
Procedure-Level Verification of Real - t ime
Concurrent Systems*

Farn Wang Chia-Tien Lo

Institute of Information Science, Academia Sinica, Taipei, Talwan 115, Republic of
China

+886-2-7883799 ext. 2420; FAX +886-2-7824814; f a rn@i i s . s in i ca . edu . tw

Abs t r ac t . We want to develop verification techniques for real-time con-
current system specifications with high-level behavior structures. Nowa-
days, there is a big gap in between the classical verification theories
and the engineering practice in real-world projects. This work identifies
two common engineering guidelines respected in the development of real-
world software projects, structured programming and local autonomy in
concurrent systems, and experiments with special verification algorithm
based on those engineering wisdoms. The algorithm we have adopted
respects the integrity of program structures, treats each procedure as an
entity instead of as a group of statements, allows local state space search
to exploit the local autonomy in concurrent systems without calculat-
ing the Cartesian products of local state spaces, and derives from each
procedure declaration characteristic information which can be utilized
in the verification process anywhere the procedure is invoked. We have
endeavored to implement our idea, test it against an abstract version of a
real-world protocol in a mobile communication environment, and report
the data.

1 I n t r o d u c t i o n

There is a great disparity between the engineering practice and the classical
theories in verifying sophisticated computer systems. It is the goal of this work
to investigate this disparity and experiment with verification techniques which
combine the engineering wisdom with the classical verification theories.

Facing each nontrivial industrial problem human has encountered, there are
in general two types of approaches used to surpass it and push the technology
frontier forward. The first is engineering and the second is scientific. With the
engineering approach, people strive to solve the problem using common wisdoms
derived f rom their experiences in the field. With the scientific approach, people
emphasize understanding the nature of the problem, by building mathemat ica l
models which simulate the problem, and design solution techniques based on

* The work is partially supported by NSC~ Taiwan, ROC under grant NSC 85-2213-E-
001-005 and by the Communication Technology Division, Computer & Communica-
tion Research Laboratories, Industrial Technology Research Institute, Talwan, ROC
under a new grant for 1995-1996.

683

the models. In the evolution of industry, these two approaches usually benefit
from each other. On one hand, engineering wisdom reveals the true nature of the
problem and inspires people to build better models. On the other hand, better
understanding of the problem nature corroborates the engineering wisdom and
may eventually lead to better solution.

As the computer systems we would like to build become more and more
sophisticated, nowadays these two types of approaches are also employed in
the task of system verification. On the engineering side, people have developed
various engineering guidelines from their experience in the field and have been
successful in constructing some really big real-world systems with complex high-
level behavior [28, 18, 30]. Examples of those successes include network layer
communication protocols, software systems with abstract data types, parallel
databases. On the theoretical side, basic mathematical models have been pro-
posed to help people better understanding the intrinsic nature, e.g. complexities,
of the problem [1, 4, 9, 10, 12, 14, 15, 25, 31]. Indeed, it has been reported that
the advancement in the classical theory has led to the successful verification
of several small real-world products, including physical layer communication
protocols[7] and integrated circuit design[4, 23].

But ironically, if we look at the common guidelines respected by computer
system engineers, we find that they are very hard to mechanize and really do not
fit into the classical verification theories. For example, in building sophisticated
system, people adopt the guideline of structured programming to structurally
divide the design into smaller functional parts like procedures and loops and to
refrain themselves from using arbitrary connection among the parts. But in the
classical theories, basic models are usually assumed to be equivalent to random
graphs. If there is a procedure, the standard treatment is just to use it as a
macro expansion regardless of its functional integrity.

Another example of the disparity regards the practice in using clocks. For
engineers, clocks sometimes serve as convenient devices in simplifying interaction
among different threads in concurrent systems. Here is a hypothetical example.
A gentleman named Mike drives his friend Frank to a shopping mall and tells
Frank that he will come back to pick him up at 5pm. In this case the interaction
gets simplified to a number, i.e. the deadline to meet. Both of them do not care
what the other party plans to do before 5pm as long as the deadline is met. But
from the viewpoint of the verification theory, clock is really not so pleasant a
device because it always blows up the worst case complexities by an exponential
factor. Also interestingly enough, even clock readings are intuitively numbers,
the most, if not the only, used property of clock readings in real-time system
verification theories is that if you increment a clock reading by noninfinitesimal
amount for enough number of times, it will eventually be bigger than any given
finite constant.

The third example of the disparity concerns with the way people use concur-
rency. In the design of sophisticated systems involving the interaction of several
parties, it is the common engineering wisdom to localize the design consideration
so that the reliability and safety of the whole systems can be derived from the

684

verification of local properties of each party. But in the classical verification the-
ory, calculation of Cartesian products of the local state spaces is usually adopted
as the safe and complete technique. One exception is the composition and hiding
operation proposed in process algebra [15, 25]. But still successful application to
a real-world project with high-level behavior structure is yet to be observed.

This work integrates the two engineering guidelines cited in the above, i.e.
structured programming and local autonomy in concurrent systems, into the
design of verification algorithm which can be efficient in verifying well-designed
computer systems. We target our research on real-time concurrent systems with
timed atomic actions, synchronization primitives, procedures, loops, nondeter-
minism, and concurrency. A real-time system performs by giving out correct re-
sponse at the correct moment. A concurrent system may allow several threads[ill
(basic autonomous sequential executions) running concurrently. Recently, a the-
oretical framework for this purpose was proposed in [33] in which the verification
complexities for both recursive and nonrecursive real-time concurrent systems
are discussed and an algorithm is developed for the nonrecursive ones. One desir-
able feature of the algorithm is that it respects the procedure and loop structures
of the systems by treating a rendezvousless execution of a procedure (loop) as a
numerical entities, i.e. its execution time, which once analyzed, can be used in the
verification process anywhere the procedure (loop) is invoked. Local autonomy
of concurrent systems is utilized by a technique called timing coincidence anal-
ysis which determines the coincidibility of two states by telling if there are two
synchronization-less local state sequences with the same execution time leading
to the two states respectively. Such a technique enables us to construct global
analysis from local state space search outcomes and is supposed to work well in
systems with long autonomous executions and procedure invocations in between
synchronization among the concurrent threads.

