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Abs t r ac t .  We want to develop verification techniques for real-time con- 
current system specifications with high-level behavior structures. Nowa- 
days, there is a big gap in between the classical verification theories 
and the engineering practice in real-world projects. This work identifies 
two common engineering guidelines respected in the development of real- 
world software projects, structured programming and local autonomy in 
concurrent systems, and experiments with special verification algorithm 
based on those engineering wisdoms. The algorithm we have adopted 
respects the integrity of program structures, treats each procedure as an 
entity instead of as a group of statements, allows local state space search 
to exploit the local autonomy in concurrent systems without calculat- 
ing the Cartesian products of local state spaces, and derives from each 
procedure declaration characteristic information which can be utilized 
in the verification process anywhere the procedure is invoked. We have 
endeavored to implement our idea, test it against an abstract version of a 
real-world protocol in a mobile communication environment, and report 
the data. 

1 I n t r o d u c t i o n  

There is a great disparity between the engineering practice and the classical 
theories in verifying sophisticated computer  systems. It  is the goal of this work 
to investigate this disparity and experiment with verification techniques which 
combine the engineering wisdom with the classical verification theories. 

Facing each nontrivial  industrial problem human has encountered, there are 
in general two types of approaches used to surpass it and push the technology 
frontier forward. The first is engineering and the second is scientific. With  the 
engineering approach, people strive to solve the problem using common wisdoms 
derived f rom their experiences in the field. With  the scientific approach, people 
emphasize understanding the nature of the problem, by building mathemat ica l  
models which simulate the problem, and design solution techniques based on 
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the models. In the evolution of industry, these two approaches usually benefit 
from each other. On one hand, engineering wisdom reveals the true nature of the 
problem and inspires people to build better models. On the other hand, better 
understanding of the problem nature corroborates the engineering wisdom and 
may eventually lead to better solution. 

As the computer systems we would like to build become more and more 
sophisticated, nowadays these two types of approaches are also employed in 
the task of system verification. On the engineering side, people have developed 
various engineering guidelines from their experience in the field and have been 
successful in constructing some really big real-world systems with complex high- 
level behavior [28, 18, 30]. Examples of those successes include network layer 
communication protocols, software systems with abstract data  types, parallel 
databases. On the theoretical side, basic mathematical models have been pro- 
posed to help people better understanding the intrinsic nature, e.g. complexities, 
of the problem [1, 4, 9, 10, 12, 14, 15, 25, 31]. Indeed, it has been reported that  
the advancement in the classical theory has led to the successful verification 
of several small real-world products, including physical layer communication 
protocols[7] and integrated circuit design[4, 23]. 

But ironically, if we look at the common guidelines respected by computer 
system engineers, we find that  they are very hard to mechanize and really do not 
fit into the classical verification theories. For example, in building sophisticated 
system, people adopt the guideline of structured programming to structurally 
divide the design into smaller functional parts like procedures and loops and to 
refrain themselves from using arbitrary connection among the parts. But in the 
classical theories, basic models are usually assumed to be equivalent to random 
graphs. If there is a procedure, the standard treatment is just to use it as a 
macro expansion regardless of its functional integrity. 

Another example of the disparity regards the practice in using clocks. For 
engineers, clocks sometimes serve as convenient devices in simplifying interaction 
among different threads in concurrent systems. Here is a hypothetical example. 
A gentleman named Mike drives his friend Frank to a shopping mall and tells 
Frank that  he will come back to pick him up at 5pm. In this case the interaction 
gets simplified to a number, i.e. the deadline to meet. Both of them do not care 
what the other party plans to do before 5pm as long as the deadline is met. But 
from the viewpoint of the verification theory, clock is really not so pleasant a 
device because it always blows up the worst case complexities by an exponential 
factor. Also interestingly enough, even clock readings are intuitively numbers, 
the most, if not the only, used property of clock readings in real-time system 
verification theories is that if you increment a clock reading by noninfinitesimal 
amount for enough number of times, it will eventually be bigger than any given 
finite constant. 

The third example of the disparity concerns with the way people use concur- 
rency. In the design of sophisticated systems involving the interaction of several 
parties, it is the common engineering wisdom to localize the design consideration 
so that  the reliability and safety of the whole systems can be derived from the 
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verification of local properties of each party. But in the classical verification the- 
ory, calculation of Cartesian products of the local state spaces is usually adopted 
as the safe and complete technique. One exception is the composition and hiding 
operation proposed in process algebra [15, 25]. But still successful application to 
a real-world project with high-level behavior structure is yet to be observed. 

This work integrates the two engineering guidelines cited in the above, i.e. 
structured programming and local autonomy in concurrent systems, into the 
design of verification algorithm which can be efficient in verifying well-designed 
computer systems. We target our research on real-time concurrent systems with 
timed atomic actions, synchronization primitives, procedures, loops, nondeter- 
minism, and concurrency. A real-time system performs by giving out correct re- 
sponse at the correct moment.  A concurrent system may allow several threads[ill 
(basic autonomous sequential executions) running concurrently. Recently, a the- 
oretical framework for this purpose was proposed in [33] in which the verification 
complexities for both recursive and nonrecursive real-time concurrent systems 
are discussed and an algorithm is developed for the nonrecursive ones. One desir- 
able feature of the algorithm is that  it respects the procedure and loop structures 
of the systems by treating a rendezvousless execution of a procedure (loop) as a 
numerical entities, i.e. its execution time, which once analyzed, can be used in the 
verification process anywhere the procedure (loop) is invoked. Local autonomy 
of concurrent systems is utilized by a technique called timing coincidence anal- 
ysis which determines the coincidibility of two states by telling if there are two 
synchronization-less local state sequences with the same execution time leading 
to the two states respectively. Such a technique enables us to construct global 
analysis from local state space search outcomes and is supposed to work well in 
systems with long autonomous executions and procedure invocations in between 
synchronization among the concurrent threads. 

