
A Formal A p p r o a c h to Archi tec tura l D e s i g n
Pat t erns

P.S.C. Alencar 1, D.D. Cowan 1, C.J.P. Lucena 2

1 Computer Science Department, University of Waterloo, Waterloo, Ontario, Canada
s Departamento de Informs Pontiffcia Universidade Catdllca do Rio de Janeiro,

Rio de Janeiro, Brazil

Abs t rac t . In this paper we introduce a formal approach to architec-
tural design patterns based on an object-oriented model integrated with a
process-oriented method for describing the patterns. The object-oriented
model is based on the Abstract Data View (ADV) concept, which is a
formal model for subjectivity in that it explicitly distinguishes between
two kinds of objects, namely application objects and object views. The
formalism allows the definition and application of design patterns by
considering both the process program for the pattern tasks and the in-
terconnected objects and views resulting from a particular pattern in-
stantiation. The approach can be used to describe design patterns at
many different architectural levels, and this is illustrated by presenting
patterns for the master-slave, pipes-and-filters, layered systems, adapter,
observer, and composite.

1 Introduction

Design patterns can be viewed as a means to achieve large-scale reuse by captur-
ing successful software development design practice within a particular context
[12, 7, 6]. Patterns should not be limited in what they can describe and can be
used to encapsulate good design practices at both the specification and imple-
mentat ion levels. Thus, design patterns can be applied at many different levels of
abstraction in the software development life-cycle, and can focus on reuse within
architectural design as well as detailed design and implementation. In fact, a
system of patterns for software development should include patterns covering
various ranges of scale, beginning with patterns for defining the basic architec-
tural structure of an application and ending with patterns describing how to
implement a particular design mechanism in a concrete programming language.

Most published research [12, 6] in design patterns has been described in a
structured but informal notation, and has focused on implementation-oriented
patterns rather than architectural ones. For example, one publication [12] con-
tains descriptions of patterns using text and diagrams, and has grouped patterns
into three major categories. These descriptions can be viewed as an informal
recipe or process for producing instantiations of specific patterns in languages
such as Smalltatk or C + + . Even when architectural issues are considered [7],
the software architectural design is expressed only through informal patterns.

577

An architectural pat tern is based on selected types of components and connec-
tors, together with a control structure that governs their execution.

In this paper we describe a formal approach to design patterns which encom-
passes patterns at different levels of granularity ranging from architectural to
implementation descriptions. There are two aspects to design patterns that are
considered in this presentation: the process of producing specific instantiations
of a design pattern, and the use of formally defined components or objects to
substitute in these instantiations.

If the process is defined through a process language with formal syntax and
semantics, then any ambiguities in the process of design pat tern instantiation
should be eliminated. Reducing or even eliminating ambiguity should make it
easier to derive code consistently and perhaps even lead to some automat ion
of the code production for the particular instantiation of a design pat tern [1].
Substituting formally defined components into an instantiation could permit a
formal reasoning process about the resulting system. We currently have estab-
lished two different frameworks for reasoning about designs[3, 5] of this type.

Recent investigations[5] have shown how both a formal model and a prototype
can be derived from a single component-based specification, thus providing a
strong link between formalism and implementation.

The formally defined components are based on the Abstract Data View
(ADV) approach[& 9, 10] which uses a formal model [3, 4] to achieve separa-
tion by dividing designs into two types of components: objects and object views,
and by strictly following a set of design rules. Specific instantiations of views as
represented by Abstract Data Views (ADVs) and objects called Abstract Data
Objects (ADOs) are substituted into the design pattern realization while main-
taining a clear separation between view and object. Currently the ADV and
ADO components are specified using temporal logic and the interconnection
between components is described in terms of category theory.

Each design pat tern has an associated process program that describes how
to substitute these components to create a specific instantiation. In fact, this
framework can be seen as a formal approach for a system of design patterns.

2 A b s t r a c t D a t a V i e w s : t h e M o d e l a n d I t s S c h e m a

In this section we describe the Abstract Data View (ADV) model and associated
schema. This model allows us to create design patterns at various levels of granu-
larity ranging from program design to software architectures, while maintaining
a clear separation of concerns among the components.

A model of the ADV/ADO concept showing how these two types of objects
interact is presented in Figure 1. An ADO is an object in the object-oriented
sense, but has no direct contact with the "outside" world. As an object, an ADO
has state and a public interface that can be used to query or change this state.
An ADO is abstract since we are only interested in the public interface. An ADV
is an ADO augmented to support the development of general ~views" of ADOs,
where a view could include a user or network interface or an adaptat ion of the

578

Object Objects

,ping Method
Invocation

ADV

UDJeOT view Object View

Fig. 1. An ADV/ADO interaction model

public interface of an ADO to change the way the ADO is "viewed" by other
ADOs. A view may change the state of an associated ADO either through an
input action (event) as found in a user interface, or through the action of another
ADO.