In this paper, we report the implementation of the algorithm proposed in
[33]. However, we shall redesign the specification language to make it look like a
traditional programming language. Several techniques to improve the average-
case performance of the algorithm are incorporated which make the analysis of
an abstract version of a general session setting control protocol (GSSC) in a
wireless communication environment feasible. First, some related work will be
discussed in section 2. We then formally introduce our new specification lan-
guage and review the complexity issues in section 3. The reachability analysis
algorithm proposed in [33] is then rewritten to fit our specification language in
section 4. The important techniques we employed in the implementation are dis-
cussed in section 5. GSSC is discussed in section 6 with the performance on the
reachability analysis of two states, one consistent and one inconsistent, reported.
Section 7 discusses some extension to the implementation on the way and some

future work.

We shall adopt the following notations. Given a set or sequence K, [K[is the
number of elements in K. We let Af be the set of nonnegative integers, Z the
set of integers, Af {co} = Af U {oo}, and .hf{*} --- .s U {*}.

685

2 R e l a t e d w o r k

With the theoretical development of real-time and hybrid automata[l, 14, 21, 26,
27, 32] and the successful engineering of automated verification tools[2, 8~ 4, 23],
the research of computer-aided verification has received much attention. At this
moment, various state-based [1, 4, 9, 10, 12, 14, 31] or event-based[20] model
description languages are available, to which the standard verification technique
of global space teachability analysis is usually applied. So far, several small real-
world examples have been verified using this approach [4, 7, 23]. However such
abstractions, although very elegant, may be at too low a level to make automatic
verifiers efficiently uncover the behavior structures hidden in big system model
descriptions.

Process algebra[15, 25] takes advantage of hiding and composition operators
to construct complex systems from submodules. Since the verification algorithms
for process algebra take care of general specifications without special program
structure in mind, it may not be able to exploit the regularity of high-level
behavior structure resulted from the observance of engineers to those guidelines.

People also use first-order logic or even higher-order logics to verify system
designs. In those cases, very high-level behavior structures can be specified and
verified[6, 13, 29]. For example, in [19], it was proposed to use positive cycles as
intuitive refutation units in verifying real-time systems. The drawback is that
the verification software can only do as much as proof checking and the engineers
are pretty much left to their own. Still several remarkable benchmarks have been
passed because of the industrious ingenuity of researchers in the community[6].

A good integration of engineering wisdom and scientific principles is formal
methods in the line of VDM[18] and Z[30]. In that approach, a set of guidelines
for system construction and a set of rules for verification are proposed and have
been successfully applied in several real-world projects with benefits recorded.
For example, in 1992, a Queen's Award of Britain was given to Oxford Univer-
sity Computing Laboratory and IBM UK Laboratories at Hursley Park for the
development of IBM CICS using Z notation.

3 R e a l - t i m e c o n c u r r e n t s y s t e m s

3.1 Syn tax

The underlying concept of our approach is DAG~ procedure, defined in [33],
which is a single-source single-destination directed acyclic graph in which each
node represents a compound statement of procedure-call and atomic operation.
Here we shall redefine DAG~ procedure in the concept of traditional program-
ming languages. As in the traditional imperative languages, a DAG~ procedure is
constructed from three types of statements, timed atomic, rendezvous, procedure-
calling, and two types of statement structures, switch, concatenation. A timed
atomic statement is executed with a prespecified earliest starting time and dead-
line. Unlike in Ada, here rendezvous is fulfilled by having all the participating
parties executing the same rendezvous type at the same time. A procedure-call

686

represents either a fixed or a nondeterministic number of sequential execution of
a DAG~ procedure. A switch s ta tement structure represents a nondeterministic
choice, while a concatenation s ta tement structure represents a successive execu-
tion of two s ta tement structures. We use the following example to give intuition
to the readers before the formal definition.

Example 1. In Figure 1, we illustrate three procedures, P, Q, R. P may loop
nondeterministically many times to invoke R. Q invokes R also as the body of
a 2-iteration loop. a is a rendezvous type. An interval, like [4, 9], represents a

P (
[3,5];
swi tch {

case [0,2];
case [3,7]; ~;

}
R*;

Q {
[4,9];
R2;

R {

}

Fig. 1. Several simple procedures

t imed atomic s ta tement with the earliest s tart ing times and deadlines. II

D e f i n i t i o n l : D A G ~ p r o c e d u r e . A DAG~ procedure P is constructed from
finite application of the following rules.

P ::= w{B}
B ::= [i,j]; l a ; I WlTt; I Wl*; I BIB2 I s w i t c h { c a s e B l c a s e B 2 . , caseBn}

Here w, wl are procedure names (character strings) and B, B1, B2, B,~ are state-
ment structures, i 6 Af, j 6 Af U {oc}, and n is a nonnegative integer, c~ is a
rendezvous type. Given P = w{B}, we shall use /5 as the notat ion for the name
w of P. II

Given a set H of DAG~ procedures, we treat each s ta tement position as the true
identity of the corresponding s tatement . Tha t is given two s ta tement positions
which both execute a syntactically identically s ta tement (say a rendezvous '%%"
or a procedure-calling "Pn;," or a t imed atomic s ta tement "[i, j] ;"), we shall still
t reat these two positions as two different s tatements. Given a DAG~ procedure
P, we let S(/5) be the set of s ta tements used ~ in P. We also define So(/5) and
,9] (15) to be the set of first and final s ta tements in P respectively in the following.

�9 I f /5{B} is defined, then So(/5) = So(B)
�9 If B is a s ta tement , then So(B) = {B}.
�9 So(B1B2) = So(B1).

687

�9 S0(swi tch {case B1 . . . case Bn}) = So(B1) U. . . U So(B~)
Similarly, we have the following definition for S/(/5).

�9 I f / 5{B} is defined, then S](/5) = S](B)
�9 I f B is a s tatement , then S](B) = {B}.
�9 S](B1B2) = Sf(S2).
�9 S f (s w i t c h {case B1 . . . c a s e Bn}) = Sf(B1) U . . .U S f (B ,)

Given a concatenation s ta tement structure BIB2 in a DAG~ procedure P, for
each Sl E Sf(B1) and s2 e So(B2), we call s2 a successor of Sl.

Notice tha t the looping in DAG~ procedures are restrained as a special type
of procedure calls. Conceptually, a real-t ime concurrent system allows many
threads running concurrently. By giving additional information on the start ing
s ta tement of each thread and the part icipating parties of each rendezvous type,
a set of procedure definitions can be grouped to define a real-t ime concurrent
system.

