
Refining Action Systems within B-Tool

M. Wald4n 1 and K. Sere 2

1 /ibo Akademi University, Department of Computer Science, FIN-20520 Turku,
Finland, Marina. Walden@abo. fi

2 University of Kuopio, Department of Computer Science and Applied Mathematics,
P.O.Box 1627, FIN-70211 Kuopio, Finland, Kaisa. Sere@uku.fi

A b s t r a c t . Action systems is a formalism designed for the construction
of parallel and distributed systems in a stepwise manner within the refine-
ment calculus. In this paper we show how action systems can be derived
and refined within a mechanical proof tool, the B-Tool. We describe how
action systems are embedded in B-Tool. Due to this embedding we can
now develop parallel and distributed systems within the B-Tool. We also
show how a typical and nontrivial refinement rule, the superposition re-
finement rule, is formalized and applied on action systems within B-Tool.
A derivation towards a distributed load balancing algorithm is given as
a case study.

1 introduction

Action systems are used to construct parallel and distributed systems in a step-
wise manner as described by Back et al. [2, 4]. They are often developed using
a poweful program modularization and structuring method called superposition
[7, 9, 2]. In superposit ion some new functionMity is added to an algor, i thm in the
form of additional variables and assignments to these while the original compu-
ta t ion is preserved.

Stepwise refinement of action systems is formalized within the refinement
calculus [4] based on the weakest precondition calculus of Dijkstra [6]. A formal-
ization of superposit ion as a refinement step within this calculus is put forward
by Back and Sere [3]. Superposing one mechanism onto another often consti tutes
a large refinement step with many proof obligations. An example of verifying a
complex distr ibuted algorithm using superposition refinement is given in [13]. To
get more confidence in the correctness proofs we need to use some mechanical
tool. In this paper we show how superposition refinement of action systems can
be performed using B-Tool.

The name B-Tool will in this paper refer to the B-Method and the B-Toolkit.
The B-Toolkit [11] comprises a set of tools supporting a method of software de-
velopment, the B-Method [1]. This method is succesfully used in many industrial
projects applying formal methods. The B-Method is founded on the set theory
and relies on an extension of the weakest precondition calculus of Dijkstra [6].

In this paper we show how action systems can be embedded in the B-Tool.
We compare the refinement notions of the two systems, the action systems and
the B-Method, and show how the superposition refinement rule formalized on

86

action systems can be applied within the B-Tool. Since the superposit ion is a
method for developing parallel and distributed systems, embedding the superpo-
sition method in the B-Tool makes it possible to develop parallel and distr ibuted
systems within B-Tool.

We will first briefly describe action systems and superposit ion refinement
in section 2. In section 3, we give an overview of the B-Tool. In section 4, we
show how action systems and superposit ion refinement are embedded in B-Tool.
Finally, B-Tool is used for developing a load balancing algorithm of Hofstee et
al. [8]. The first refinement step towards a distributed algorithm is given as
an example. The complete derivation is reported in [14]. The load balancing
algorithm within B-Tool is described in section 5. We conclude in section 6.

2 A c t i o n S y s t e m s a n d S u p e r p o s i t i o n R e f i n e m e n t

We first consider the action systems framework together with its associated
refinement calculus. We only give a very brief introduction here. More on these
topics and further references can be found elsewhere [2, 3, 4].

2.1 A c t i o n S y s t e m s

An action system A is a s ta tement of the form

A de=f [[v a r x ; x : = x o ; d o A l ~ . . . ~ A,~ o d] l : z

on state variables y = x 0 z, where the variables z are the global variables and x
are the local variables. Each variable is associated with some domain of values.
The set of possible assignments of values to the s tate variables consti tutes the
state space. The initialisation s ta tement x := x0 assigns initial values to the s ta te
variables x.