Since an ADV is conceived to be separate from an ADO and yet specify
a view of an ADO, the ADV should incorporate a formal association with its
corresponding ADO. The formal association consists of: a naming convention,
a method of ensuring that the ADV view and the ADO state are consistent,
and a method of changing the ADO state from its associated ADV. Because
an ADV is an object with properties which assist the designer in maintaining a
clear separation of concerns we have chosen to give this "special" object a unique
identity.

In order to mainta in a separation of concerns, an ADV knows the name of
any ADO to which it is connected, but an ADO does not know the name of its
a t tached ADVs. The name of the ADO connected to an ADV is represented in
the ADV by a placeholder variable called "owner" which is shown in Figure 1.

If the state of an ADO is changed then any part of the state that may
be viewed by a connected ADV through the ADO's public interface must be
consistent with tha t change. A morphism or mapping is defined between the
ADV and ADO tha t expresses this invariant, and of course, uses the naming
convention previously described. In addition, an ADV may query or change the
state of a connected ADO through its normal public interface.

Figure i illustrates many of these concepts. The user depicted in the Figure
causes an input action that is received by the ADV acting as a user interface.
This action can cause a method invocation in which the ADV changes or queries
its own state or the state of its associated ADO. If the state of ~he ADO changes
through some other action, then the mapping ensures that the ADO and the user

579

interface ADV are consistent. The other ADV in Figure 1 acts as an interface
between two ADOs, and changes in the ADO are similarly reflected in this ADV
through the mapping. Thus, the mapping can force a method invocation to occur
which changes another ADO.

ADV ADV__Name [For I On]
Declarations

Data Signatures
Attributes
Causal Actions
BJyectual Actions
Nested AD Vs

Static Properties
Constraints
Derived Attributes

Dynamic Properties
Interconnection

Valuation
Behavior

End ADV_Name

ADO__Name

- sorts and functions
- observable properties of objects
- list of possible input actions
- list of possible effectual actions
- allows composition, inheritance, sets, ...

- constraints in the attributes values
- non-primitive attribute descriptions

- description of the communication process among
objects

- the effect of events on attributes
- behavioral properties of the ADV

Fig. 2. A descriptive schema for an ADV.

In summary we observe that there are two types of ADVs: an ADV which
acts as an interface between two different media, and an ADV which acts as an
interface between two ADOs operating in the same medium. Although there are
two types of ADVs, they are natural extensions of each other.

The A D V / A D O model was originally conceived to address the same concerns
as the MVC [19] paradigm. However, the A D V / A D O model is more general in
its approach in tha t it explicitly models both interfaces to the externM world
and interfaces between objects. Emphasis on the interface as a speciM type of
object encourages the designer to address separation of concerns explicitly in a
design. In addition, the ADV/ ADO model is formally defined and can support
both reasoning and implementat ion with the same model.

The separation between views and objects makes it possible to use several
ADVs to create different views for a single collection of ADOs. In this case,
both ADOs and their associated views must be consistent. For example, a clock
ADO could have a digital view, an analog view, or both. We call consistency
among the different ADVs horizontal consistency, while consistency between the
visual object (ADV) and its ADO is called vertical consistency. These consistency
properties must be guaranteed by the specification of ADVs, ADOs, and their
environment.

ADVs and ADOs have distinct roles in a software system. As a consequence,

580

they are described by different schemas. These schemas are not the actual ob-
jects of the system, but rather provide descriptions of their static and dynamic
properties and declarations of entities that are used within the scope of the
object. Such schemas are presented in detail in [4].

The specification syntax of the whole schema which is based on ones described
in [13] is presented essentially through a temporal logic formalism [4, 22]. Every
ADV or ADO structure is subdivided into three sections. A declaration part
contains a description of all of the elements that compose the object including
sorts, functions, attributes, and actions. The static properties part defines all
the properties which do not affect the state of the object. Dynamic properties
establish how the states and attribute values of an object are modified during
its lifetime.

Figure 2 shows the structure of the schemas to be used in the specification
of ADVs. Causal actions correspond to input events while effectual actions cor-
respond to method invocations. The header of the schema has the name of the
ADV and the name of its associated ADO. ADO schemas, which are not illus-
trated here, have a similar structure to ADVs, except that ADOs do not support
causal actions, and they do not contain references to any ADVs.