D e f i n i t i o n 2 : R e a l - t i m e c o n c u r r e n t s y s t e m . Given a set /7 of DAG~ pro-

cedures, we let ~ I / be the set of rendezvous types used in procedures in 17. A
real-time concurrent system is a tuple (/7,/2, r) satisfying the following proper-
ties.

�9 /7 is a set of DAG~ procedure definitions such that for every procedure P
defined i n /7 , any procedure referenced in P is also defined i n / 7 .

�9 $2 is a sequence (P1,. . . , tim) of procedure names in H and declares the rn
threads in the system. For each 1 < i < m, thread i starts by invoking Pi.

�9 r : Z ~ ~-+ 2 {1 Inl} defines the set of parties part icipating in each ren-
dezvous. For each i E r(c~), thread i is expected to part icipate in each in-
stance of rendezvous or.

A real-t ime concurrent system is recursive iffi ts procedure-calls are recursive. I]

Example2. Assume we have the four procedure definitions in example 1.
Then R = ({P, Q, R}, (P, Q}, {c~ --+ {1, 2}}> is a legit imate nonrecursive and
unambiguous real-t ime concurrent system. I1

3.2 A n o p e r a t i o n a l s e m a n t i c s fo r systems with s ing le d i s c r e t e c lock

Given a real-t ime concurrent system with m threads, the slates of the system can
be described by an array of local states of the m threads. The procedure-calling
scheme for the threads in our real-time concurrent systems resembles the push-
pop operation of stacks[17] which have often been used as theoretical abstract ion
of nested procedure-callings. The local state of a thread can be conceptually
recorded in a structure like the control stack (the name we shall adopt henceforth)
in [3] and the activation record in [16, 34]. All possible executions of a thread
from a moment can be deduced from the contents of the corresponding control
stack.

Given a real-t ime concurrent system R, we let S (R) be the set of s ta tements
used in procedures defined in R. Given a thread local s tate (control stack) F
represented as the following sequence

688

b o t t o m top
(so,to) (s l , t l) (s2,t2) (s.~_~,t.~_~) (s m , t ~)

we let (80, to) and (s .~, tm) be the bottom and top respectively of F . A control
stack, say the above-ment ioned F , mus t satisfy the following conditions.

�9 For each 0 < i < m, either
- for some P and n, si is a procedure-call ing s ta tement "[%;" with 0

t~ < n; or
- for some P , sl is a procedure-cal l ing s ta tement "/~*;" with ti = O.

�9 One of the following mus t be true for the top (s.~, t.~) of F .
- s m is a procedure-cal l ing s ta tement "Pn ; " and 0 _< t~n ~ n.
- s.~ is a procedure-cal l ing s ta tement "/~*;" and t.~ = O.
- s.~ is a t imed a tomic s ta tement "[i , j] ;" and either 0 < tm ~ j r (x~ or

O < t , ~ ~ _ i V t m = j = ~ .
. and either tm = 0 or trn = c~. - Srn is a rendezvous s ta tement ct,

Given a control stack F , we let t o p (F) symbolical ly denote the top of F . F 7
is a new control stack obta ined by pushing 7 into F . p o p (F) is a new control
stack obta ined by popping the top element f rom F . Given t o p (F) = (s~ t) with
t, c E Z, we let F +c be an abbrevia t ion of pop(F) (s , t + c), i.e. the local state
obta ined by increment ing the top counter value by c.

Suppose we are given a local state F = (so, to)(sl , t l) o.. (sin, tin). For each
0 < i < m, when si is a procedure-call ing s ta tement "Pn ; , " it means the thread
is now in the middle of executing procedure P and is going to invoke P consec-
utively for In - ti] more times.

Similar to [17], we can define the succession of local states which follows
the intui t ion of control stack evolution during procedure-call ing and s t rongly
matches the relation among paths in act ivat ion trees as discussed in [3]. t tow-
eveL for the convenience of our a lgor i thm design, we shall present the following
concept of local state successions.

D e f i n i t i o n 3 : S u c c e s s i o n o f t h r e a d l o c a l s t a t e s . The succession relation, b,
between local s tates are defined in the following way. Suppose we are given a
local s tate F whose top is (s, t).

�9 F i x e d - l o o p p r o c e d u r e - c a l l : Suppose s is a procedure-cal l ing s t a tement
"Pn;." I f t < n, then for each so E So([~), Y F F+l(so,O). I f t = n, then for
each successor s ta tement s ' of s, F F p o p (F) (s ' , 0).

�9 * - l o o p p r o c e d u r e - c a l l : If s is a procedure-cal l ing s ta tement 'P*; ," then
for each s0 C S0(P) , F ~- F(s0, 0) and for each successor s ta tement s ' of s,
F F p o p (F) (s ' , 0).

�9 R e t u r n f r o m p r o c e d u r e - c a l l : W h e n s E S/(/~), if one of the following
three condit ion is true,

- s is a t imed s ta tement "[i, j]" and i < t < j .
- t = (r form some rendezvous type ~r.
- 8 is a procedure-cal l ing s ta tement Qn, and t = n.
- 8 is a procedure-call ing s ta tement "Q*;."

F b p o p (F)

689

�9 T i m e d s t a t e m e n t : Suppose s is a t imed a tomic s t a t emen t [z,)],.

- I f t < i , t h e n F i - F +1.
- I f i _ < t < j ~ e c , t h e n F P F +1.
- I f i _< t < j = o% then F ~- pop (F) (s , oo).
- I f i < t < j , then for each successor s ta tement s ' of s, 1" ~- pop(F)(s ' , 0).

�9 R e n d e z v o u s s t a t e m e n t : I f s is a rendezvous s ta tement and t = 0, then
for each successor s t a t ement s ' of s, F t- pop(F) (s , c 0 ~- p o p (F) (s ' , 0). II

Based on the concept of local state succession, we are now ready to define the
compu ta t i on in mul t i - th read real- t ime concurrent systems.