In this paper, we report the implementation of the algorithm proposed in 
[33]. However, we shall redesign the specification language to make it look like a 
traditional programming language. Several techniques to improve the average- 
case performance of the algorithm are incorporated which make the analysis of 
an abstract version of a general session setting control protocol (GSSC) in a 
wireless communication environment feasible. First, some related work will be 
discussed in section 2. We then formally introduce our new specification lan- 
guage and review the complexity issues in section 3. The reachability analysis 
algorithm proposed in [33] is then rewritten to fit our specification language in 
section 4. The important  techniques we employed in the implementation are dis- 
cussed in section 5. GSSC is discussed in section 6 with the performance on the 
reachability analysis of two states, one consistent and one inconsistent, reported. 
Section 7 discusses some extension to the implementation on the way and some 

future work. 

We shall adopt the following notations. Given a set or sequence K,  [K[ is the 
number of elements in K.  We let Af be the set of nonnegative integers, Z the 
set of integers, Af {co} = Af U {oo}, and .hf{*} --- .s U {*}. 
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2 R e l a t e d  w o r k  

With the theoretical development of real-time and hybrid automata[l, 14, 21, 26, 
27, 32] and the successful engineering of automated verification tools[2, 8~ 4, 23], 
the research of computer-aided verification has received much attention. At this 
moment, various state-based [1, 4, 9, 10, 12, 14, 31] or event-based[20] model 
description languages are available, to which the standard verification technique 
of global space teachability analysis is usually applied. So far, several small real- 
world examples have been verified using this approach [4, 7, 23]. However such 
abstractions, although very elegant, may be at too low a level to make automatic 
verifiers efficiently uncover the behavior structures hidden in big system model 
descriptions. 

Process algebra[15, 25] takes advantage of hiding and composition operators 
to construct complex systems from submodules. Since the verification algorithms 
for process algebra take care of general specifications without special program 
structure in mind, it may not be able to exploit the regularity of high-level 
behavior structure resulted from the observance of engineers to those guidelines. 

People also use first-order logic or even higher-order logics to verify system 
designs. In those cases, very high-level behavior structures can be specified and 
verified[6, 13, 29]. For example, in [19], it was proposed to use positive cycles as 
intuitive refutation units in verifying real-time systems. The drawback is that 
the verification software can only do as much as proof checking and the engineers 
are pretty much left to their own. Still several remarkable benchmarks have been 
passed because of the industrious ingenuity of researchers in the community[6]. 

A good integration of engineering wisdom and scientific principles is formal 
methods in the line of VDM[18] and Z[30]. In that approach, a set of guidelines 
for system construction and a set of rules for verification are proposed and have 
been successfully applied in several real-world projects with benefits recorded. 
For example, in 1992, a Queen's Award of Britain was given to Oxford Univer- 
sity Computing Laboratory and IBM UK Laboratories at Hursley Park for the 
development of IBM CICS using Z notation. 

3 R e a l - t i m e  c o n c u r r e n t  s y s t e m s  

3.1 Syn tax  

The underlying concept of our approach is DAG~ procedure, defined in [33], 
which is a single-source single-destination directed acyclic graph in which each 
node represents a compound statement of procedure-call and atomic operation. 
Here we shall redefine DAG~ procedure in the concept of traditional program- 
ming languages. As in the traditional imperative languages, a DAG~ procedure is 
constructed from three types of statements, timed atomic, rendezvous, procedure- 
calling, and two types of statement structures, switch, concatenation. A timed 
atomic statement is executed with a prespecified earliest starting time and dead- 
line. Unlike in Ada, here rendezvous is fulfilled by having all the participating 
parties executing the same rendezvous type at the same time. A procedure-call 
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represents either a fixed or a nondeterministic number  of sequential execution of 
a DAG~ procedure. A switch s ta tement  structure represents a nondeterministic 
choice, while a concatenation s ta tement  structure represents a successive execu- 
tion of two s ta tement  structures. We use the following example to give intuition 
to the readers before the formal definition. 

Example 1. In Figure 1, we illustrate three procedures, P, Q, R. P may  loop 
nondeterministically many  times to invoke R. Q invokes R also as the body of 
a 2-iteration loop. a is a rendezvous type. An interval, like [4, 9], represents a 

P ( 
[3,5]; 
swi tch  { 

case [0,2]; 
case [3,7]; ~; 

} 
R*;  

Q { 
[4,9]; 
R2; 

R { 

} 

Fig. 1. Several simple procedures 

t imed atomic s ta tement  with the earliest s tart ing times and deadlines. II 

D e f i n i t i o n l  : D A G ~  p r o c e d u r e .  A DAG~ procedure P is constructed from 
finite application of the following rules. 

P ::= w{B} 
B ::= [i,j]; l a ;  I WlTt; I Wl*; I BIB2 I s w i t c h { c a s e B l c a s e B 2 . ,  caseBn} 

Here w, wl are procedure names (character strings) and B, B1, B2, B,~ are state- 
ment  structures, i 6 Af, j 6 Af U {oc}, and n is a nonnegative integer, c~ is a 
rendezvous type. Given P = w{B}, we shall use /5  as the notat ion for the name 
w of P.  II 

Given a set H of DAG~ procedures, we treat  each s ta tement  position as the true 
identity of the corresponding s tatement .  Tha t  is given two s ta tement  positions 
which both execute a syntactically identically s ta tement  (say a rendezvous '%%" 
or a procedure-calling "Pn;," or a t imed atomic s ta tement  "[i, j] ;"), we shall still 
t reat  these two positions as two different s tatements.  Given a DAG~ procedure 
P,  we let S(/5) be the set of s ta tements  used ~ in P.  We also define So(/5) and 
,9] (15) to be the set of first and final s ta tements  in P respectively in the following. 

�9 I f /5{B}  is defined, then So(/5) = So(B) 
�9 If  B is a s ta tement ,  then So(B) = {B}. 
�9 So(B1B2) = So(B1). 
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�9 S0(swi tch  {case  B1 . . .  case  Bn}) = So(B1) U. . .  U So(B~) 
Similarly, we have the following definition for S/(/5).  

�9 I f / 5{B}  is defined, then S](/5) = S](B) 
�9 I f  B is a s tatement ,  then S](B) = {B}. 
�9 S](B1B2) = Sf(S2). 
�9 S f ( s w i t c h  {case  B1 . . . c a s e  Bn}) = Sf(B1) U . . .U  S f (B , )  

Given a concatenation s ta tement  structure BIB2 in a DAG~ procedure P,  for 
each Sl E Sf(B1) and s2 e So(B2), we call s2 a successor of Sl. 