These formal ADV/ADO schemas are based on temporal logic and some
tools from category theory (institutions). This approach is strongly based on
Maibaum and Fiadeiro's combination of temporal logic and category theory
[11] that was initially developed for the purpose of formalizing modularization
techniques for reactive systems. We capture the ADV semantics in logic by using
temporal logic to describe the ADV and ADO components and their properties,
morphisms (or mappings) to describe the relationship between these components
(through a concept related to interpretation between theories), and tools from
category theory (institutions) to specify systems of interconnected ADVs and
ADOs (the structuring mechanisms). For more details on the issues treated in
this section see [3].

The formal category theory tool used here, called the theory of institutions
(and its associated tools), was introduced by Goguen and Burstall [15] and al-
lows the theories of a logic to be shown to constitute a category whose mor-
phisms correspond to property preserving translations between their languages.
These translations or mappings are Mso known as interpretations between the-
ories, and have been used to model relationships between abstract and concrete
specifications [25], or to model mappings between different notions of software
architecture [23].

We adopt a temporal logic with a (global) discrete linear time structure
similar to those used in [21], since this allows easier assessment of the support
for modular specification that is described. We also use the fact that temporal
logics may be defined that satisfy, to some extent, institution [14], and hence, that
temporal theories may be used as modularization units for concurrent system
specification.

The formal specifications of ADVs and ADOs are provided as theory presen-
tations [3] and a categorical account of the ADV/ADO specifications is provided

581

through a category of temporal theories. A morphism or mapping of theory pre-
sentations is a signature morphism that defines a theorem preserving translation
between the two theory presentations and a locality property. Morphisms cap-
ture the relationship that exists between two ADV/ADO theory presentations.
Thus, morphisms can be used to express a system as a diagram showing an
interconnection of its parts. Formally, this diagram is a directed multigraph in
which the nodes are labeled by ADV/ADO specifications, and the edges by the
specification morphisms.

3 A Formal Description of Design Patterns

The ADV model supports reuse since it divides an application into a set of spe-
cialized objects (separation of concerns) each of which may be used in other de-
signs. However, we would like to "glue" these objects into reusable systems, that
is, systems which are easily maintained over time. Design patterns as proposed
in [12] support this form of reuse. Each design pattern is a meta-description of a
solution for a problem that occurs frequently in software design. The application
of the meta-description results in several objects connected together to form a
specific instantiation of such a design solution.

Operator :Pattern Name
Objective
Parameters
Subtasks
Consequences
Product Text

End Operator

- description of the intent of the pattern
- external elements used in the pattern definition
- description of pattern in primitive constructors
- how the pattern supports its objective
- language-dependent specification of pattern

Fig. 3. Development constructor structure for a design pattern.

The acceptance of reusable descriptions, such as design patterns, is highly
dependent on easily comprehensible definitions and unambiguous specifications.
We address both issues in a single formalism for design pat tern application.

In order to formalize the application of design patterns we introduce develop-
ment constructors which are based on schemas that indicate how to apply a pat-
tern. We define design pat tern constructors to consist of a language-independent
part and a product text specification, where a specific language is adopted; this
approach is similar to that described in [20].

The language-independent part of the structure should clearly define the
characteristics of a design pattern. According to [12], a pat tern is composed of
four essential elements: pattern name, problem statement, solution, and conse-
quences.

582

Appropriate pat tern names are usually important factors to assist developers
in the specification of a system. In the case of reusable modules, the vocabulary
of patterns could be one way of guiding the user to choosing suitable modules
for the solution of particular problems.

A problem statement is a description of the circumstances in which to ap-
ply a design pattern, and clarifies the pattern objectives. In the development
constructor structure shown in Figure 3, such a statement is described by an
Objective section.

Applying a pat tern in the context of a specific problem requires a process
description, and so we specify this process in terms of primitive development
constructors and parameters. The primitive constructors applied to pat tern con-
struction are organized in a section of the schema called Subtasks, while input
parameters used in this process are declared in the Parameters section.

The consequences of an application of a pattern provide a description of the
results of using such structure in a software system. The roles of the components
within the pat tern objectives are also illustrated. This section may be helpful in
evaluating the suitability of a pat tern in a specific context. These ramifications
are specified in the Consequences section of a pattern schema.

The language-dependent part of the pattern constructors describes the result
of the application of a pattern as a specific formal representation. Since design
patterns are solution abstractions, a template of the pattern should be a help-
ful instrument in guiding the user to a particular specification. Such templates
are illustrated in the pat tern development constructors using the formalism of
ADV/ADO schematic representations described in Section 2.

4 Formal D e s i g n P a t t e r n s

In this section we provide a formal description of some design patterns at both
the program design and architectural levels. We have chosen the adapter, ob-
server, and composite design patterns to illustrate formal descriptions of patterns
used to support program designs and the master-slave, pipes and filters, and lay-
ers as typical patterns that are used to describe system architectures. In this way
we illustrate how the same basic formalism may be used to specify software at
two different levels of abstraction. We present the implementation patterns first,
since they have appeared elsewhere [12], and the interested reader may wish to
compare the two different styles of presentation.

