
three kinds of participants: the client, the master and the slaves. The client 
requires a certain service in order to complete its own task. The master organizes 
the invocation of replicated services and decides which of the results returned 
by its slaves is to be passed to its clients, while the slaves are responsible for 
implementing the critical service. The Master-Slave Design Pattern is specified 
in Figure 7 with the Product Text for the Client and Master shown in Figure 8 
and the Product Text for the Slave shown in Figure 9. 

Pipes-and-filters is another important architectural pattern which is often 
used when software systems are composed of several independent complete sub- 
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Operator 
Objective 
Parameters 
Subtasks 

Consequence8 

Product Text 

Design Pattern Master-Slave 
Handle the computation of replicated services 
Objects: CLIENT; 
1 - Specify Master Object: CLIENT -~ MASTER 

1.1 - Create Object: --+ MASTER 
1.2 - Compose Objects: CLIENT, MASTER ~ MASTER 
1.3- Specify Links: MASTER -+ MASTER 

2 - Specify Slave Objects: MASTER --~ SLAVEi i = 1 , . . . ,  N 
2.1 - Create Objects: --+ SLAVEi i = 1 , . . . ,  N 
2.2 - Compose Objects: MASTER, SLAVEi --+ 

MASTER i = 1 , . . . , N  
2.3 - Specify Links: MASTER --+ MASTER 

The replicated service provided by the SLAVE/ (the slaves) 
is offered to CLIENT through the MASTER after selection 
ADV/ADO CLIENT 

o . o  

End CLIENT 
ADV/ADO MASTER 

, . ~  

End MASTER 
ADV/ADO SLAVEi i = 1 , . . . ,  N 

. , o  

End SLAVE/ 

Fig. 7. Specification of the Master-Slave pattern constructor. 

tasks. The subtasks are performed in a sequential or parallel order, and com- 
municate with each other only by exchanging s t reams of data.  The objective is 
to obtain highly reusable, interchangeable, and maintainable applications. This 
pa t tern  consists of filter and pipe components.  The filter components  t ransform 
da ta  and are responsible for a particular, independent, complete subtask of an 
application. The filter's interface consists of an input and output  s t ream only. 
A filter reads s t reams of da ta  f rom its inputs, processes this data,  and produces 
s t reams of da ta  as its outputs.  The filter preserves any ordering relationship 
between the input and output  data.  The t ransformation of input is usually done 
locally and incrementally, and thus the output  may  begin before the input is 
completely read. A filter should not know the identity of the filters preceding or 
following it in the computa t ion  sequences and so filters may  not share s tate  in 
order to preserve this independence. The pipe components  (the pipes) are the 
connections between the filters that  t ransmit  data.  There are normal ly  two dif- 
ferent ways to realize pipes: they may  be links between filters (such as message 
calls) or they may  be separate components  (such as repositories or sensors). The  
responsibility of a pipe is to t ransmit  da ta  between filters, possibly converting 
the da ta  format  between the inout and output  filter. 
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Product Text A D V / A D O  CLIENT 
Declarations 

, . .  

Nested AD Vs /ADOs 

Attributes 
ClientA ttributes; 

Actions 
Compute Task; 

End CLIENT 
A D V / A D O  MASTER 

Declarations 
. , ,  

Nested AD Vs /ADOs 

Attributes 
MasterAttributes; 

Actions 
OutCom; Service; Service; 
SelectResult(Resl , . . . , ResN ); 

. . .  

Dynamic Properties 
, . ~  

Interconnection 
With A D  V / A D O  CLIENT 

Service, > ComputeTask; 
With A D V / A D O  SLAVE~ i = 1 , . . . ,  N 

Service ~ ServiceSlavez; 
, , .  

Service ~ ServiceSlaveN; 
Behavior 

sl A Service --4 s2 
s2 A Service -4 s3 

~ 1 7 6  

End MASTER 

Fig.  8. The Master and Client product text for the Master-Slave pattern constructor. 