D e f i n i t i o n 4 : S t a t e s a n d r u n s . Suppose we are given a real- t ime concurrent
sys tem R = (g , $2, r) . A state of R is a sequence of I~?l local states. A finite
sequence (A0, g0)(A1, g l) . . . (Am, gin) is called a Ao-run of R, where for each
0 _< k _< m, A k is a state and gk 6 {0, 1} indicates the presence of a global

clock tick. Assume, for each 0 < k < rn, Aa = (F(1), P(~)\ The following - - - - " ' ' ~ k /"

requirements are imposed on a A0-run.
�9 For each 0 < k < m and 1 < i < n, either F (i) --~ F}i:l or F (i) = F(i)

- - k ~ k + l "

�9 E n f o r c e m e n t o f s y n c h r o n y t o g l o b a l c l o c k : For each 0 _< k < m, gk =
1 i f fevery thread increments its t ime reading by 17 tha t is for each 1 < i < n

such tha t t o p (F (/)) (s, t) and (i) s ' = top(F~+l) = (s' , t ') , s = and either
t + 1 = t ' or t = t ' = oc.

�9 E n f o r c e m e n t o f r e n d e z v o u s : For each c~ E ~ / / and each 0 < k < m,

if t o p (F (/)) = (s,c~) for some s and i e 7(cr), then for each j E r(cr),

t o p (F (/)) = (s ' , cr) for some s ' .
Given a s tate A and a b - r u n ~ = (A0, go)(A1, gz) . . . (Am, gin), for each 0 < k <
m, the t ime of the k- th state in ~ , in symbols time~,(k), is defined induct ively
by two cases : (1) timeo(O) = 0. (2) For each 0 <_ k < m, t imee(k + 1) =
time~(k) + g~. I1

Example 3. Assume tha t we have the real-t ime concurrent sys tem in example 2.
It can be seen tha t while thread 1 m a y loop nondeterminis t ica l ly m a n y times,
thread 2 te rminates after executing two instances of rendezvous c~. Thus the
whole sys tem only has runs with two rendezvous instances. [[

3 .3 C o m p l e x i t i e s o f r e a c h a b i l i t y a n a l y s i s

We shall in t roduce a basic version of the reachabil i ty problem here. Such a
version is ins t rumenta l in const ruct ing other interesting versions.

D e f i n i t i o n 5 : S t a t e r e a c h a b i l i t y . Given a real- t ime concurrent sys tem R =
(H, $2, v), a s tate A ' is said reachable from another s tate A in R iff there is a
b - r u n (A0, g0)(A1, g l) . . . (Am, gin) such tha t A ' = A,~.]]

The reachabil i ty problem in our real- t ime concurrent systems can then be
formula ted in the following way. Given a real- t ime concurrent sys tem R and two
of its states A, A ' , the corresponding state teachability problem instance asks if
A ' is reachable f rom A in R. We cite the following theorem and l emmas f rom [33]
to show the complexities of the problem for recursive and nonrecursive systems.

690

T h e o r e m 6 . Two-counter machine halting problem[22] is reducible to lhe reach-
ability problem of real-time concurrent systems. II

L e m m a T . QBF[17] is reducible in PTIME to the stale reachabilily problem for
nonrecursive real-time concurrent systems. II

L e m m a S . The state teachability problem of nonrecursive real-time concurrent
systems is in PSPACE.]1

4 R e a c h a b i l i t y a n a l y s i s f o r n o n r e c u r s i v e s y s t e m s

Our algorithm will be presented in two steps. First, we shall give a skeleton view
of the algorithm in subsection 4.1 in which the implementation of one particular
code line is not detailed. The skeleton describes how we exploit the autonomy
of each thread in between hitting rendezvous to reduce the size of state space.
Second, details about that one code line will be supplemented in subsection 4.2
and 4.3.

4.1 S k e l e t o n v i ew o f t h e a l g o r i t h m

We formalize the concept of thread autonomy in between hitting rendezvous
with the following definition.

D e f i n i t i o n 9 : S u c c e s s o r t h r o u g h r e n d e z v o u s - l e s s r u n . Given a real-time
concurrent system R, and two states A and A ~, we say A t is a successor through
rendezvous-less run (or -,r-successor) of A iff there is a finite
A-run ~ = (Ao, go). . . (Am, gin) of R such that

�9 ~ ends at A I, i.e. A I = Am; and
�9 for each 0 < k < m, Ak does not mark the completion of a rendezvous, that

= (F ~ (.. F(~)\ for each l < i < n , t h e r e i s n o c r E Z / I is, assuming Ak 1), "," k /,

s.t. top(F} 0) = (s, ~) for some s. tl

In between hitting rendezvous, each thread executes in an independent way. We
say a state (F (1), . . . , F ('~)) is at the stage of completion of rendezvous c~ iff for
some 1 _< i < n, s, t op (F (0) = (s, c~). A major source of efficiency of our al-
gorithm comes from the fact that we only work with states which are at the
completion stage of rendezvous. The algorithm in table 1 takes this character-
istic of real-time concurrent systems into consideration to answer instances of
state teachability problem. Succession relation among such states is figured out
by manipulation of arithmetic set expressions as defined in subsection 4.2 The
correctness of procedure Reachable() has been proven in [33] and restated in the
following lemma.

L e m m a 10. Given two slates A, A I of a nonrecursive real-time systems R, with
the oracle for -~r-successorship, A ~ is reachable from A in R iff
Reachable(R, A, A') is TRUE. II

691

Reachable(R, At, At')
/* R = (//, (2, r), is a nonrecursive real-time concurrent system. */ {

(1) Generate the set X of all states in which a rendezvous is at the stage of
completion.

(2) Determine the pairwise -,r-successor relation in X U {At, At'} and can it Y.
(3) If At' is reachable from A in (X tO {A, At'}, y) , answer TRUE; else answer

FALSE.
}

Table 1. Algorithm for state reachability problem

All but the second code line in table 1 are obvious. In subsection 4.2, we shall
introduce ari thmetic set expressions, as the abstraction tool used to construct a
solution for the second code line. In subsection 4.3, we shall use the technique
of t iming coincidibility analysis to determine the ~r-successor relation between
two states.

4.2 A r i t h m e t i c se t e x p r e s s i o n s a n d t h e i r o p e r a t i o n s

The transitions in our system models are carried out within intervals bounded by
earliest s tart ing times and deadlines. Since earliest s tart ing times, and deadlines
alike, of a sequence of consecutive transitions can be accumulated during the
analysis of thread behavior, it is natural to define the addition and integer mul-
tiplication of integer intervals. And indeed our reachability analysis algori thm is
presented based on this kind of ari thmetic set operations.

Our ari thmetic set expression is constructed by the following rules.