4.1 Program Design Patterns

We have chosen the adapter, observer and composite patterns from [12], to
illustrate how the pat tern constructor described in Figure 3 is applied. There
is a substantial difference between the pattern specifications presented in [12],
and the specifications introduced in this paper. The patterns in [12] are based
on OMT diagrams, informal descriptions in English and C + + templates, and
are much closer to the implementation level than the version of the pat tern

583

Operator Design Pattern Adapter
Objective Modify the interface of an object
Parameters Objects: ADAPTEE, TARGET;
Subtasks 1 - Specify Adaptation Object: ADAPTEE, TARGET -+

ADAPTER
1.1 - Create Object: -+ ADAPTER
1.2 - Compose Objects: ADAPTEE, ADAPTER -->

ADAPTER
1.3 - Inherit Objects: TARGET, ADAPTER -->

ADAPTER
1.4 - Specify Links: ADAPTEE, ADAPTER --+

ADAPTER

Consequences ADAPTER will contain most of ADAPTEE functionality
available through the TARGET object interface

Product Text ADV/ADO ADAPTER
Declarations

Nes ted A D Vs/A DOs
Compose ADAPTEE;
Inherit TARGET;

Dynamic Properties

Interconnection
With ADV/ADO ADAPTEE

TargetActions ~ AdapteeActions;
End ADAPTER

End Operator

Fig. 4. Specification of adapter pattern constructor.

descriptions we present in this paper, o u r version of the patterns is based on
the pat tern constructors and the specification formalism associated with the
ADV design approach. Although we only present three patterns from [12] in this
paper, our notation can handle a much broader range of patterns at the program
design level as illustrated in [1].

In the following design pattern examples, the pattern specifications provide
explanations and directions to instantiate a design through the use of well-defined
development operators and incomplete object schemas. The development oper-
ators are sequentially numbered in a section called Subtasks, while the object
schemas are defined in the language-dependent section called Product Temt, which
provides reusable patterns for the program design. Other sections complete the
design pat tern specifications by providing additional information.

The first pat tern we describe is the adapter, and its corresponding specifi-
cation schema is shown in Figure 4. The objective of the adapter is to modify

584

Operator Design Pattern Observer
Objective Define dependency between objects
Parameters Objects: SUBJECT;
Subtasks 1 - Specify Observers to Objects: SUBJECT --+ OBSERVERs

1.1 - Create Object: --+ OBSERVERs
1.2 - Compose Objects: SUBJECT, OBSERVERs

--+ OBSERVERs
1.3 - Specify Links: OBSERVERs --+ OBSERVERs

Consequences OBSERVERs monitor changes in the state of SUBJECT to
update its own state

Product Text A D V OBSERVERs for ADO SUBJECT
Declarations

. ~

Attributes
ObserverA ttributes;

Actions
ObserverQueryA ctions;
ObserverOhangeA etions;

Dynamic Properties
Interconnection

With ADO SUBJECT
SubjectAttributes ~ ObserversAttributes;
SubjectQueryAetions ~-+ ObserversQueryActions;
SubjectChangeActions ~ > ObserversChangeActions;

~

End OBSERVERs
End Operator

Fig. 5. Specification of observer pattern constructor.

the interface of a given object to conform to the needs of a client object. It is
generally used to produce compatibility between two objects. The adapter might
be seen as an object which is a wrapper for another object, and it can be used for
adaptations of interface objects (ADVs) as well as application objects (ADOs).
An adapter object could also be regarded as a view (ADV) for an application
object (ADO).

The subtasks which specify how to instantiate a pattern are given in a task
or function notation of the form: " f : x --> y" where f is a function, x is a list
of parameters for the function f , and y is the result of applying the function
f. In the adapter pattern the function "Create Object" returns a copy of the
A D A P T E R Product Text while the function "Inherit Objects" takes the two
arguments T A R G E T and A D A P T E R and returns the modified Product Text
for ADAPTER. In the context of C + + the A D A P T E R text would have the

585

Operator Design Pa t te rn Composite
Objective Compose objects into tree structures to represent part-whole

hierarchies
Parameters Objects: COMPONENT;
Subtasks 1 - Create a Tree Structure.

1.1 - Instantiate Concrete Object: C O M P O N E N T -+
COMPOSITE

1.2 - Instantiate Concrete Object: COMPONENT --+
LEAFs

1 .3- Compose Objects: LEAFs, COMPOSITE --+
COMPOSITE

1.4 - If Subtree is needed:
1.4.1 - Recursively Create SubTrees (Step 1)
1.4.2 - Compose Objects: SubCOMPOSITE,

COMPOSITE -+ COMPOSITE

Consequences A tree structure composed of LEAF objects and COMPOS-
ITE objects is created, where the last ones represent the in-
ternal nodes of the tree

Product Text ADV/ADO COMPOSITE
Declarations

. o .