Notice tha t  the looping in DAG~ procedures are restrained as a special type 
of procedure calls. Conceptually, a real-t ime concurrent system allows many  
threads running concurrently. By giving additional information on the start ing 
s ta tement  of each thread and the part icipating parties of each rendezvous type, 
a set of procedure definitions can be grouped to define a real-t ime concurrent 
system. 

D e f i n i t i o n 2  : R e a l - t i m e  c o n c u r r e n t  s y s t e m .  Given a set /7 of DAG~ pro- 

cedures, we let ~ I /  be the set of rendezvous types used in procedures in 17. A 
real-time concurrent system is a tuple (/7,/2, r)  satisfying the following proper- 
ties. 

�9 /7 is a set of DAG~ procedure definitions such that  for every procedure P 
defined i n /7 ,  any procedure referenced in P is also defined i n / 7 .  

�9 $2 is a sequence (P1,. . . ,  tim) of procedure names in H and declares the rn 
threads in the system. For each 1 < i < m, thread i starts  by invoking Pi. 

�9 r : Z ~ ~-+ 2 {1 ..... Inl} defines the set of parties part icipating in each ren- 
dezvous. For each i E r(c~), thread i is expected to part icipate in each in- 
stance of rendezvous or. 

A real-t ime concurrent system is recursive iffi ts procedure-calls are recursive. I] 

Example2. Assume we have the four procedure definitions in example 1. 
Then R = ({P, Q, R}, (P, Q}, {c~ --+ {1, 2}}> is a legit imate nonrecursive and 
unambiguous real-t ime concurrent system. I1 

3.2 A n  o p e r a t i o n a l  s e m a n t i c s  fo r  systems with s ing le  d i s c r e t e  c lock  

Given a real-t ime concurrent system with m threads, the slates of the system can 
be described by an array of local states of the m threads. The procedure-calling 
scheme for the threads in our real-time concurrent systems resembles the push- 
pop operation of stacks[17] which have often been used as theoretical abstract ion 
of nested procedure-callings. The local state of a thread can be conceptually 
recorded in a structure like the control stack (the name we shall adopt  henceforth) 
in [3] and the activation record in [16, 34]. All possible executions of a thread 
from a moment  can be deduced from the contents of the corresponding control 
stack. 

Given a real-t ime concurrent system R, we let S (R) be the set of s ta tements  
used in procedures defined in R. Given a thread local s tate (control stack) F 
represented as the following sequence 
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b o t t o m  top 
(so,to) ( s l , t l )  (s2,t2) . . . . . .  (s.~_~,t.~_~) ( s m , t ~ )  

we let (80, to) and (s .~, tm) be the bottom and top respectively of  F .  A control 
stack, say the above-ment ioned F ,  mus t  satisfy the following conditions. 

�9 For each 0 < i < m, either 
- for some P and n, si is a procedure-call ing s ta tement  "[%;" with 0 

t~ < n; or 
- for some P ,  sl is a procedure-cal l ing s ta tement  "/~*;" with ti = O. 

�9 One of  the following mus t  be true for the top (s.~, t.~) of  F .  
- s m  is a procedure-cal l ing s ta tement  "Pn ; "  and 0 _< t~n ~ n. 
- s.~ is a procedure-cal l ing s ta tement  "/~*;" and t.~ = O. 
- s.~ is a t imed a tomic  s ta tement  "[i , j] ;"  and either 0 < tm ~ j r (x~ or 

O < t , ~  ~ _ i V t m = j = ~ .  
. . . . .  and either tm = 0 or trn = c~. - Srn is a rendezvous s ta tement  ct, 

Given a control  stack F ,  we let t o p ( F )  symbolical ly  denote the top of  F .  F 7  
is a new control stack obta ined by pushing 7 into F .  p o p ( F )  is a new control  
stack obta ined  by popping  the top element f rom F .  Given t o p ( F )  = (s~ t) with 
t, c E Z,  we let F +c be an abbrevia t ion of  pop(F) ( s ,  t + c), i.e. the local state 
obta ined  by increment ing the top counter value by c. 

Suppose we are given a local state F = (so, to)(sl ,  t l )  o.. (sin, tin). For each 
0 < i < m, when si is a procedure-call ing s ta tement  "Pn ; , "  it means  the thread 
is now in the middle of  executing procedure P and is going to invoke P consec- 
utively for In - ti] more  times. 

Similar to [17], we can define the succession of  local states which follows 
the intui t ion of control  stack evolution during procedure-call ing and s t rongly 
matches  the relation among  paths  in act ivat ion trees as discussed in [3]. t tow- 
eveL for the convenience of  our a lgor i thm design, we shall present the following 
concept  of  local state successions. 

D e f i n i t i o n  3 : S u c c e s s i o n  o f  t h r e a d  l o c a l  s t a t e s .  The  succession relation, b, 
between local s tates are defined in the following way. Suppose we are given a 
local s tate  F whose top is (s, t). 

�9 F i x e d - l o o p  p r o c e d u r e - c a l l  : Suppose s is a procedure-cal l ing s t a tement  
"Pn;." I f t  < n, then for each so E So([~), Y F F+l(so,O).  I f t  = n, then for 
each successor s ta tement  s '  of  s, F F p o p ( F ) ( s ' ,  0). 

�9 * - l o o p  p r o c e d u r e - c a l l  : If  s is a procedure-cal l ing s ta tement  'P*; ,"  then 
for each s0 C S0(P) ,  F ~- F(s0,  0) and for each successor s ta tement  s '  of  s, 
F F p o p ( F ) ( s ' ,  0). 

�9 R e t u r n  f r o m  p r o c e d u r e - c a l l  : W h e n  s E S/(/~),  if one of  the following 
three condit ion is true, 

- s is a t imed  s ta tement  "[i, j]" and i < t < j .  
- t = (r form some rendezvous type  ~r. 
- 8 is a procedure-cal l ing s ta tement  Qn, and t = n. 
- 8 is a procedure-call ing s ta tement  "Q*;." 

F b p o p ( F )  
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�9 T i m e d  s t a t e m e n t  : Suppose s is a t imed a tomic  s t a t emen t  [z,)],. 