H : : : {c} I H, U H= I H, n H= I H1 "+ H2 I H1/~] H I *

c, k are natural numbers. { c l , . . . , c~} is a shorthand for {Cl} U . . . U {c~}. Con-
ceptually, we treat an integer interval [a, b) as a shorthand for the set {a, a +
1 , . . . , b - 1}. Especially, [a, ee) is a shorthand for {a} + {1}*. The meaning of
these set expression is inductively given in the following.

�9 Case H = {c}, H is the set of integer c.
�9 Case H = HI U H2 (H = H1 N H2), H is the union (intersection) of H1 and

H2.
�9 C a s e H = H I + H 2 , H = { a + b [a E H 1 ; b E H 2 } .
�9 Case H = Hlk, (1) when k = 0, then H = {0}; (2) otherwise H = H i (k -

1) + HI.
�9 Case H ---- Hi* , H = Uk>0 Hilt.

Note O acts as a nullifier in ari thmetic set addition, i.e. for all integer set expres-
sion H, H + 0 = O. Also, we allow distribution of addition against union and
intersection.

692

An arithmetic set expression H is said to be in periodical normal form (PNF)
iff H = Ul<i<,~({ai} + {ei}*). In the following, we give a set of rewriting rules
to transform arithmetic set expressions into PNF arithmetic set expressions.

1) (Ul<i<m({ai}+{ci},))N(U,<j<n({bj}+{dj},))
~ Ul<i<.~;,<j<~ Kn({ai} + {ci}., {bj} + {dj}.)

where/(n({a}--t- {c--}., {b} + {d}*) is defined by the following two cases.
- If there is no integer solution i, j to a + ci = b + dj,

then Kn({a} + {c}*, {b} + {d}) = 0
- Otherwise, let i, j be the minimum integer solution.

Kn({a} + {c}*, {b} + {d}*) = {a + e~} + {lcm(e, d)}.

(u{ai+bj+lcm(ci,dj)}+{gcd(ci,dj)}*))
=Ul<i<.m<j<~ . {ai+bj+cih+djklh, kEAf;cih+djk <lcm(ci,dj)}

3) (Ul<i<_m({ai} + {ci},))]r
{{(0} a) i f k = O

= Ul<i<m({ i} + {el}*) (k-- 1) + Ul<i<m({ai} + {ei}*) if k > 0
After application of the rule, rule 2 should be used immediately.

(Ul<_i<_m({al} + {ci}.)) �9 = El<_i<m({ai} * +{ci}*) 4)
After application of the rule, rule 2 and distribution of addition against

\ /

unions should be used iteratively to transform the formula to its PNF.

4 . 3 T i m i n g c o i n c i d i b i l i t y a n a l y s i s

The technique of timing coincidibility analysis is based on the following observa-
tion. Given two concurrent threads starting their execution simultaneously, after
running without interaction (rendezvous) for t time units according to the global
clock, they may get to local states F, F ~ respectively. Then due to the strong syn-
chrony in global clock systems, we can conclude that F, F ~ may happen at the
same time during the two threads rendezvous-less executions respectively. This
implies that we can separately work with the subtasks of searching in the local
state space of each thread while analyzing the reachability between states. By
figuring out the general time patterns between pairs of local states in the local
state spaces, we can tell the -~r-successor relations by intersecting those time
representations. In this approach, time representations are often very concise
since it tends to ignore the difference among different state sequences as long as
they have the same time values.

The following definition formalizes the concept of local state space search.

D e f i n i t i o n l l : Loca l s t a t e sequence . Given a real-time concurrent system
/~ = (H, t2, r}, a finite local state sequence 4) = FoF1...F,~, with F~ ~- Fk+l
for each 0 < k < m, defines a legitimate thread execution in R from F0 and is
called a No-sequence. 4) is rendezvous-less iff for every 0 < k < m, Nk is not at
the completion stage of a rendezvous, i.e. gc~ E ~/1gs(top(/ 'k) ~ (s, cr)). I[

693

D e f i n i t i o n l 2 : R e n d e z v o u s - l e s s t i m e e x p r e s s i o n s . Given a DAG~ proce-
dure P{B} , the rendezvous-less time expression of P, texp~r(JO), is defined in-
ductively as follows.

�9 then texp,r(P) = texp,r(B).
�9 t exp .~ ([i , /] ;) = F , /]
�9 t e x p ~ (r = 0

�9 t e ~ p ~ (P ~ , ;) = (te~p.r(P~))*
�9 te~p.~(B1B2) = te*p.~(B~) + texp.~(B~)
�9 t e , p . ~ (s w i t ~ h { c a s e B ~ . . . c ~ s e B ~)) = t~xp.~(B~) U . . . U t ~ p . ~ (B .)

Suppose we are given a finite rendezvous-less local state sequence ~ = F0 �9 Fm
with top(Fi) = (st, tl) for each 0 < i < rn. We conveniently let texp.~r(~)) equal
to

be our notation for the time expression for rendezvous-less local state sequence
d~. Here 5# is {1} when 30 < i < m(ti = oo); {0} otherwise. Also we let

t e x p ~ (v , v ') =

U (4i is a finite simple rendezvous-less / ' -sequence of R ends at I"') te32P'~r(V)

where "simple" means no two local states are the same. H

The execution times of all rendezvous-less execution sequences between two local
states can be figured out by doing some arithmetic on time expressions. The
meaning of the time expression is given by the following lemma proven in [33].

L e m m a 13. Given two local states F, I "~ of a nonrecursive real-time concurrent
system, there is a rendezvous-less execution sequence of time t from F to 1 "~ iff
t E texp.~(F, T") which is computable. II

With definition 11, 12, and lemma 13, we have made the concept of autonomous
execution of a single thread precise and proven our derivation of rendezvous-less
thread execution time expression correct. Now all these can be readily combined
to prove the correctness of the technique of timing coincidibility analysis.

L e m m a 14. Given t E Af and two states of a nonrecursive real-time concurrent
system R, A = (FO) , . . . , 1%'0) and A' = {F'(1), . . . , F'Cn)), AV is a successor of
A through rendezvous-less run oft time units in R li f t E ~l<i<_n texP~r (F(i), F6i))

Proof. According to definition 9, 11, 12, and lemma 13. I]

5 I m p l e m e n t a t i o n t e c h n i q u e s

We have employed several techniques to take advantage of the behavior structure
of procedure-callings and local autonomy to make the reachability analysis more
efficient. As we have observed, such techniques are valuable and often result in
orders of magnitude in verification performance improvement.