Attributes
ComponentType: ADO COMPONENT;

Nested ADVs/ADOs
Set CompSet of ComponentType;
Inherit Component;

End COMPOSITE

ADV/ADO LEAF
Declarations

Nested ADVs/ADOs
Inherit Component;

F ig . 6. Specification of composite pa t te rn constructor.

words " inher i t f rom T A R G E T " inser ted in the a p p r o p r i a t e loca t ion .

The observer design p a t t e r n , i l l u s t r a t ed in F igure 5, is an e x a m p l e of a con-
nec t ing p a t t e r n . The m a i n ob jec t ive of th is p a t t e r n is to define a o n e - t o - m a n y
d e p e n d e n c y be tween objects , so t h a t the dependen t ob jec t s can m o n i t o r changes
in one ob jec t . In the speci f ica t ion i n t roduced here, we a s sume t h a t observer ob-
j ec t s a re views (ADVs) of a p p l i c a t i o n objects , which we call subjectin the p a t t e r n
cons t ruc to r .

586

The current specification approach differs from the design proposed in [12],
in that the link between a view and its application object is represented by
the ADV mapping design mechanism, which was explained in Section 2. This
approach does not describe the implementation of the link, but indicates a map-
ping or morphism between elements of the objects involved. In contrast, the
design described in [12] proposes a design technique that is closer to the imple-
mentation than the proposed mapping.

Figure 6 describes the specification of the composite design pattern. This pat-
tern defines a hierarchical structure of objects sharing part-whole relationships.
In such a relationship between objects, a composite object performs the ~'whole"
role, while leaf and other composite objects represent the "parts."

The elements composing the resulting tree structure have uniform interfaces,
since all of them inherit the tree interface from the abstract class called compo-
nent. Additionally, these elements might be defined by ADVs or ADOs, since the
composite design pattern might be used to structure both user interface objects
and application objects.

The product text in Figure 6 has an attribute that contains the name of an
ADO. Thus, it is possible to specify dynamic object structures where the names
change over time.

4.2 Architectural Design Patterns

There are situations in a software system in which it is necessary to replicate a
particular service in order to achieve fault tolerance, safety, and correctness. The
redundant services are needed because in these situations it is not desirable to
have a single supplier for a critical service. In these cases a design pattern called
Master-Slave can be used. This pattern consists of a master component and a
set of at least two slave components. The slaves are independent components
that each provide the same service, but may use different solution strategies for
providing that service. The master is the only component to which the clients of
the service communicate, and the service is only accessible through the master's
public interface. The master is responsible for invoking the slaves and for pro-
ducing the final result which is computed from the results returned by the slaves.
Thus, the master does not provide the service directly, but delegates the same
task (the particular service) to several independent suppliers, and then returns
the selected result to its clients.

From this discussion we can see that the Master-Slave design pattern has
three kinds of participants: the client, the master and the slaves. The client
requires a certain service in order to complete its own task. The master organizes
the invocation of replicated services and decides which of the results returned
by its slaves is to be passed to its clients, while the slaves are responsible for
implementing the critical service. The Master-Slave Design Pattern is specified
in Figure 7 with the Product Text for the Client and Master shown in Figure 8
and the Product Text for the Slave shown in Figure 9.

Pipes-and-filters is another important architectural pattern which is often
used when software systems are composed of several independent complete sub-

587

Operator
Objective
Parameters
Subtasks

Consequence8

Product Text

Design Pattern Master-Slave
Handle the computation of replicated services
Objects: CLIENT;
1 - Specify Master Object: CLIENT -~ MASTER

1.1 - Create Object: --+ MASTER
1.2 - Compose Objects: CLIENT, MASTER ~ MASTER
1.3- Specify Links: MASTER -+ MASTER

2 - Specify Slave Objects: MASTER --~ SLAVEi i = 1 , . . . , N
2.1 - Create Objects: --+ SLAVEi i = 1 , . . . , N
2.2 - Compose Objects: MASTER, SLAVEi --+

MASTER i = 1 , . . . , N
2.3 - Specify Links: MASTER --+ MASTER

The replicated service provided by the SLAVE/ (the slaves)
is offered to CLIENT through the MASTER after selection
ADV/ADO CLIENT

o . o

End CLIENT
ADV/ADO MASTER

, . ~

End MASTER
ADV/ADO SLAVEi i = 1 , . . . , N

. , o

End SLAVE/

Fig. 7. Specification of the Master-Slave pattern constructor.