- I f t < i ,  t h e n F i - F  +1. 
- I f i _ < t < j ~ e c ,  t h e n F P F  +1. 
- I f  i _< t < j = o% then F ~- pop (F ) ( s ,  oo). 
- I f  i < t < j ,  then for each successor s ta tement  s '  of  s, 1" ~- pop(F)(s ' ,  0). 

�9 R e n d e z v o u s  s t a t e m e n t  : I f  s is a rendezvous s ta tement  and t = 0, then 
for each successor s t a t ement  s '  of  s, F t- pop(F) ( s ,  c 0 ~- p o p ( F ) ( s ' ,  0). II 

Based on the concept  of  local state succession, we are now ready to define the 
compu ta t i on  in mul t i - th read  real- t ime concurrent  systems.  

D e f i n i t i o n 4  : S t a t e s  a n d  r u n s .  Suppose we are given a real- t ime concurrent  
sys tem R = ( g ,  $2, r ) .  A state of R is a sequence of I~?l local states. A finite 
sequence (A0, g0)(A1, g l ) . . .  (Am, gin) is called a Ao-run of R, where for each 
0 _< k _< m, A k is a state and gk 6 {0, 1} indicates the presence of a global 

clock tick. Assume,  for each 0 < k < rn, Aa = (F(1), P(~)\ The  following - -  - -  " ' ' ~ k  /"  

requirements  are imposed on a A0-run. 
�9 For each 0 < k < m and 1 < i < n, either F (i) --~ F}i:l or F (i) = F(i) 

- -  k ~ k + l "  

�9 E n f o r c e m e n t  o f  s y n c h r o n y  t o  g l o b a l  c l o c k  : For each 0 _< k < m, gk = 
1 i f fevery thread increments  its t ime reading by 17 tha t  is for each 1 < i < n 

such tha t  t o p ( F  (/)) (s, t)  and (i) s '  = top(F~+l)  = (s' , t ') ,  s = and either 
t +  1 = t '  or t = t '  = oc. 

�9 E n f o r c e m e n t  o f  r e n d e z v o u s  : For each c~ E ~ / /  and each 0 < k < m, 

if t o p ( F  (/)) = (s,c~) for some s and i e 7(cr), then for each j E r(cr), 

t o p ( F  (/)) = (s ' ,  cr) for some s ' .  
Given a s tate  A and a b - r u n  ~ = (A0, go)(A1, gz ) . . .  (Am, gin), for each 0 < k < 
m, the t ime of  the k- th  state in ~ ,  in symbols  time~,(k), is defined induct ively 
by two cases : (1) timeo(O) = 0. (2) For each 0 <_ k < m, t imee(k + 1) = 
time~(k) + g~. I1 

Example 3. Assume tha t  we have the real-t ime concurrent  sys tem in example  2. 
It can be seen tha t  while thread 1 m a y  loop nondeterminis t ica l ly  m a n y  times, 
thread 2 te rminates  after executing two instances of  rendezvous c~. Thus  the 
whole sys tem only has runs with two rendezvous instances. [[ 

3 .3 C o m p l e x i t i e s  o f  r e a c h a b i l i t y  a n a l y s i s  

We shall in t roduce a basic version of  the reachabil i ty problem here. Such a 
version is ins t rumenta l  in const ruct ing other  interesting versions. 

D e f i n i t i o n 5  : S t a t e  r e a c h a b i l i t y .  Given a real- t ime concurrent  sys tem R = 
(H, $2, v), a s tate  A '  is said reachable from another  s tate  A in R iff there is a 
b - r u n  (A0, g0)(A1, g l ) . . .  (Am, gin) such tha t  A ' =  A,~. ]] 

The  reachabil i ty  problem in our real- t ime concurrent  systems can then be 
formula ted  in the following way. Given a real- t ime concurrent  sys tem R and two 
of  its states A,  A ' ,  the corresponding state teachability problem instance asks if 
A '  is reachable f rom A in R. We cite the following theorem and l emmas  f rom [33] 
to show the complexities of  the problem for recursive and nonrecursive systems.  
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T h e o r e m 6 .  Two-counter machine halting problem[22] is reducible to lhe reach- 
ability problem of real-time concurrent systems. II 

L e m m a T .  QBF[17] is reducible in PTIME to the stale reachabilily problem for 
nonrecursive real-time concurrent systems. II 

L e m m a S .  The state teachability problem of nonrecursive real-time concurrent 
systems is in PSPACE. ]1 

4 R e a c h a b i l i t y  a n a l y s i s  f o r  n o n r e c u r s i v e  s y s t e m s  

Our algorithm will be presented in two steps. First, we shall give a skeleton view 
of the algorithm in subsection 4.1 in which the implementation of one particular 
code line is not detailed. The skeleton describes how we exploit the autonomy 
of each thread in between hitting rendezvous to reduce the size of state space. 
Second, details about that  one code line will be supplemented in subsection 4.2 
and 4.3. 

4.1 S k e l e t o n  v i ew  o f  t h e  a l g o r i t h m  

We formalize the concept of thread autonomy in between hitting rendezvous 
with the following definition. 

D e f i n i t i o n 9  : S u c c e s s o r  t h r o u g h  r e n d e z v o u s - l e s s  r u n .  Given a real-time 
concurrent system R, and two states A and A ~, we say A t is a successor through 
rendezvous-less run (or -,r-successor) of A iff there is a finite 
A-run ~ = ( Ao, go). . .  (Am, gin) of R such that  

�9 ~ ends at A I, i.e. A I = Am; and 
�9 for each 0 < k < m, Ak does not mark the completion of a rendezvous, that  

= ( F ~  ( .. F(~)\ for each l < i < n ,  t h e r e i s n o c r E Z / I  is, assuming Ak 1), "," k /, 

s.t. top(F} 0) = (s, ~) for some s. tl 

In between hitting rendezvous, each thread executes in an independent way. We 
say a state (F (1), . . . ,  F ('~)) is at the stage of completion of rendezvous c~ iff for 
some 1 _< i < n, s, t op (F  (0) = (s, c~). A major source of efficiency of our al- 
gorithm comes from the fact that  we only work with states which are at the 
completion stage of rendezvous. The algorithm in table 1 takes this character- 
istic of real-time concurrent systems into consideration to answer instances of 
state teachability problem. Succession relation among such states is figured out 
by manipulation of arithmetic set expressions as defined in subsection 4.2 The 
correctness of procedure Reachable() has been proven in [33] and restated in the 
following lemma. 