The  Pipes-and-Fi l ters  Archi tectural  Pa t t e rn  is specified in Figure 10 where 
the p roduc t  text  is shown in Figure 11. The  Pipe-and-Fi l ter  archi tectural  pa t t e rn  
can be viewed as an a r rangement  of  producer-consumer  structures.  Each filter 
can be seen as a consumer  of  input ,  either f rom a user or f rom the ou tpu t  of  
some other  filter, and  as a producer  of  output ,  either for the user or as input  to  
some other  filter. 

Ano the r  i m p o r t a n t  archi tectural  design pa t te rn  is the layered architecture.  
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Product Text... 
ADV/ADO SLAVE~ i = 1 . . . .  , N 

Declarations 

Attributes 
SlaveiAttributes; 

Actions 
ServiceSlavei; 

Dynamic Properties 

End SLAVEi 
End Operator 

Fig .  9. The Slave product  text for the Master-Slave pa t te rn  constructor.  

Operator Design Pa t te rn  Pipes-and-Filters 
Objective Structure applications that  can be divided into several 

completely independent subtasks performed in a strongly 
determined sequential or parallel order 

Subtasks 1 - Specify Fil ter  Objects: -4 F I L T E R / i  = 1, 2 
1.1 - Create Objects: --+ FILTERi  i = 1, 2 

2 - Specify Pipe (Object):  ~ P IPE  
2.1 - Create Object:  --4 P IPE  
2.2 - Compose Objects: FILTER1,FILTER2,PIPE --+ P IPE  
2.4 - Specify Links: P IPE  --+ P IPE  

Consequences The subtasks are connected through the PIPEs  
Product Text ADV/ADO FILTER1 

End FILTER1 
ADV/ADO FILTERs 

, . .  

Bnd FILTER2 
ADV/ADO PIPE  

End PIPE 

F ig .  10. Specification of the Pipes-and-Filters pa t te rn  constructor. 

Th is  p a t t e r n  can be used to s t ruc tu re  app l i c a t i ons  t h a t  can  be o rgan ized  h ierar -  
chically,  and  i ts  use impl ies  t ha t  each layer  provides  services to  the  layer  above  
and  serves as a cl ient  to  the  layer  below. The  speci f ica t ion in F igure  12 considers  
the  p a r t i c u l a r  case in which we have one layer  ob jec t  bu i l t  on the  t o p  of  the  
ob j ec t  LAYETli .  The  top  layer  ob jec t ,  referred to  as LAYER,+l ,  is connec ted  
to  L A Y E R i  by  the  ob jec t  view C O N N E C T O R i .  
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Product Text ADV/ADO FILTER1 
Declarations 

Attributes 
FILTER1 A ttributes; 

Actions 
Sub Taskl; ActComout; ActComin; ActComi.; 

, , .  

Dynamic Properties 
, , .  

Interconnection 
With AD V/ADO OUTCOMPONENT 

Ac$Comi. ~ OutCompAction; 
Behavior 

sl A ActCom;n -+ su 
s2 A AetComin --+ 33 

End FILTER1 
ADV/ADO FILTER: 

Declarations 
, ~  

Nested AD Vs/ADOs 
, , ~  

Attributes 
FILTERs A ttributes; 

Actions 
Sub Task2; 

, . ,  

End FILTERs 
ADV/ADO PIPE 

Declarations 
~ 1 7 6  

Nested AD Vs/ADOs 

Attributes 
PIPEA ttributes; 

Actions 
AddResult; RetrieveResult; 

~ 1 7 6 1 7 6  

End PIPE 

Fig. 11. The Filter and Pipe product text for the Pipes-and-Filters pattern constructor. 
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Operator Design Pattern Layered-System 
Objective Used to structure applications organized hierarchically 
Subtasks 1 - Specify First Layer Object: --+ LAYERi 

1.1 - Create Object: -+ LAYERi 
2 - Specify Second Layer Object: --+ LAYERi+I 

2.1 - Create Object: -+ LAYERi+I 
2.2 - Create Connector Object: -+ CONNECTORi 
2.3- Specify Links: LAYERi,LAYERi+I,CONNECTORi 

-~ CONNECTORi 

Consequences Each layer provides services to the layer above and serves as 
a client to the layer below 

Product Text A D V / A D O  LAYERi 
Declarations 

Attributes 
LAYERiAttributes 

Actions 
LAYERiAction 

~  

End LAYERi 
A D V / A D O  LAYERi+I 

Declarations 
Attributes 

LAYERi+ 1 Attributes 
Actions 

LAYERI+ 1 Action 
. . .  