tasks. The subtasks are performed in a sequential or parallel order, and com-
municate with each other only by exchanging s t reams of data. The objective is
to obtain highly reusable, interchangeable, and maintainable applications. This
pa t tern consists of filter and pipe components. The filter components t ransform
da ta and are responsible for a particular, independent, complete subtask of an
application. The filter's interface consists of an input and output s t ream only.
A filter reads s t reams of da ta f rom its inputs, processes this data, and produces
s t reams of da ta as its outputs. The filter preserves any ordering relationship
between the input and output data. The t ransformation of input is usually done
locally and incrementally, and thus the output may begin before the input is
completely read. A filter should not know the identity of the filters preceding or
following it in the computa t ion sequences and so filters may not share s tate in
order to preserve this independence. The pipe components (the pipes) are the
connections between the filters that t ransmit data. There are normal ly two dif-
ferent ways to realize pipes: they may be links between filters (such as message
calls) or they may be separate components (such as repositories or sensors). The
responsibility of a pipe is to t ransmit da ta between filters, possibly converting
the da ta format between the inout and output filter.

588

Product Text A D V / A D O CLIENT
Declarations

, . .

Nested AD Vs /ADOs

Attributes
ClientA ttributes;

Actions
Compute Task;

End CLIENT
A D V / A D O MASTER

Declarations
. , ,

Nested AD Vs /ADOs

Attributes
MasterAttributes;

Actions
OutCom; Service; Service;
SelectResult(Resl , . . . , ResN);

. . .

Dynamic Properties
, . ~

Interconnection
With A D V / A D O CLIENT

Service, > ComputeTask;
With A D V / A D O SLAVE~ i = 1 , . . . , N

Service ~ ServiceSlavez;
, , .

Service ~ ServiceSlaveN;
Behavior

sl A Service --4 s2
s2 A Service -4 s3

~ 1 7 6

End MASTER

Fig. 8. The Master and Client product text for the Master-Slave pattern constructor.

The Pipes-and-Fi l ters Archi tectural Pa t t e rn is specified in Figure 10 where
the p roduc t text is shown in Figure 11. The Pipe-and-Fi l ter archi tectural pa t t e rn
can be viewed as an a r rangement of producer-consumer structures. Each filter
can be seen as a consumer of input , either f rom a user or f rom the ou tpu t of
some other filter, and as a producer of output , either for the user or as input to
some other filter.

Ano the r i m p o r t a n t archi tectural design pa t te rn is the layered architecture.

589

Product Text...
ADV/ADO SLAVE~ i = 1 , N

Declarations

Attributes
SlaveiAttributes;

Actions
ServiceSlavei;

Dynamic Properties

End SLAVEi
End Operator

Fig . 9. The Slave product text for the Master-Slave pa t te rn constructor.

Operator Design Pa t te rn Pipes-and-Filters
Objective Structure applications that can be divided into several

completely independent subtasks performed in a strongly
determined sequential or parallel order

Subtasks 1 - Specify Fil ter Objects: -4 F I L T E R / i = 1, 2
1.1 - Create Objects: --+ FILTERi i = 1, 2

2 - Specify Pipe (Object): ~ P IPE
2.1 - Create Object: --4 P IPE
2.2 - Compose Objects: FILTER1,FILTER2,PIPE --+ P IPE
2.4 - Specify Links: P IPE --+ P IPE

Consequences The subtasks are connected through the PIPEs
Product Text ADV/ADO FILTER1

End FILTER1
ADV/ADO FILTERs

, . .

Bnd FILTER2
ADV/ADO PIPE

End PIPE

F ig . 10. Specification of the Pipes-and-Filters pa t te rn constructor.

Th is p a t t e r n can be used to s t ruc tu re app l i c a t i ons t h a t can be o rgan ized h ierar -
chically, and i ts use impl ies t ha t each layer provides services to the layer above
and serves as a cl ient to the layer below. The speci f ica t ion in F igure 12 considers
the p a r t i c u l a r case in which we have one layer ob jec t bu i l t on the t o p of the
ob j ec t LAYETli . The top layer ob jec t , referred to as LAYER,+l , is connec ted
to L A Y E R i by the ob jec t view C O N N E C T O R i .

590

Product Text ADV/ADO FILTER1
Declarations

Attributes
FILTER1 A ttributes;

Actions
Sub Taskl; ActComout; ActComin; ActComi.;

, , .

Dynamic Properties
, , .