Each action Ai is of the form gi -~ Si where the guard gi is a boolean expres-
sion on the s tate variables and the body Si is a s ta tement on the s tate variables.
We denote the guard gi of Ai by gAi and the body Si by sAi. Furthemore, we
say tha t an action is enabled in a state when its guard evaluates to true in tha t

state.
The behavior of an action system is tha t of Dijkstra 's guarded iteration

s ta tement [6] on the state variables: the initialisation s ta tement is executed first,
thereafter, as long as there are enabled actions, one action at a t ime is nondeter-
ministically chosen and executed. When all the actions are disabled the action

system terminates.
If two actions are independent, i.e. they do not have any variables in common,

they can be executed in parallel. Their parallel execution is then equivalent to
executing the actions one after the other, in either order.

87

2.2 Ref inement of A c t i o n S y s t e m s

The superposition method has been formalized as a program refinement rule
within the refinement calculus for action systems. Let us now briefly describe
this calculus.

Let S be a statement on the program variables x, z and S' a s tatement on
the program variables x', z. Let the invariant R(x, x', z) be a relation on these
variables. Then S is data refined by S' using the data invariant R, denoted
S --<R St, if for any postcondition Q

R A wp(S, Q) ~ wp(S' , 3x.R A Q)

holds. Here wp is the weakest precondition predicate transformer [6]. Successive
data refinements are modelled as follows: If So --<R1 S1 and S1 -<R2 $2 then
So <RI^R2 S2.

Data refinement of actions is defined in a similar way, considering that the
weakest precondition [6] for an action is defined as:

w p (d , R) dej gd ~ wp(sd, R).

Let A be an action on the program variables x, z and A' an action on the program
variables x', z. Let the invariant R(x, x', z) be a relation on these variables. Then
A is data refined by A' using R, denoted A --<R A', if

(A1) (gd'}; sd <~R 8A' and
(A2) R A gA' ~ gA.

Intuitively, (A1) means that A' has the same effect on the program variables
tha t A has when A' is enabled and R holds and moreover, A' establishes R. The
condition (A2) requires tha t A is enabled whenever A' is enabled provided R
holds.

The superposition refinement of action systems is a special kind of data
refinement and it is formally expressed as follows. Let .4 and .4' be the two
action systems:

.4 de f][va r X; X := X0; do AI ~ . . . ~ Am od]1: z and

.4, dej [[va r x, y; x, y := xo, yo; do A'I ~ . . . ~ A'~ ~ B1 ! . . . ~ B~ o d][:z .

Let g.4 be the disjunction of the guards of the actions Ai, g.4' the disjunction of
the guards of the actions A~ and gB the disjunction of the guards of the actions
Bj. Then .4 <R .4' using R(x, y, z) , if

(sl) R(~o, y0, z),
($2) Ai_<RA~, f o r i = l , . . . , m ,
($3) skip <--R Bj, for j ---- 1 , . . . , n,
(S4) R A -~(g.4' V gB) ~ -~g.4,
($5) R ~ w p (d o B1 ~ . . . ~ B n o d , t~ue).

Informally, an action system .4 is correctly data refined by another action system
.4' using the data invariant R when

88

($1) the initialisation in ~4 t establishes R,
(S2) every action Ai is data refined by the corresponding A~ using R,
($3) every action Bj is a data refinement of the empty statement skip using R,
($4) all actions in A are disabled whenever all actions in A ~ are disabled when

R holds, i.e. the exit condition ~(g,4 t V gB) of ,4 ~ implies the exit condition
-~gA of A when R holds, and

($5) the computation denoted by the actions B 1 , . . . , B~ terminates provided
R holds.

3 O v e r v i e w o f t h e B - T o o l

A superposition refinement step is often large. In order to give more confidence
in the correctness proof of a superposition step we want to use a mechanical
tool. We will s tudy B-Tool to see how it applies to action systems and how its
proof rules agree with the superposition rule. The B-Toolkit [11] comprises a set
of tools, which support a method of software development called the B-Method.

The B-Method is a mathematical method which gives a model oriented ap-
proach to software construction. The method is founded on set theory and relies
on an extension of Dijkstra's weakest precondition calculus [6].

A program derivation in B-Method consists of a specification, possibly a
number of refinements and an implementation. The specification is a high level
description of a program under development and it usually involves a lot of non-
determinism. By the refinements the specification can stepwise be transformed
into an implementation. This implementation represents the last refinement. It
can directly be translated to executable code and it may not contain any non-
determinism.