694

5.1 N o n p e a k e x e c u t i o n path

Given a stack F, remember that we use IFI to denote the height of F. A local
s tate sequence F o F 1 . . . F m is called a peak local state sequence iff there are
integers i , j , k with 0 ~ i < j < k ~ m such that]F~ I < IFjl and 1Fjl >]Fkl.

In an interval of the rendezvous-less execution of a thread, a peak in its execu-
tion sequence represents a procedure-call which does not incur any rendezvous.
The effect of the rendezvous-less procedure-call can be treated as purely nu-
merical values, i.e. its rendezvous-less t ime expressions. Thus we introduce the
following new concept of local s tate succession involving encapsulated procedure-
calls.

Definition 15 Successors of local s t a t e s w i th e n c a p s u l a t e d p rocedu re - ca l l .
I f s is a procedure-calling s ta tement P n , with t < n, then for each 1 < c < n - t ,

r II

We have observed tha t while calculating the rendezvous-less t ime expressions
between two local states, we only have to consider nonpeak path. While calcu-
lating the t ime expression of a rendezvousless local state sequence ~ between
two local states, if we find out that two consecutive local states along �9 are con-
nected by the above-defined successor relations, we shall include (texp~ r (P)) c in

5.2 S t a r t i n g t i m e d a t o m i c loca l states

While computing the t ime expression of rendezvousless local s tate sequence,
we ignore those local states which mark the execution in the middle of t imed
atomic statements . Tha t is we can ignore all local states F with top(P) -- (s, t),
s = [i, j];, and t r 0 by introducing the following new local s tate successor
relationship.

D e f i n i t i o n 16 S u c c e s s o r s f r o m s t a r t i n g t i m e d a t o m i c loca l s t a t e s .
If t op (P) -- (s, 0) and s is a t imed s ta tement [i,j];, then for each successor
s ta tement s ' of s, F ~ p o p (F) (J , 0). II

Suppose we are given a rendezvousless local state sequence ~ = F o . . . F m , if
top(F0) = (s and top(F , 0 = (s ' , t ') with s = [i,j];, s ' = [i ' , j '] ; , t r 0, and
t ~ r 0. Let ~ be the local s tate sequence identical to �9 except that

�9 45 starts t t ime units earlier than ~ in s; and
�9 45 ends t ' t ime units earlier than ~ in s ~.

Then we can compute texp~ r (~) to be texp~r(45) - [t, t] + It', t']. Note however
that our original t ime expression definition does not deal with subtraction. But
since we always reduce t ime expression to PNF, a t ime expression like [a, b] +
[c, c] �9 - [t , t] is equivalent to [a + cg - t, b + cg - t] + [c, c]* where g is the smallest
integer solution for x to a + cx >_ t.

695

5.3 L o c a l s t a t e s p a c e s e g m e n t a t i o n

Given a real-t ime concurrent system with m threads, a naive approach in cal-
culating states is to calculate all the Cartesian products of m local states. This
usually results in huge number of pseudo states most of which can never be
reached from the system initial state. The trick we use in the implementat ion is
to segment the local s tate space of each thread by rendezvous local states. Thus
given a state A = (F 1 , . . . , Fro), while calculating the states reachable from A
through rendezvous-less runs, we only compute the Cartesian product of the lo-
cal state subspaces K 1 , . . . , Km defined in the following way. For each 1 < i < m,
if Fi is a rendezvous local state, then Ki is the next segment reachable from local
states in the segment where Fi is in. Otherwise it is the present segment where
F~ is in.

6 G e n e r a l S e s s i o n S e t u p C o n t r o l p r o t o c o l

We have tested our implementat ion against an abstract version of a real-world
project which deals with the communicat ion link setup in a mobile phone envi-
ronment. The test example GSSC comes from the Wireless Communicat ion De-
par tment , Computer ~ Communicat ion Research Laboratories, Industrial Tech-
nology Research Insti tute, Taiwan, ROC. It deals with setting up and later
releasing a communicat ion channel between a client and a server. Five threads
are involved in the system, the client, the system service for client (SS_C), the
line control unit (LCU), the system service form server (SS_S), and the server.
The protocol must take care of communicat ion failure incurred by, e.g. t imeout,
server busy,

In our experiment, we test two cases, one for the reachability of an inconsis-
tent states and one for that of a consistent one. We thus give a brief description
to all these five threads. After this, we shall then present par t of the protocol in
our description language.

�9 Reaction sequence from the client's viewpoint :
1) The client s tar ts the whole session by sending an SS-SETUP_req message

to SS_C.

2) If an SS_RELEASE_ind message is received from SS_C, quit the session.
If an SS_FACILITY_ind message is received, send an SS_FACILITY_req
message to SS_C to request for the facility and wait for further response
from SS_C.

3) If an SS_RELEASE_ind message is received from SS_C, quit the session.
If an SS_FACILITY_ind message is received, then send an
SS-RELEASE_req message to release the resources and quit.

�9 Reaction sequence from SS_C's viewpoint :

1) When an SS_SETUP_req message is received from the client, send
an LCU_DATA_req message with identifier 4 to LCU and starts a t imer
which t imeouts at 10 t ime units later.

696

2) If an LCU_RELEASE-ind message is received f rom LCU within 10 t ime
units, send an SS_RELEASE_ind message to the client and quit the ses-
sion.
If a t imeout occurs, send an SS_RELEASE_ind message to the client and
an LCU_RELEASE_req message with identifier 4 to LCU to quit the ses-
sion.
If an LCU_DATA_ind message is received from LCU within 10 t ime units,
send an SS_FACILITY_ind message back to the client and wait for its
further response.

3) I f an SS_RELEASE-req message is received f rom the client, send
an LCU_RELEASE_req message with identifer 4 to LCU to quit.
If an SS_FACILITY_req message is received from the client, send
an LCU_DATA_req message with identifier 4 to LCU and starts a t imer
which t imeouts at 10 t ime units later.

4) If an LCUAR, ELEASE_ind message is received from LCU within 10 t ime
units, send an SS_RELEASE_ind message to the client and quit.
If a t imeout occurs, send an SS_RELEASE_ind message to the client
and an LCU_RELEASE_req message with identifier 4 to LCU to quit
the session.
If an LCU_DATA_ind message is received from LCU within 10 t ime units,
send an SS_FACILITY_ind message back to the client and wait for its
further response.

5) Upon the reception of an SS_RELEASE_req message from the client,
send an LCU_RELEASE-req message with identifier 4 to LCU to quit
the session.