Interconnection
With AD V/ADO OUTCOMPONENT

Ac$Comi. ~ OutCompAction;
Behavior

sl A ActCom;n -+ su
s2 A AetComin --+ 33

End FILTER1
ADV/ADO FILTER:

Declarations
, ~

Nested AD Vs/ADOs
, , ~

Attributes
FILTERs A ttributes;

Actions
Sub Task2;

, . ,

End FILTERs
ADV/ADO PIPE

Declarations
~ 1 7 6

Nested AD Vs/ADOs

Attributes
PIPEA ttributes;

Actions
AddResult; RetrieveResult;

~ 1 7 6 1 7 6

End PIPE

Fig. 11. The Filter and Pipe product text for the Pipes-and-Filters pattern constructor.

591

Operator Design Pattern Layered-System
Objective Used to structure applications organized hierarchically
Subtasks 1 - Specify First Layer Object: --+ LAYERi

1.1 - Create Object: -+ LAYERi
2 - Specify Second Layer Object: --+ LAYERi+I

2.1 - Create Object: -+ LAYERi+I
2.2 - Create Connector Object: -+ CONNECTORi
2.3- Specify Links: LAYERi,LAYERi+I,CONNECTORi

-~ CONNECTORi

Consequences Each layer provides services to the layer above and serves as
a client to the layer below

Product Text A D V / A D O LAYERi
Declarations

Attributes
LAYERiAttributes

Actions
LAYERiAction

~

End LAYERi
A D V / A D O LAYERi+I

Declarations
Attributes

LAYERi+ 1 Attributes
Actions

LAYERI+ 1 Action
. . .

End LAYERi+I
A D V / A D V CONNECTORi

Declarations
Attributes

CONNECTORiAttributes
Actions

CONNECTORIAction
Dynamic Properties

. . .

Interconnection
With ADO LAYER~

CONNECTORiAc t ion ,
With ADO LAYERI+~

CONNECTORiAc t ion ,
End CONNECTORi

> LAYERiAction

> LAYERi+I Action

Fig. 12. Specification of the Layered System pattern constructor.

This pa t tern indicates how the ADV model can be viewed as a formal ism [3]
support ing the integration of subject-oriented programming [16, 17] and design
pat terns [12, 7, 6], establishing the relationship of object views and objects with

592

subjects and subject activations. The object LAYER1 can be, for example, an
ADO House and the object LAYER2 and its associated CONNECTOR1 can be
thought of as the subject activation related to a buyer view of the House. In
this case, an extrinsic value of the House (an attribute of the ADO Buyer) can
be computed by an action or method defined in the CONNECTOR1 using the
intrinsic attributes of the ADO House such as the size and number of rooms.
Besides allowing the specification of layered systems, we can also formalize in
principle other applications of the subject model such as, for example, the spec-
ification of multiple views of data, code debugging from a stable or a temporary
perspective, and the management of the versions of a system by introducing
subjects as a mechanism to associate different state with a single object.

5 C o n c l u s i o n s

In this paper we describe a formal approach for capturing software designs ex-
pressed by design patterns, and have demonstrated our techniques by describing
design patterns at both the architectural and program design levels of software
description. Our process programming approach to design patterns allows us to
define primitive design pattern tasks or constructors that can then be used to
produce specific instantiations of a design. We believe that this approach clari-
fies both the application and structure of the design patterns. In addition, the
patterns have been specified so as to incorporate the concept of objects (ADOs)
and object views (ADVs).

Using this formal approach including objects and object views directs us
toward several important results. By using formally defined components we are
able to reason about the design and prove properties as shown in [3, 5]. Of
course systems often do not yield to formal approaches because of their size
and complexity. However, the formal approach could still produce useful results
in that the models generated could be used to aid in the testing process [5]
by serving as a basis for test case generation [18], or by providing a means for
measuring test coverage.

We are also investigating code generation from design patterns incorporating
ADO and ADV schemas. Experiments based on the process program description
have shown that design patterns can yield corresponding C++ schemas which
can be completed by the designer through an interactive dialogue. In fact, we
are currently experimenting with C++ code generation by constructing an in-
teractive tool to generate and complete the schemas [2]. Thus, we should be able
to produce a single design representation from which we can both reason about
formally specified properties, and generate most of the code.

In addition to providing a basis for code generation and reasoning, this for-
mal approach can be used to address several other important issues. This ap-
proach can indicate possible steps towards the definition of a unique process
language vocabulary that can describe the interconnection mechanisms at the
object, module, and architectural description levels. It can also provide a foun-
dation for the definition of an integrated formal approach to software system

593

specification and design that considers various levels of abstract ion [23, 24]. The
formal components can be specified at different levels of detail and thus vari-
ous p rogram/sys tem/arch i tec ture features such as data, control, functionality,
behavior, communicat ion, concurrency/dis t r ibut ion/ t iming concerns can be in-
cluded in the description as it is developed. Such an approach using ADVs has
been briefly described in [10]. Using a uniform formal approach similar to the one
we describe in this paper can enhance the quality of a design as the architects
and designers work f rom a single system description.