Within B-Method the specifications, the refinements and the implementa-
tions are represented as Abstract Machines consisting of a context of global
constraints and of operations on state variables. For specifying the operations
B-Method uses the Abstract Machine Notation (AMN), which is a generalisa-
tion of Dijkstras guarded command notation. Every statement in AMN is a form
of substitution. Each generated substitution S is defined as a predicate trans-
former which transforms a postcondition R into the weakest precondition for S
to establish R, wp(S, R).

The processing of Abstract Machines begins with syntax- and type-checking.
Verification conditions needed for proving the specification consistency and the
correctness of refinement steps can be automatically generated within the B-
Toolkit. Furthermore, these verification conditions can be automatically or in-
teractively proved using the so called autoprover or interprover, respectively. The
provers are built on a mathematical library containing a collection of mathemat-
ical laws for the underlying set-theoretic notation. The autoprover first tries to
discharge the proof obligations using the mathematical library. If the s tandard
library is not enough, the user may supplement it with new necessary rules and

\
then with the help of the interprover discharge the rest of the proof obligations.

89

MACHINE
Machine_name(p)

CONSTRAINTS
P

CONSTANTS
c

PROPERTIES
Q

VARIABLES
x

INVARIANT
R

INITIALISATION
T

OPERATIONS
Operation_name = PRE L THEN S END ;

END

Fig. 1. The syntactic structure of an abstract machine.

In addition to the above mentioned functions there are also facilities within
B-Toolkit for generating code and documentation.

4 Embedding Superposition Refinement within B-Tool

We now show how action systems, their refinement, and the superposition re-
finement rule can be embedded in B-Tool.

4.1 Act ion Systems within B-Tool

A b s t r a c t Machine Specif ication We first look closer at how specifications
are constructed within B-Tool. The syntactic structure of an abstract machine
is given in Figure 1. An abstract specification, or abstract machine, in B-Tool
is identified by a unique machine name. It can be supplied with parameters p
for giving dimensional characteristics of the specification. The properties P of
these parameters are given in the constraints clause. Furthermore, within the
abstract machine we can introduce constants c which are defined in terms of the
parameters and some given sets. The properties clause gives the definition Q of
these constants.

The variables x in an abstract machine are defined in the invariant clause
and initialised in the initialisation clause. The invariant R consist of a set of
predicates including set-theoretical typing of each variable. The initialisation
T is a substitution statement. A machine can also include variables of other
machines to different extents.

90

An abstract machine has a number of operations. These operations are named
procedures which might have parameters and/or be of resulting type. The oper-
ations are given in the form of substitutions using the AMN language. They are
the interface of the machine. In Figure 1 the operation consists of a substitution
S with a precondition L.

The internal consistency of the abstract specification in Figure 1 can now be
proved in B-Tool by showing that the following five requirements are fulfilled:

(e l) 3p.P
(C2) P ==~ 3c.Q
(c3) (P A Q) 3x.R
(C4) (P A Q) ~ w p (T , R)
(C5) (P A Q A R A L) ~ w p (S , R) .

The first three obligations are concerned with the consistency of the contextual
information, i.e., the formal parameters, the constants and the variables. The
fourth checks that the invariant is established initially and the fifth tha t each
operation maintains the invariant.

A c t i o n S y s t e m s Let us now study how an action system can be embedded into
this Abstract Machine specification. The AMN substitution P ~ S is called the
guarded substitution and is interpreted as guarding of the substitution S by the
predicate P. The weakest precondition for the guarded substitution is defined as

wp(P ~ S, R) def P ~ wp(S, R).

This is, however, the same as the weakest precondition for the action P --* S.
Hence, an action can be interpreted as a guarded substitution.

The syntax for a guarded substitution interpreted as an operation in B-Tool
is:

Operation_name = PRE true THEN (SELECT P THEN S END) END ;

where the precondition has the value t~ue and can be left out. The guarded
substi tution as an operation is then

SELECT P THEN S E N D .