L e m m a  10. Given two slates A, A I of a nonrecursive real-time systems R, with 
the oracle for -~r-successorship, A ~ is reachable from A in R iff 
Reachable(R, A, A') is TRUE. II 
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Reachable(R, At, At') 
/* R = (//, (2, r), is a nonrecursive real-time concurrent system. */ { 

(1) Generate the set X of all states in which a rendezvous is at the stage of 
completion. 

(2) Determine the pairwise -,r-successor relation in X U {At, At'} and can it Y. 
(3) If At' is reachable from A in (X tO {A, At'}, y) ,  answer TRUE; else answer 

FALSE. 
} 

Table  1. Algorithm for state reachability problem 

All but  the second code line in table 1 are obvious. In subsection 4.2, we shall 
introduce ari thmetic set expressions, as the abstraction tool used to construct a 
solution for the second code line. In subsection 4.3, we shall use the technique 
of t iming coincidibility analysis to determine the ~r-successor relation between 
two states. 

4.2 A r i t h m e t i c  se t  e x p r e s s i o n s  a n d  t h e i r  o p e r a t i o n s  

The transitions in our system models are carried out within intervals bounded by 
earliest s tart ing times and deadlines. Since earliest s tart ing times, and deadlines 
alike, of a sequence of consecutive transitions can be accumulated during the 
analysis of thread behavior, it is natural  to define the addition and integer mul- 
tiplication of integer intervals. And indeed our reachability analysis algori thm is 
presented based on this kind of ari thmetic set operations. 

Our ari thmetic set expression is constructed by the following rules. 

H : : :  {c} I H, U H= I H, n H= I H1 "+ H2 I H1/~ ] H I *  

c, k are natural  numbers. { c l , . . . ,  c~} is a shorthand for {Cl} U . . .  U {c~}. Con- 
ceptually, we treat  an integer interval [a, b) as a shorthand for the set {a, a + 
1 , . . . ,  b - 1}. Especially, [a, ee) is a shorthand for {a} + {1}*. The meaning of 
these set expression is inductively given in the following. 

�9 Case H = {c}, H is the set of integer c. 
�9 Case H = HI  U H2 (H = H1 N H2), H is the union (intersection) of H1 and 

H2. 
�9 C a s e H = H I + H 2 ,  H = { a + b [ a E H 1 ; b E H 2 } .  
�9 Case H = Hlk, (1) when k = 0, then H = {0}; (2) otherwise H = H i ( k -  

1) + HI. 
�9 Case H ---- Hi* ,  H = Uk>0 Hilt. 

Note O acts as a nullifier in ari thmetic set addition, i.e. for all integer set expres- 
sion H,  H + 0 = O. Also, we allow distribution of addition against union and 
intersection. 
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An arithmetic set expression H is said to be in periodical normal form (PNF) 
iff H = Ul<i<,~({ai} + {ei}*). In the following, we give a set of rewriting rules 
to transform arithmetic set expressions into PNF arithmetic set expressions. 

1) (Ul<i<m({ai}+{ci},))N(U,<j<n({bj}+{dj},)) 
~ Ul<i<.~;,<j<~ Kn({ai} + {ci}., {bj} + {dj}.) 

where/(n({a}--t- {c--}., {b} + {d}*) is defined by the following two cases. 
- If there is no integer solution i, j to a + ci = b + dj, 

then Kn({a} + {c}*, {b} + {d}) = 0 
- Otherwise, let i, j be the minimum integer solution. 

Kn({a} + {c}*, {b} + {d}*) = {a + e~} + {lcm(e, d)}. 

(u{ai+bj+lcm(ci,dj)}+{gcd(ci,dj)}*) ) 
=Ul<i<.m<j<~ . {ai+bj+cih+djklh,  kEAf;cih+djk  <lcm(ci,dj)} 

3) (Ul<i<_m({ai} + {ci},)) ]r 
{{(0} a ) i f k = O  

= Ul<i<m({ i} + {el}*) (k--  1) + Ul<i<m({ai} + {ei}*) if k > 0 
After application of the rule, rule 2 should be used immediately. 

(Ul<_i<_m({al} + {ci}.)) �9 = El<_i<m({ai} * +{ci}*) 4) 
After application of the rule, rule 2 and distribution of addition against 

\ / 

unions should be used iteratively to transform the formula to its PNF. 

4 . 3  T i m i n g  c o i n c i d i b i l i t y  a n a l y s i s  

The technique of timing coincidibility analysis is based on the following observa- 
tion. Given two concurrent threads starting their execution simultaneously, after 
running without interaction (rendezvous) for t time units according to the global 
clock, they may get to local states F, F ~ respectively. Then due to the strong syn- 
chrony in global clock systems, we can conclude that  F, F ~ may happen at the 
same time during the two threads rendezvous-less executions respectively. This 
implies that  we can separately work with the subtasks of searching in the local 
state space of each thread while analyzing the reachability between states. By 
figuring out the general time patterns between pairs of local states in the local 
state spaces, we can tell the -~r-successor relations by intersecting those time 
representations. In this approach, time representations are often very concise 
since it tends to ignore the difference among different state sequences as long as 
they have the same time values. 

The following definition formalizes the concept of local state space search. 

D e f i n i t i o n  l l  : Loca l  s t a t e  sequence .  Given a real-time concurrent system 
/~ = (H, t2, r}, a finite local state sequence 4) = FoF1...F,~, with F~ ~- Fk+l 
for each 0 < k < m, defines a legitimate thread execution in R from F0 and is 
called a No-sequence. 4) is rendezvous-less iff for every 0 < k < m, Nk is not at 
the completion stage of a rendezvous, i.e. gc~ E ~/1gs(top(/ 'k) ~ (s, cr)). I[ 
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D e f i n i t i o n l 2  : R e n d e z v o u s - l e s s  t i m e  e x p r e s s i o n s .  Given a DAG~ proce- 
dure P{B} ,  the rendezvous-less time expression of P, texp~r(JO), is defined in- 
ductively as follows. 