6 N o t e to t h e R e a d e r

The technical reports mentioned in this paper are available through our World
Wide Web site at h t tp : / /csg .uwater loo.ca / .

R e f e r e n c e s

1. P.S.C. Alencar, D.D. Cowan, D.M. German, K.J. Lichtner, C.J.P. Lucena, and
L.C.M. Nova. A Formal Approach to Design Pattern Definition & Application.
Technical Report CS-95-34, University of Waterloos Waterloo, Ontario, Canada,
August 1995.

2. P.S.C. Alencar, D.D. Cowan, K.J. Lichtner, C.J.P. Lucena, and L.C.M. Nova. Tool
Support for Formal Design Patterns. Technical Report CS-95-36, University of
Waterloo, Waterloo, Ontario, Canada, August 1995.

3. P.S.C. Alencar, D.D. Cowan, and C.J.P. Lucena. A Logical Theory of Interfaces
and Objects. Technical Report CS-95-15, University of Waterloo, Waterloo, On-
tario, Canada, 1995.

4. P.S.C. Alencar, D.D. Cowan, C.J.P. Lucena, and L.C.M. Nova. Formal specifica-
tion of reusable interface objects. In Proceedings o/the Symposium on Software
Reusability (SSR '95), pages 88-96. ACM Press~ 1995.

5. P. Bumbulis, P.S.C. Alencar, D.D. Cowan, and C.J.P. Lucena. Combining Formal
Techniques and Prototyping in User Interface Construction and Verification. In
2nd Eurographics Workshop on Design, Specification, Verification of Interactive
Systems (DSV-IS'95). Springer-Verlag Lecture Notes in Computer Science, 1995.
to appear.

6. P. Coad. Object Models: Strategies, Patterns ~ Applications. Yourdon Press, 1995.
7. J.O. Coplien and D.C. Schmidt, editors. Pattern Languages of Program Design.

Addison-Wesley~ 1995.
8. D. D. Cowan, R. Ierusalimschy, C. J. P. Lucena, and T. M. Stepien. Abstract Data

Views. Structured Programming~ 14(1):1-13, January 1993.
9. D. D. Cowan, R. Ierusalimschy, C. J. P. Lucena, and T. M. Stepien. Application

Integration: Constructing Composite Applications from Interactive Components.
Software Practice and Experience, 23(3):255-276, March 1993.

10. D.D. Cowan and C.J.P. Lucena. Abstract Data Views: An Interface Specifica-
tion Concept to Enhance Design. IEEE Transactions on Software Engineering,
21(3):229-243, March 1995.

11. J. Fiadeiro and T. Malbaum. Temporal Theories as Modularlzation Units for Con-
current System Specification. Formal Aspects of Computing, 4(4), 1992.

594

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addlson-Wesley Publishing Company, Read-
ing, Massachusetts, 1995.

13. Martin GogoUa, Stefan Conrad, and Rudolf tterzig. Sketching Concepts and Com-
putational Model of TROLL Light. In Proceedings of Int. Conf. Design and Imple-
mentation of Symbolic Computation Systems (DISCO '93), Berlin, Germany, March
1993. Springer.

14. J. Goguen and R. Burstall. Introducing Institutions, volume 164 of Lecture Notes
in Computer Science. Springer-Verlag, 1984.

15. J. Goguen and R. Burstall. Institutions: Abstract Model Systems Theory. Journal
of the ACM, 39(1):95-146, 1992.

16. William Harrison and Harold Ossher. Subject-Oriented programming (A Critique
of Pure Objects). In OOPLSA '93. ACM, 1993.

17. William Harrison, Harold Ossher, Randal B. Smith, and Ungar David. Subjectivity
in Object-Oriented Systems, Workshop Summary. In OOPLSA '94. ACM, 1994.

18. Bogdan Korel. Automated software test data generation. IEEE Transactions on
Sofware Engineering, 16(8):870-879, August 1990.

19. Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. JOOP, pages 26-49, August
September 1988.

20. N. Levy and G. Smith. A Language Independent Approach to Specification Con-
struction. In Proceedings of the SIGSOFT'9$, New Orleans, LA, USA, December
1994.

21. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991.

22. Zohar Manna and Amir Pnueli. The temporal logic of reactive systems: Specifica-
tion. Springer-Verlag, 1992.

23. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refine-
ment. IEEE Transactions on Software Engineering, 21(4):356-372, 1995.

24. Y. V. Srinivas and R. Jullig. Specware: Formal Support for Composing Software.
In Proceedings of the Conference on Mathematics of Program Construction, Kloster
Irsee, Germany, 1995.

25. W. M. Turski and T. S. E. Maibaum. The Specification of Computer Programs.
Addison-Wesley, 1987.