�9 Reaction sequence from LCU's viewpoint :
1) If an LCU_DATA_req message is received with identifier 4, send

an LCU_DATA_ind message to SS_S. Go back to initial state.
2) If an LCU_DATA_req message is received with identifier 132, send

an LCU_DATA_ind message to SS-C. Go back to initial state.
3). If an LCU_RELEASE-req message is received with identifier 4, send an

LCU_RELEASE_ind message to SS_S. Go back to initial state.
4) If an LCU_I:tELEASE_req message is received with identifier 132, send

an LCU_RELEASE_ind message to SS_C. Go back to initial state.
�9 Reaction sequence from SS_S's viewpoint :

1) When an LCU_DATA_ind message is received from LCU, if it is an
SS_START message, then send an SS_SETUP_ind message to the server
and wait its response; otherwise quit.

2) I f an SS_RELEASE_req message is received from the server, send
an LCU_RELEASE_req message with identifier 132 to LCU to quit.
If an SS_FACILITY-req message is received from the server, send
an LCU_DATA-req message with identifier 132 to LCU and starts a
t imer which t imeouts at 10 t ime units later.

3) If an LCU_RELEASE_ind message is received from LCU within 10 t ime
units, send an SS_RELEASE_ind message back to the server and quit.

697

If a timeout occurs, send an SS_RELEASE_ind message to the server
and an LCU_RELEASE_req message with identifier 132 to LCU to quit.
If an LCU_DATAAnd message is received from the LCU within 10 time
units, send an SS_FACILITY_ind message to the server and wait for its
further response.

4) If an SS_RELEASE~eq message is received from the server, then send
an LCU_RELEASE_req message with identifier 132 to LCU to quit.
If an SS_FACILITY_req message is received from the server, send
an LCU_DATA_req message with identifier 132 to LCU and starts a
timer which timeouts at 10 time units later.

5) If an LCU_RELEASE_ind message is received from LCU within 10 time
units, send an SS_RELEASE_ind message back to the client and quit the
session.

6) If a timeout happens, send an SS_RELEASE_ind message to the server
and an LCU_RELEASE_req messge with identifer 132 to LCU to quit.

�9 Reaction sequence from the server's viewpoint :
1) Upon receipt of an SS_SETUP_ind message from SS_S, the server either

sends an SS_RELEASE_req message back to SS-S if the service is not
available and goes back to the initial state, or sends an SS_FACILITY_req
message to SS-S to notify that the service is available and waits for
further response from SS_S.

2) Upon receipt of the an SS_RELEASE message, the server knows that
the the service is no longer needed and go back to the initial state. On
the other hand, if an SS_FACILITY_ind message is received from SS_S,
the server may either send an SS_RELEASE_req message to SS_S in case
the server has to abort the service, or an SS_FACILITY_req message to
provide the service and wait for further response from SS_S.

3) Upon receipt of the an SS_RELEASE message, the server knows that
the the service has completed and goes back to the initial state.

In our specification, we treat each message as a rendezvous. Message to and from
LCU with different identifiers are also treated as of different message types for
convenience. Messages between the client and SS_C all begin with prefix SS_C_.
Messages between the server and SS_S all begin with prefix SS_S_. In table 2 and
3. we list our specifications for thread LCU, and SS_C. Because of page limit,
we shall not present the specification for the client, SS_S, and the server. Also
in table 4, we list the thread and rendezvous type declaration.

We have performed two teachability analyses. One is for an unreachable state
which says that the server has aborted the service while the client is still using
the service. The total number of states generated is 3675 and the CPU time is
5075 seconds on a Spare 10 clone.

The second is for a reachable state which says that the client is using the
service provided by the server. The total number of states generated is 3676 and
the CPU time is 6649 seconds on a Spare 10 clone.

698

/* Line Control Unit */
LCU {

LCU~body *;
}

LCU_body {
[0 , \ i n f t y] ; /* NULL */
switch {

case LCU_DATA_req_132; /* LCU_DATA_req */
LCU DATA ind_132;

case LCU DATA req_4; /* LCU.DATA_req */
LCU_DATAind_4;

case LCU_RELEASEreq_4;
LCU_RELEASE_ind_4; /* LCU_RELEASE_ind */

case LCU_RELEASE_req_132;
LCU_RELEASE_ind_132; /* LCU_RELEASEind */

Table 2. Thread LCU, Line Control Unit

7 The chal lenge ahead

It is easy to see that given an unstructured real-time system specification, its tim-
ing behavior structure can be horribly difficult to analyze. But this kind of input
assumption usually contradicts the common practice of structured programming
in software engineering, the high-level semantics of programming languages, and
the design rules in real-time systems. We advocate procedure-level model de-
scriptions and verifications for real-time concurrent systems for their potentially
better average-case performance in automated verification. At the current stage,
we have implemented an verification system which respects and utilizes the high-
level behavior structures demonstrated in the program structures and local au-
tonomy of real-time concurrent system specifications. An abstract version of a
real-world protocol is tested with performance reported. However, we are still
looking for test examples which exhibit more program structures like nested
procedure-calling.

The concept of statements with earliest starting times and deadlines was also
adopted in formal frameworks like [20, 24]. Special techniques for teachability
analysis has also been reported under this kind of framework[20, 5]. However, we
do not know if there is any previous formal framework for real-time concurrent
systems aimed at taking advantage of local autonomy and program structures
to improve the verification performance.

699

/* Supplementary Service A */
/* Any service request to LCU is with identifier 4 */

ss_c {
SS_C_body *;

}

SS_C_body {
[O,\infty]; /* NULL */
SS_C_SETUP_req;
[0,0]; /* PD_TI := 4 */
LCU_DATA_req_4;
[0,0]; /* set timer = I0; Initiated
switch {
case
case

case
}

}

*/

[0,I0]; LCU_RELEASE_ind_I32; SS_C_RELEASE_ind;
[0,I0]; LCU_DATA_ind_I32; SS_C_FACILITY_ind; [O,\infty];
switch {
case SS C_RELEASE_req;

[0,0]; /* PD_TI := 4 */
LCU_RELEASE_req_4;

case SS_C_FACILITY_req;
[0,0]; /* PD_TI := 4 */
LCU_DATA_req_4;
[0,0]; /* set timer = i0 */
switch {
case [0,i0]; LCU_RELEASE_ind_132; SS_C_RELEASE_ind;
case [0,i0]; LCU_DATA_ind_132; SS_C_FACILITY_ind;

[O,\infty]; SS_C_RELEASE_req;
[0,0]; /* PD_TI := 4 */
LCU_RELEASE_req4;
[I0,I0]; SS_C_RELEASE_ind; LCU_RELEASE_req_4; case

)
}

[I0,I0]; [0,0]; SS_C_RELEASE_ind; LCU_RELEASE_req_4;

Tab le 3. Thread SS_C, System Service for the Client

Acknowledgments

We thanks Professor Clarke and his crew at CMU for offering SMV[4, 23], which
were used in our reachability analysis part of oar implementat ion, and the asso-
ciated technical advice. SMV is used as a routine for calculating the transitive
closure in the rendezvous state graph in table 1.