�9 then texp,r(P ) = texp,r(B ). 
�9 t exp .~ ( [ i , / ] ; )  = F , / ]  
�9 t e x p ~ ( r  = 0 

�9 t e ~ p ~ ( P ~ , ; )  = ( te~p.r(P~))*  
�9 te~p.~(B1B2) = te*p.~(B~) + texp.~(B~) 
�9 t e , p . ~ ( s w i t ~ h { c a s e B ~  . . .  c ~ s e B ~ ) )  = t~xp.~(B~) U . . .  U t ~ p . ~ ( B . )  

Suppose we are given a finite rendezvous-less local state sequence ~ = F0 �9 Fm 
with top(Fi) = (st, tl) for each 0 < i < rn. We conveniently let texp.~r(~) ) equal 
to 

be our notation for the time expression for rendezvous-less local state sequence 
d~. Here 5# is {1} when 30 < i < m(ti = oo); {0} otherwise. Also we let 

t e x p ~ ( v ,  v ' )  = 

U (  4i is a finite simple rendezvous-less / ' -sequence of R ends at I"' ) te32P'~r(V) 

where "simple" means no two local states are the same. H 

The execution times of all rendezvous-less execution sequences between two local 
states can be figured out by doing some arithmetic on time expressions. The 
meaning of the time expression is given by the following lemma proven in [33]. 

L e m m a  13. Given two local states F, I "~ of a nonrecursive real-time concurrent 
system, there is a rendezvous-less execution sequence of time t from F to 1 "~ iff 
t E texp.~(F,  T") which is computable. II 

With definition 11, 12, and lemma 13, we have made the concept of autonomous 
execution of a single thread precise and proven our derivation of rendezvous-less 
thread execution time expression correct. Now all these can be readily combined 
to prove the correctness of the technique of timing coincidibility analysis. 

L e m m a  14. Given t E Af and two states of a nonrecursive real-time concurrent 
system R, A = (FO) , . . . ,  1%'0) and A' = {F'(1), . . . ,  F'Cn)), AV is a successor of 
A through rendezvous-less run oft time units in R li f t  E ~l<i<_n texP~r (F(i), F6i)) 

Proof. According to definition 9, 11, 12, and lemma 13. I] 

5 I m p l e m e n t a t i o n  t e c h n i q u e s  

We have employed several techniques to take advantage of the behavior structure 
of procedure-callings and local autonomy to make the reachability analysis more 
efficient. As we have observed, such techniques are valuable and often result in 
orders of magnitude in verification performance improvement. 
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5.1 N o n p e a k  e x e c u t i o n  path 

Given a stack F,  remember  that  we use IFI to denote the height of F.  A local 
s tate sequence F o F 1 . . . F m  is called a peak local state sequence iff there are 
integers i , j , k  with 0 ~ i < j < k ~ m such that  ]F~ I < IFjl and 1Fjl > ]Fkl. 

In an interval of the rendezvous-less execution of a thread, a peak in its execu- 
tion sequence represents a procedure-call which does not incur any rendezvous. 
The effect of the rendezvous-less procedure-call can be treated as purely nu- 
merical values, i.e. its rendezvous-less t ime expressions. Thus we introduce the 
following new concept of local s tate succession involving encapsulated procedure- 
calls. 

Definition 15 Successors  of  local  s t a t e s  w i th  e n c a p s u l a t e d  p rocedu re - ca l l .  
I f s  is a procedure-calling s ta tement  P n ,  with t < n, then for each 1 < c < n - t ,  

r II 

We have observed tha t  while calculating the rendezvous-less t ime expressions 
between two local states, we only have to consider nonpeak path.  While calcu- 
lating the t ime expression of a rendezvousless local state sequence ~ between 
two local states, if we find out that  two consecutive local states along �9 are con- 
nected by the above-defined successor relations, we shall include (texp~ r ( P ) ) c  in 

5.2 S t a r t i n g  t i m e d  a t o m i c  loca l  states 

While computing the t ime expression of rendezvousless local s tate sequence, 
we ignore those local states which mark  the execution in the middle of t imed 
atomic statements .  Tha t  is we can ignore all local states F with top(P)  -- (s, t), 
s = [i, j];, and t r 0 by introducing the following new local s tate successor 
relationship. 

D e f i n i t i o n  16 S u c c e s s o r s  f r o m  s t a r t i n g  t i m e d  a t o m i c  loca l  s t a t e s .  
If t op (P)  -- (s, 0) and s is a t imed s ta tement  [i,j];, then for each successor 
s ta tement  s '  of s, F ~ p o p ( F ) ( J ,  0). II 

Suppose we are given a rendezvousless local state sequence ~ = F o . . . F m ,  if 
top(F0) = (s and top(F ,  0 = ( s ' , t ' )  with s = [i,j];, s '  = [ i ' , j ' ] ; ,  t r 0, and 
t ~ r 0. Let ~ be the local s tate sequence identical to �9 except that  

�9 45 starts  t t ime units earlier than  ~ in s; and 
�9 45 ends t '  t ime units earlier than ~ in s ~. 

Then we can compute  texp~ r (~) to be texp~r(45) - [t, t] + It', t']. Note however 
that  our original t ime expression definition does not deal with subtraction. But 
since we always reduce t ime expression to PNF, a t ime expression like [a, b] + 
[c, c] �9 - [ t ,  t] is equivalent to [a + cg - t, b + cg - t] + [c, c]* where g is the smallest 
integer solution for x to a + cx >_ t. 
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5.3 L o c a l  s t a t e  s p a c e  s e g m e n t a t i o n  

Given a real-t ime concurrent system with m threads, a naive approach in cal- 
culating states is to calculate all the Cartesian products of m local states. This 
usually results in huge number  of pseudo states most  of which can never be 
reached from the system initial state. The trick we use in the implementat ion is 
to segment the local s tate space of each thread by rendezvous local states. Thus 
given a state A = ( F 1 , . . . ,  Fro), while calculating the states reachable from A 
through rendezvous-less runs, we only compute the Cartesian product  of the lo- 
cal state subspaces K 1 , . . . ,  Km defined in the following way. For each 1 < i < m, 
if Fi is a rendezvous local state, then Ki is the next segment reachable from local 
states in the segment where Fi is in. Otherwise it is the present segment where 
F~ is in. 