End LAYERi+I 
A D V / A D V  CONNECTORi 

Declarations 
Attributes 

CONNECTORiAttributes 
Actions 

CONNECTORIAction 
Dynamic Properties 

. . .  

Interconnection 
With ADO LAYER~ 

CONNECTORiAc t ion  , 
With ADO LAYERI+~ 

CONNECTORiAc t ion  , 
End CONNECTORi 

> LAYERiAction 

> LAYERi+I Action 

Fig. 12. Specification of the Layered System pattern constructor. 

This pa t tern  indicates how the ADV model can be viewed as a formal ism [3] 
support ing the integration of subject-oriented programming  [16, 17] and design 
pat terns  [12, 7, 6], establishing the relationship of object views and objects with 
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subjects and subject activations. The object LAYER1 can be, for example, an 
ADO House and the object LAYER2 and its associated CONNECTOR1 can be 
thought of as the subject activation related to a buyer view of the House. In 
this case, an extrinsic value of the House (an attribute of the ADO Buyer) can 
be computed by an action or method defined in the CONNECTOR1 using the 
intrinsic attributes of the ADO House such as the size and number of rooms. 
Besides allowing the specification of layered systems, we can also formalize in 
principle other applications of the subject model such as, for example, the spec- 
ification of multiple views of data, code debugging from a stable or a temporary 
perspective, and the management of the versions of a system by introducing 
subjects as a mechanism to associate different state with a single object. 

5 C o n c l u s i o n s  

In this paper we describe a formal approach for capturing software designs ex- 
pressed by design patterns, and have demonstrated our techniques by describing 
design patterns at both the architectural and program design levels of software 
description. Our process programming approach to design patterns allows us to 
define primitive design pattern tasks or constructors that can then be used to 
produce specific instantiations of a design. We believe that this approach clari- 
fies both the application and structure of the design patterns. In addition, the 
patterns have been specified so as to incorporate the concept of objects (ADOs) 
and object views (ADVs). 

Using this formal approach including objects and object views directs us 
toward several important results. By using formally defined components we are 
able to reason about the design and prove properties as shown in [3, 5]. Of 
course systems often do not yield to formal approaches because of their size 
and complexity. However, the formal approach could still produce useful results 
in that the models generated could be used to aid in the testing process [5] 
by serving as a basis for test case generation [18], or by providing a means for 
measuring test coverage. 

We are also investigating code generation from design patterns incorporating 
ADO and ADV schemas. Experiments based on the process program description 
have shown that design patterns can yield corresponding C++ schemas which 
can be completed by the designer through an interactive dialogue. In fact, we 
are currently experimenting with C++ code generation by constructing an in- 
teractive tool to generate and complete the schemas [2]. Thus, we should be able 
to produce a single design representation from which we can both reason about 
formally specified properties, and generate most of the code. 

In addition to providing a basis for code generation and reasoning, this for- 
mal approach can be used to address several other important issues. This ap- 
proach can indicate possible steps towards the definition of a unique process 
language vocabulary that can describe the interconnection mechanisms at the 
object, module, and architectural description levels. It can also provide a foun- 
dation for the definition of an integrated formal approach to software system 
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specification and design that  considers various levels of abstract ion [23, 24]. The 
formal  components  can be specified at different levels of detail and thus vari- 
ous p rogram/sys tem/arch i tec ture  features such as data,  control, functionality, 
behavior, communicat ion,  concurrency/dis t r ibut ion/ t iming concerns can be in- 
cluded in the description as it is developed. Such an approach using ADVs has 
been briefly described in [10]. Using a uniform formal  approach similar to the one 
we describe in this paper  can enhance the quality of a design as the architects 
and designers work f rom a single system description. 

6 N o t e  to t h e  R e a d e r  

The technical reports mentioned in this paper  are available through our World 
Wide Web site at  h t tp : / /csg .uwater loo.ca / .  
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