Hence, we choose to represent each action in B-Tool by such an operation.
Let us now consider the following action system:

~A de f [[va r x; x := X0; do A1 ~ A2 ~ A3 o d][: z

as well as its invariant R(x, z) and its constraint P(z). The invariant R(x, z)
describes the behaviour of the local variables x possibly in terms of the global
variables z, while P(z) gives the constraints of the variables z. We can now
write the action system as the Abstract Machine specification ActionSystem as
given in Figure 2. In the specification the global variables of an action system

91

I[var x;
X :~--~ XO;

do

U
l
D

od
]l:z

A1

A2
A3

MACHINE
Action@stem(z)

CONSTRAINTS
P(z)

VARIABLES
x

INVARIANT
R(x, z)

INITIALISATION
X : ~ X o

OPERATIONS
A1 -- SELECT gA1 THEN sA1 END ;
A2 -- SELECT gA2 THEN sA2 END ;
A~ = SELECT gA3 THEN sA3 END

END

Fig. 2. An action system and its embedding in an abstract machine.

are considered as parameters and, hence their constraints in P(z) are given in
the constraint clause. For the rest, the translat ion of action systems into AMN
is straightforward.

A consistency proof of the specification is given using the autoprover in B-
Toolkit verifying the proof obligations (C1) - (C5).

4.2 S u p e r p o s i t i o n Ref inement w i th in B-Too l

We will now study how the superposition rule can be interpreted within B-Tool.
We begin by describing the Abstract Machine refinement in B-Tool.

A b s t r a c t M a c h i n e R e f i n e m e n t A refinement in B-Tool may either be a da ta
refinement or an algorithmic refinement. Da ta refinement is achieved by a change
of variables and the operations on them, while the algorithmic refinement allows
the operations to be reformulated thereby making them more concrete without
changing the s tate space. The refinement relation within B-Tool is transit ive and
monotonic.

If we have the machines N and M, where N refines M, then N and M
must have identical operat ion signatures. This means tha t the corresponding
operations in N and M must have identical names and, if the operations have
parameters , these must also be identical. The machines N and M need, how-
ever, not contain the same variables. The machine N is produced by applying a
syntactic construct, Refinement, to the machine M. The syntactic s tructure of
an Abstract Machine refinement is given in Figure 3.

Although, a Refinement and a Machine resemble each other in many ways
there are some differences. Firstly, a refinement has to state what it will refine, a
machine or another refinement. Fhrthermore, the invariant R t of the refinement
is an abs t rac t relation tha t expresses the change of variables between the two

92

REFINEMENT
Refinement_name

REFINES
Machine_name

VARIABLES
X I

INVARIANT
R'

INITIALISATION
T'

OPERATIONS
Operation_name = PRE L' THEN S ~ END ;

END

Fig. 3. The syntactic structure of a refinement.

constructs, i.e. the relation between the variables x and x ~ in a da ta refinement.
The operations of the refinement refer only to the variables x ~.

In order to prove the refinement correct, a number of proof obligations are
automatical ly created by B-Tool. The proof obligations created for the machine
in Figure 1 and its refinement in Figure 3 are given below:

(Bt) (3(x, x') .R A R')
(B2) wp(Tr,-~wp(T, -~R'))
(B3) (V(x, x') .(R A R' A L) ~ L')
(B4) (V(x, x') .(R A R' A L) ~ wp(S ' , - ,wp(S , - -R '))) .

The first proof obligation asserts tha t the new invariant R ~ does not contra-
dict the previous invariant R, while the second proof obligation checks tha t the
new initialisation T ~ establishes a situation where the previous initialisation T
cannot fail to establish the invariant R t. The last two obligations ensure the cor-
rectness of each operation. According to them the precondition L of operat ion S
implies the precondition L r of S ~ when the invariants hold, i.e. the precondition
is weakened. Moreover, an operation S t establishes a situation where the old op-
eration S cannot fail to maintain R r. Due to the construction of the invariants,
obligations (B2) and (B4) will also involve type-checking.