6 G e n e r a l  S e s s i o n  S e t u p  C o n t r o l  p r o t o c o l  

We have tested our implementat ion against an abstract  version of a real-world 
project which deals with the communicat ion link setup in a mobile phone envi- 
ronment.  The test example GSSC comes from the Wireless Communicat ion De- 
par tment ,  Computer  ~ Communicat ion Research Laboratories, Industrial Tech- 
nology Research Insti tute,  Taiwan, ROC. It  deals with setting up and later 
releasing a communicat ion channel between a client and a server. Five threads 
are involved in the system, the client, the system service for client (SS_C), the 
line control unit (LCU), the system service form server (SS_S), and the server. 
The protocol must  take care of communicat ion failure incurred by, e.g. t imeout,  
server busy, . . . . . . .  

In our experiment,  we test two cases, one for the reachability of an inconsis- 
tent states and one for that  of a consistent one. We thus give a brief description 
to all these five threads. After this, we shall then present par t  of the protocol in 
our description language. 

�9 Reaction sequence from the client's viewpoint : 
1) The client s tar ts  the whole session by sending an SS-SETUP_req message 

to SS_C. 

2) If  an SS_RELEASE_ind message is received from SS_C, quit the session. 
If  an SS_FACILITY_ind message is received, send an SS_FACILITY_req 
message to SS_C to request for the facility and wait for further response 
from SS_C. 

3) If  an SS_RELEASE_ind message is received from SS_C, quit the session. 
If  an SS_FACILITY_ind message is received, then send an 
SS-RELEASE_req message to release the resources and quit. 

�9 Reaction sequence from SS_C's viewpoint : 

1) When an SS_SETUP_req message is received from the client, send 
an LCU_DATA_req message with identifier 4 to LCU and starts a t imer 
which t imeouts  at 10 t ime units later. 
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2) If  an LCU_RELEASE-ind message is received f rom LCU within 10 t ime 
units, send an SS_RELEASE_ind message to the client and quit the ses- 
sion. 
If  a t imeout  occurs, send an SS_RELEASE_ind message to the client and 
an LCU_RELEASE_req message with identifier 4 to LCU to quit the ses- 
sion. 
If  an LCU_DATA_ind message is received from LCU within 10 t ime units, 
send an SS_FACILITY_ind message back to the client and wait for its 
further response. 

3) I f  an SS_RELEASE-req message is received f rom the client, send 
an LCU_RELEASE_req message with identifer 4 to LCU to quit. 
If  an SS_FACILITY_req message is received from the client, send 
an LCU_DATA_req message with identifier 4 to LCU and starts  a t imer 
which t imeouts  at 10 t ime units later. 

4) If an LCUAR, ELEASE_ind message is received from LCU within 10 t ime 
units, send an SS_RELEASE_ind message to the client and quit. 
If  a t imeout  occurs, send an SS_RELEASE_ind message to the client 
and an LCU_RELEASE_req message with identifier 4 to LCU to quit 
the session. 
If  an LCU_DATA_ind message is received from LCU within 10 t ime units, 
send an SS_FACILITY_ind message back to the client and wait for its 
further response. 

5) Upon the reception of an SS_RELEASE_req message from the client, 
send an LCU_RELEASE-req message with identifier 4 to LCU to quit 
the session. 

�9 Reaction sequence from LCU's  viewpoint : 
1) If  an LCU_DATA_req message is received with identifier 4, send 

an LCU_DATA_ind message to SS_S. Go back to initial state. 
2) If  an LCU_DATA_req message is received with identifier 132, send 

an LCU_DATA_ind message to SS-C. Go back to initial state. 
3). If  an LCU_RELEASE-req message is received with identifier 4, send an 

LCU_RELEASE_ind message to SS_S. Go back to initial state. 
4) If an LCU_I:tELEASE_req message is received with identifier 132, send 

an LCU_RELEASE_ind message to SS_C. Go back to initial state. 
�9 Reaction sequence from SS_S's viewpoint : 

1) When an LCU_DATA_ind message is received from LCU, if it is an 
SS_START message, then send an SS_SETUP_ind message to the server 
and wait its response; otherwise quit. 

2) I f  an SS_RELEASE_req message is received from the server, send 
an LCU_RELEASE_req message with identifier 132 to LCU to quit. 
If  an SS_FACILITY-req message is received from the server, send 
an LCU_DATA-req message with identifier 132 to LCU and starts  a 
t imer which t imeouts  at 10 t ime units later. 

3) If  an LCU_RELEASE_ind message is received from LCU within 10 t ime 
units, send an SS_RELEASE_ind message back to the server and quit. 
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If a timeout occurs, send an SS_RELEASE_ind message to the server 
and an LCU_RELEASE_req message with identifier 132 to LCU to quit. 
If an LCU_DATAAnd message is received from the LCU within 10 time 
units, send an SS_FACILITY_ind message to the server and wait for its 
further response. 

4) If an SS_RELEASE~eq message is received from the server, then send 
an LCU_RELEASE_req message with identifier 132 to LCU to quit. 
If an SS_FACILITY_req message is received from the server, send 
an LCU_DATA_req message with identifier 132 to LCU and starts a 
timer which timeouts at 10 time units later. 

5) If an LCU_RELEASE_ind message is received from LCU within 10 time 
units, send an SS_RELEASE_ind message back to the client and quit the 
session. 

6) If a timeout happens, send an SS_RELEASE_ind message to the server 
and an LCU_RELEASE_req messge with identifer 132 to LCU to quit. 

�9 Reaction sequence from the server's viewpoint : 
1) Upon receipt of an SS_SETUP_ind message from SS_S, the server either 

sends an SS_RELEASE_req message back to SS-S if the service is not 
available and goes back to the initial state, or sends an SS_FACILITY_req 
message to SS-S to notify that  the service is available and waits for 
further response from SS_S. 