/*=Thread description:
<C, SS_C, LCU, SS S, S>

/*=Rendezvous description

/* Between SS_C and LCU */

LCU_DATA_req_4 : 1,2;

LCU_DATA_ind_I32 : 1,2;

/* Between Client and SS_C */
SS_A_SETUP_req : 0,1;
SS_A_FACILITY_ind : 0 , I ;
SS A FACILITY_req : 0,1;

/* Between SS_S and LCU */
LCU_RELEASE_req_132 : 2,3;
LCU_RELEASE_ind_4 : 2,3;

/* Between Server and SS_S */
SS_B_SETUP_ind : 3,4;
SS B FACILITY_req : 3,4;
SS B FACILITY_ind: 3,4;

700

............ ,/

=====*/

LCU_RELEASE_req_4 : 1,2;

LCU_RELEASE_ind_I32 : 1,2;

SS_A_RELEASE_ind : 0,I;

SS_A_RELEASE_req : 0,i;

LCU_DATA_req_132 : 2,3;
LCU DATA_ind_4 : 2,3;

SS_B_RELEASE_req : 3,4;
SS_B_RELEASE_ind : 3,4;

Table 4. Thread and rendezvous type declaration

R e f e r e n c e s

1. R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE
LICS, 1990.

2. R. Alur, T.A. Henzinger, P.-tt. Ho. Automatic Symbolic Verification of Embedded
Systems. in Proceedings of 1993 IEEE Real-Time System Symposium.

3. A.V. Aho, R. Sethi, J.D. Ullman. Compilers - Principles, Techniques, and Tools,
pp.393-396, Addison-Wesley Publishing Company, 1986.

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Ilwang. Symbolic Model
Checking: 1020 States and Beyond, IEEE LtCS, 1990.

5. B. Berthomieu, M. Diaz. Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE TSE, Vol. 17, No.3, March 1991.

6. Boyer, Moore. A Computational Logic Handbook, Academic Press, 1988.
7. D. Bosscher, I. Polak, F. Vaandrager. Verification of an Audio Control Protocol.

Proceedings of Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, 1994; in LNCS, Springer-Verlag.

8. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput, C-35(8), 1986.

9. E. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching-Time Temporal Logic, Proceedings of Workshop on Logic of Pro-
grams, Lecture Notes in Computer Science 131, Springer-Verlag, 1981.

701

10. E. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications, ACM Transactions on
Programming Languages and Systems 8(2), 1986, pp. 244-263.

11. H.M. Deitel. An Introduction to Operating Systems, pp.ll0-1t5, Addison-Wesley,
1984.

12. E.A. Emerson, C.-L. Lei. Modalities for Model Checking: Branching Time Logic
Strikes Back, Science of Computer Programming 8 (1987), pp.275-306, Elsevier
Science Publishers B.V. (North-Holland).

13. M.J.C. Gordon. HOL - A Proof Generating System for Higher-Order Logic. Cam-
bridge University, Computer Laboratory, 1987.

14. T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for
Real-Time Systems, IEEE LICS 1992.

15. C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall, 1985.
16. E. Horowitz. Fundamentals of Programming Languages, Computer Science Press,

1984.
17. J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, 1979.
18. C.B. Jones. Systematic Software Development using VDM, 2nd ed., Prentice Hall,

1990.
19. F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-time sys-

tems, IEEE Transactions on Software Engineering, Vol.SE-12, No9, 1986, pp. 890-
904.

20. F. Jahanian, D.A. Stuart. A Method for Verifying Properties of Modechart Speci-
fications. IEEE RTSS 1988.

21. Y. Kesten, A. Pnueli, J. Sifakis, S. Yovine. Integration Graphs: a Class of Decidable
Hybrid Systems. In Proc. Workshop on Theory of Hybrid Systems, LNCS 736,
Springer-Verlag, 1993.

22. H.R. Lewis. Unsolvable Classes of Quantificational Formulus, 1979, Addison-
Wesley Pub. Co.

23. K.L. McMillan, "Symbolic Model Checking", Ktuwer Academic Publishers, Boston,
MA, 1993.

24. P. Merlin, D.J. Faber. Recoverability of Communication Protocols. IEEE Trans.
Commun, Vol. COM-24, no. 9, Sept. 1976.

25. R. Mi]ner. Communication and Concurrency. Prentice Halt, 1989.
26. O. Mulet, Z. Manna, A. Pnueli. From Timed to Hybrid Systems. In Real Time :

Theory in Practice, LNCS 600, pp. 447-484, Springer-Verlag, 1991.
27. Z. Manna, A. Pnueli. Verifying Hybrid Systems. In Proc. Workshop on Theory of

Hybrid Systems, LNCS 736, Springer-Verlag, 1993.
28. R.S. Pressman. Software Engineering, A Practitioner's Approach. McGraw-Hill,

1982.
29. K. Slind. HOL90 Users Manual. Technical report, 1992.
30. J.M. Spivey. The Z Notation, A Reference Manual, second edition. Prentice Hall,

1992.
31. F. Wang, A.K. Mok, E.A. Emerson. Real-Time Distributed System Specification

and Verification in APTL. ACM TOSEM, Vol. 2, No. 4, Octobor 1993, pp. 346-378.
32. F. Wang. Timing Behavior Analysis for Real-Time Systems. IEEE LICS 1995.
33. F. Wang. Reachabi]ity Analysis at Procedure Level through Timing Coincidence.

in Proceedings of the 6th CONCUR, Philadelphia, USA, August 1995, LNCS 962.
34. W. Wulf, M. Shaw, P. Hi]finger, L. Flon. Fundamentals of Computer Science,

Addison-Wesley, Reading, Mass., 1981.