S u p e r p o s i t i o n S t e p w i t h i n B - T o o l Let us now consider a superposit ion re-
finement r ~ of the action system A given above. We define A t as:

A' dej I[var x, y; x , y := xo, Yo; do A~] A~] A ~ B1] B 2 o d] l : z

and the invariant of the refinement as R~(x, y, z). This refined action system can
be embedded in an Abstract Machine refinement RefActionSystem as shown in

93

I[v a r x, y;
x~ y := x0, y0;
d o

U A~
AS
A~

gB2
o d

]l:z

REFINEMENT
RefActionSystem

REFINES
AetionSystem

VARIABLES
X t, y

INVARIANT
R ' (Y, y, z) A x' = x

INITIALISATION
x t, y : = x-o, Y0

OPERATIONS
A1 = SELECT gA~l THEN sA~ END ;
A2 = SELECT gA~2 THEN sX2 END ;
A3 = SELECT gA~ THEN sA'3 END ;
BI = SELECT gB1 THEN sB1 END ;
B2 = SELECT gB2 THEN sB2 END ;
exit_cond =

t I A I SELECT ~(gAt V gA2 V g 3 V gB1 V gB2)
THEN skip END

END

F ig . 4. The refined action system and its embedding in a refinement machine.

F i g u r e 4. T h e invar ian t R / includes the invar iant R of t he ac t ion sy s t em be ing
refined.

In an ac t ion sy s t em ref inement some var iables x are left unchanged , these are
t he so cal led old var iables . However, in B-Tool we canno t use t he same var iab le
n a m e s in t he spec i f ica t ion and the ref inement . We, thus, r ename the old var iab les
to x t in t he re f inement and s t a t e the re la t ionsh ip x ~ = x in t he invar ian t of t he
ref inement .

F u r t h e r m o r e , in B-Tool all t he ref inements use the same o p e r a t i o n names ,
which means t h a t all ope ra t i ons t h a t will exis t in the final re f inement also have
to exis t in t he first specif icat ion. Since we i n t roduc e d the ac t ions B1, B2 and
exit_cond as ope ra t i ons in t he mach ine ref inement RefActionSystem, we also need
to i n t roduce co r r e spond ing ope ra t i ons in the mach ine speci f ica t ion ActionSystem
as Bi = B E G I N skip E N D for i = 1, 2, where we have sk ipped the p recond i t i on
true as previously. We will r e t u r n to exit_cond la ter .

We have expressed how an ac t ion sys t em and i ts supe rpos i t i on re f inement
can be mode l l ed as machines in B-Tool . Let us now consider t he p roo f rule
for s u p e r p o s i t i o n re f inement of ac t ion sys tems. T h e five condi t ions (S1)-($5)
in t h e supe rpos i t i on rule a re equivalent to re f inement rules wi th in B-Tool as
will be shown below. We s t a r t by showing the equivalences for t he first four
s u p e r p o s i t i o n condi t ions . T h e t r e a t m e n t of t he las t cond i t ion ($5) is p o s t p o n e d .

94

(1) The condition (S1) is equivalent with the condition (B2), where

(S l) : y0, z)
(B2) : wp((x' , y := xo, Y0),-~wp(x := Xo,-~(R'(x', y, z) A (x' = x)))),

because

wp((x' , y := ~0, Y0), ~wp(x := Xo, ~(n ' (x ' , y, z) A (x' = x))))
= wp((~', y := ~0, Y0), (R'(x', y, z) A (~' : ~o)))
- (R'(~o, Y0, z) A (~0 = xo))
- R'(xo, y0, z).

(2) The condition ($2) corresponds to the condition (B4[Ai]), where

($2) : As --<R' AS
(B4[A~]) : R'(x' , y, z) A (x' = x)

wp(A~, ~wp(Ai,-~(R'(x' , y, z) A (x' = x)))).

B-Tool generates the following proof obligations from (B4[A~]) :
(i) R'(x' , y, z) A (x' = x) ~ wp(A~,-~wp(Ai,-~(x' = x)))
(ii) R'(x' , y, z) A (x' = x) ~ wp(A~, R'(x', y, z))
(iii) R'(x' , y, z) A (x' = x) A gA~ ~ gAi
These are, however, equivalent to the conditions (A1) and (A2) that define
the data refinement between actions. The items (i) and (ii) correspond to
(A1) and the item (iii) is the counterpart in B-Tool of condition (A2). Hence,
($2) corresponds to the condition (B4[A~]).