2) Upon receipt of the an SS_RELEASE message, the server knows that 
the the service is no longer needed and go back to the initial state. On 
the other hand, if an SS_FACILITY_ind message is received from SS_S, 
the server may either send an SS_RELEASE_req message to SS_S in case 
the server has to abort the service, or an SS_FACILITY_req message to 
provide the service and wait for further response from SS_S. 

3) Upon receipt of the an SS_RELEASE message, the server knows that 
the the service has completed and goes back to the initial state. 

In our specification, we treat each message as a rendezvous. Message to and from 
LCU with different identifiers are also treated as of different message types for 
convenience. Messages between the client and SS_C all begin with prefix SS_C_. 
Messages between the server and SS_S all begin with prefix SS_S_. In table 2 and 
3. we list our specifications for thread LCU, and SS_C. Because of page limit, 
we shall not present the specification for the client, SS_S, and the server. Also 
in table 4, we list the thread and rendezvous type declaration. 

We have performed two teachability analyses. One is for an unreachable state 
which says that the server has aborted the service while the client is still using 
the service. The total number of states generated is 3675 and the CPU time is 
5075 seconds on a Spare 10 clone. 

The second is for a reachable state which says that  the client is using the 
service provided by the server. The total number of states generated is 3676 and 
the CPU time is 6649 seconds on a Spare 10 clone. 
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/* Line Control Unit */ 
LCU { 

LCU~body *; 
} 

LCU_body { 
[ 0 , \ i n f t y ] ;  /* NULL */ 
switch { 

case LCU_DATA_req_132; /* LCU_DATA_req */ 
LCU DATA ind_132; 

case LCU DATA req_4; /* LCU.DATA_req */ 
LCU_DATAind_4; 

case LCU_RELEASEreq_4; 
LCU_RELEASE_ind_4; /* LCU_RELEASE_ind */ 

case LCU_RELEASE_req_132; 
LCU_RELEASE_ind_132; /* LCU_RELEASEind */  

Table 2. Thread LCU, Line Control Unit 

7 The  chal lenge ahead 

It is easy to see that  given an unstructured real-time system specification, its tim- 
ing behavior structure can be horribly difficult to analyze. But this kind of input 
assumption usually contradicts the common practice of structured programming 
in software engineering, the high-level semantics of programming languages, and 
the design rules in real-time systems. We advocate procedure-level model de- 
scriptions and verifications for real-time concurrent systems for their potentially 
better average-case performance in automated verification. At the current stage, 
we have implemented an verification system which respects and utilizes the high- 
level behavior structures demonstrated in the program structures and local au- 
tonomy of real-time concurrent system specifications. An abstract version of a 
real-world protocol is tested with performance reported. However, we are still 
looking for test examples which exhibit more program structures like nested 
procedure-calling. 

The concept of statements with earliest starting times and deadlines was also 
adopted in formal frameworks like [20, 24]. Special techniques for teachability 
analysis has also been reported under this kind of framework[20, 5]. However, we 
do not know if there is any previous formal framework for real-time concurrent 
systems aimed at taking advantage of local autonomy and program structures 
to improve the verification performance. 
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/* Supplementary Service A */ 
/* Any service request to LCU is with identifier 4 */ 

ss_c { 
SS_C_body *; 

} 

SS_C_body { 
[O,\infty]; /* NULL */ 
SS_C_SETUP_req; 
[0,0]; /* PD_TI := 4 */ 
LCU_DATA_req_4; 
[0,0]; /* set timer = I0; Initiated 
switch { 
case 
case 

case 
} 

} 

*/ 

[0,I0]; LCU_RELEASE_ind_I32; SS_C_RELEASE_ind; 
[0,I0]; LCU_DATA_ind_I32; SS_C_FACILITY_ind; [O,\infty]; 
switch { 
case SS C_RELEASE_req; 

[0,0]; /* PD_TI := 4 */ 
LCU_RELEASE_req_4; 

case SS_C_FACILITY_req; 
[0,0]; /* PD_TI := 4 */ 
LCU_DATA_req_4; 
[0,0]; /* set timer = i0 */ 
switch { 
case [0,i0]; LCU_RELEASE_ind_132; SS_C_RELEASE_ind; 
case [0,i0]; LCU_DATA_ind_132; SS_C_FACILITY_ind; 

[O,\infty]; SS_C_RELEASE_req; 
[0,0]; /* PD_TI := 4 */ 
LCU_RELEASE_req4; 
[I0,I0]; SS_C_RELEASE_ind; LCU_RELEASE_req_4; case 

) 
} 

[I0,I0]; [0,0]; SS_C_RELEASE_ind; LCU_RELEASE_req_4; 

Tab le  3. Thread SS_C, System Service for the Client 

Acknowledgments 

We thanks Professor Clarke and his crew at CMU for offering SMV[4, 23], which 
were used in our reachability analysis part  of oar  implementat ion,  and the asso- 
ciated technical advice. SMV is used as a routine for calculating the transitive 
closure in the rendezvous state graph in table 1. 



/*=Thread description: 
<C, SS_C, LCU, SS S, S> 

/*=Rendezvous description ........ 

/* Between SS_C and LCU */ 

LCU_DATA_req_4 : 1,2; 

LCU_DATA_ind_I32 : 1,2; 

/* Between Client and SS_C */ 
SS_A_SETUP_req : 0,1; 
SS_A_FACILITY_ind : 0 , I ;  
SS A FACILITY_req : 0,1; 

/* Between SS_S and LCU */ 
LCU_RELEASE_req_132 : 2,3; 
LCU_RELEASE_ind_4 : 2,3; 

/* Between Server and SS_S */ 
SS_B_SETUP_ind : 3,4; 
SS B FACILITY_req : 3,4; 
SS B FACILITY_ind: 3,4; 
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............ ,/ 

=====*/ 

LCU_RELEASE_req_4 : 1,2; 

LCU_RELEASE_ind_I32 : 1,2; 

SS_A_RELEASE_ind : 0,I; 

SS_A_RELEASE_req : 0,i; 

LCU_DATA_req_132 : 2,3; 
LCU DATA_ind_4 : 2,3; 

SS_B_RELEASE_req : 3,4; 
SS_B_RELEASE_ind : 3,4; 

Table 4. Thread and rendezvous type declaration 
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