(3) The condition ($3) corresponds to (B4[B~]), where

(s 3) : skip <R,
(B4[Bi]) : R'(x' , y, z) A (x' = x)

wp(Bi, ~wp(skip,-~(R'(x', y, z) A (x' = x)))),

From (B4[Bi]) B-Tool generates the following proof obligations:
(i) Rt(x', y, z) A (x' = x) ~ wp(Bi, (x' = x))
(ii) R'(x' , y, z) A (x' = x) ~ wp(Bi, R'(x', y, z))
(iii) R'(x' , y, z) A (x' = x) A gBi ~ true
As above, these proof obligations correspond to the conditions (A1) and (A2)
that are equivalent to ($3) when instantiated appropriately.

(4) The condition (S4) corresponds to (B4[exit_cond]), where

(s4) : R' A (gA' v gB) - gA
(B4[exit_cond]): R'(x' , y, z) A (x' = x) =~

wp(exit_cond',-~wp(exit_cond, ~(R'(x ' , y, z) A (x' : x)))).

The operation exit_cond models the exit condition in an action system. The
exit condition in the action system A ~ above is defined as -~(gA1 V gA2 v
BA 3 V gB1 V gB2). The exit condition operation in the old action system .4
needs to be introduced as:

exit_cond = SELECT -~(gA1 V gA2 V gA3) THEN skip END

95

From (B4[exit_cond]) B-Tool generates the following proof obligations:
(i) R'(x' , y, z) A (x' = x) A g(exit_cond') ~ (g(exit_cond) A (x' = x))
(ii) R'(x' , y, z) A (x' = x) A g(exit_cond') ~ (g(exit_cond) A R(x' , y, z))
(iii) R'(x' , y, z) A (x' = x) A g(exit_eond') ~ g(exit_cond)
These are easily seen to correspond to ($4).

The proof obligations (B1) and (B3) do not correspond to any of the condi-
tions in the superposition rule. Since the invariant R is included in the invariant
R ~ due to the superposition refinement, and the preconditions L and L r both
have the value true, they trivially hold for the embedded action system.

Preliminary to relating the condition ($5) to a condition in the B-Method
we present some additional constructs of the method.

A b s t r a c t M a c h i n e I m p l e m e n t a t i o n The Abstract Machine implementation
is the only machine that allows loop-constructions in the operations. Since con-
dition ($5) refers to a loop, we need to consider the implementation with a
loop-construct to create a similar condition within B-Tool.

The loop-construct consists, apart from the loop, of an initialisation, an in-
variant, and a variant as follows:

T; WHILE P DO S INVARIANT R VARIANT E END ,

where P and R are predicates, T and S are AMN substitutions and E is an inte-
ger expression. The proof obligation created for such a loop with postcondition
Q is the following:

(T1) wp(T, R)
(T2) R ~ E C N
(T3) (Vl.(R A P) ~ wp(S, R))
(T4) (V/.(R A P) ~ wp(n :-- E, wp(S,E < n)))
(Th) (V/.(R A-,P) ~ Q).

Here 1 denotes the variables modified within the loop. Following the obligations
the initialisation T should establish the invariant R and the variant E should be
an expression yielding a naturM number. Furthermore, when the guard P of the
loop holds, the body S should maintain the loop invariant R and decrease the
variant E. Finally, the postcondition Q should hold when the loop terminates,
i.e., when P does not hold anymore.

T e r m i n a t i o n o f A u x i l i a r y A c t i o n s Let us now proceed with the condition
($5): R ~ wp(do B1 ~ . . . ~ B~ od, true). We need to find a variant such that
the invariant R implies that the variant is a natural number and that the variant
is decreased each time one of the actions in the loop is executed. These conditions
are created as proof obligations for the WHILE-loop within B-Tool. We, thus,
need to make a separate refinement step within B-Tool using a WHILE-loop to
prove this condition.

96

In this refinement step the refined abstract specification has true as the
invariant and skip as the initialisation and as the only operation. In the Abstract
Machine implementation we then give a WHILE-loop with a variant E operating
on some variables e. This operation generated from the action system ~4' is
written as:

VAR x', y, e IN
x' := x0; y := y0; e := e0;
WHILE (gB1 V gB2) DO

IF gB1 THEN sB1
ELSEIF gB2 THEN sB2
END
INVARIANT R'(x', y, z) A R"(y, z, e)
VARIANT E(e)

END
END

The initialisation of the action system A t is the initialisation of the loop and
the disjunction of the guards of the auxiliary actions is given as the WHILE-
condition. Within the loop we represent the auxiliary actions with an IF -
ELSEIF-substi tution. Fhrthermore, the invariant R~(x p, y, z) of the Abstract
Machine refinement is included in the invariant of the loop. The relation R" (y, z, e)
gives the definition of the variant and is also included in the invariant. A new
expression E(e) is created as the variant.

The condition ($5) in the superposition rule can now be translated into terms
of proof obligations generated in B-Tool by:

(5) ($5) = (T2) A (T4).

The proof obligations (T1), (T3), and (Th) do not directly correspond to any
condition in the superposition rule. The obligation (T1) (and (T3)) is partly
proved by proving the obligation (B2) (and (B4[B~])), but additionally they
check that the variant establishes the invariant RPt(y, z, e) in the initialisation
and the operations. Since the postcondition of the action loop is considered to
be true here, proof obligation (Th) holds trivially

5 C a s e s t u d y : L o a d B a l a n c i n g A l g o r i t h m

As a case study we will formalize the load balancing algorithm of Hofstee et al. [8]
within action systems and B-Tool. A first refinement step towards a distributed
implementation of the algorithm is used to exemplify superposition refinement
with B-Tool.

5.1 Load Balancing Algorithm

We consider a connected graph (V, E), where V is a finite set of nodes and E
a finite set of edges on V. Let the nodes denote processes and the edges denote

97

communicat ion links between the processes. Each process is assumed to know
the identities of its direct neighbours and the number of tasks it posesses, i.e.
the load. Communicat ion can only take place between nodes directly connected
by an edge and it can go in both directions. Even so, the graph is considered to
be a rooted directed tree, where the edges are directed towards the root. This
assumption forces the load balancing to concentrate most of the tasks to the
leaves of the tree and make it possible for the other nodes to transfer tasks from
one branch to another.

The load balancing algorithm is given as an action system B below.

B dej I[v a t l o a d . i E i n t for i E V;
load.i := Load.i for i E V;
d o (bal_load_ij ~ bal_load_ji) for (i , j) E E o d

]1: top E int

Here top is a fixed positive number, the treshold, tha t states the preferable load
of a process. In node i the number of tasks is denoted by load.i and the initial
value of the load is given by the constant Load.i. The indices i, j denote nodes.
The actions are defined as follows:

bal_load_ij def
load.i < top A load.j >_ top ~ load.i, load.j := load.i + 1, load.j - 1

bal_load_ji dej

load.i > top A load.j <_ top --~ load.i, load.j := Ioad.i - 1, load.j + 1.

The total load of the system is stable after initialisation. If node i does not
have enough tasks, i.e. its load is less than the treshold, and its father, node
j , in the tree s tructure has a load greater or equal to the treshold, the action
bal_load_ij is enabled and a task can be moved from node j to node i. On the
other hand, if node i has too many task and its father, node j , has a load less or
equal to the treshold, a task can be sent from i to j since the action bal_load_ji
is enabled. Following this computat ion pa t te rn no process is idle forever if there
is enough work to be done.

We assume tha t the constraint (top > 0) holds for the global variable top and
tha t the constants Load.i have the proper ty (Vi E V : Load.i _> 0) in the load
balancing algorithm. The following invariant then holds during the computation:

1t : (Vi E V : load.i >_ 0).

This is due to the fact tha t initially the load of a node i is assigned the value
Load.i and during the computat ion the load is only decreased if it is greater or
equal to top, otherwise it is increased.

At terminat ion each node either has a load greater or equal to the treshold
top or a load tess or equal to top:

(Vi E V : load.i > top) V (Vi E V : load.i <_ top).

98

M A C H I N E
Load_Bal_l (top)

C O N S T R A I N T S
top > 0

C O N S T A N T S
Load1, Load2

P R O P E R T I E S
Load1 : N A T A Load2 : N A T

V A R I A B L E S
load 1, load 2

I N V A R I A N T
load1 : N A T A load2 : N A T

I N I T I A L I S A T I O N
loadl := Loadl II load2 :-- Load2

O P E R A T I O N S
init_12 = B E G I N skip E N D ;

bal_load_12 = S E L E C T load1 < top A load2 > top T H E N
loadl :-- loadl + 1 II load2 := load2 - 1

END ;
init_21 -- B E G I N skip E N D ;

bal_load_21 = S E L E C T loadl > top A load2 < top T H E N
load1 := load1 - 1 I] load2 := load2 + 1

E N D ;
exit_cond = S E L E C T

END
END

(loadl ~_ top V load2 < top)
A (load1 ~_ top V load2 > top) T H E N

skip

F i g . 5. The load balancing a lgor i thm represented in AMN.

It is now straightforward to give the action system as the Abstract Machine
specification in Figure 5. There are, however, some restrictions for specifications
in B-Tool. We are for example not allowed to use sequential composition in a

specification. Instead we have to use parallel composition of substitutions. Since
these substitutions have to refer to distinct variables, we cannot assign values
to distinct elements in an array in parallel. Thus, these elements have to be
considered as distinct variables and the replicator functionality is lost. In our
machine we have, thus, restricted the graph to one with two nodes, node 1 and
node 2. Node 2 is considered to be the root. It is, however, easy to extend the
algorithm to contain more than two nodes [14]. The treshold top is given as a

p a r a m e t e r a n d (top > 0) as i ts c o n s t r a i n t .

T h e o p e r a t i o n s ini t_12 a n d init_21 are o n l y r e p r e s e n t e d as s k i p - s t a t e m e n t s .
T h e y wil l l a t e r be i n t r o d u c e d as a c t i ons in t h e r e f i n e m e n t . A l s o t h e ex i t c o n d i t i o n

is g i v e n e x p l i c i t e l y as an o p e r a t i o n exi t_cond for ve r i f i ca t i on p u r p o s e s .

99

5.2 A Superposition Refinement Step

We will now do a first refinement step towards a distributed load balancing
algori thm using superposition. We add a new variable Q for representing com-
municat ion links between nodes. The link Q.i.j denotes the link from node i
to node j . There is a link in both directions for each edge. Thus, for the edge
(i , j) in the graph we have the links Q.i.j and Q.j.i . We consider the link as a
one place buffer and since we are not concerned with what is sent over the link
at this stage, we can represent the link as a boolean variable. The link Q.i. j is
defined to be true if something is sent over the link and false otherwise. All links
are initialised to false.

In the refined action system we split the change of loads into two phases.
First, a node chooses which neighbour to change loads with. In the second phase
the change of loads takes place. A node must not commit to change loads with
more than one neighbour at a time. This can be expressed as in the predicate
F(i , j) :

F (i , j) : (Vk �9 V : (i ,k) �9 E V (k, i) �9 E : -~Q. i . kA-~Q.k . i)
A (Vk �9 V : (j ,k) �9 E V (k , j) �9 E : -~Q.j.k A-~Q.k.j) .

The predicate F states tha t the nodes i and j have to be free of any commitment ,
i.e., all their links have to be empty.

The refined action system B r is given below.

][v a r l o a d . i E i n t for i E V;
Q.i.j �9 bool for i , j �9 V;

load.i := Load.i for i �9 V;
Q.i. j := false for i , j �9 Y (i ~ j) ;
do (init_ij I bal-l~ l init-ji] bal_load_ji')

]]: top �9 int
for (i , j) C E o d

The new actions init_ij and init_ji describe the first phase of the change of
loads, the commit, by setting the links Q.j. i and Q.i.j , respectively, to true
denoting tha t the loads are ready to be changed. Neither node i nor node j can
be commit ted to any node for these actions to be enabled. The new actions are
defined as follows.

init_ij dej load.i < top A load.j >_ top A F (i , j) ~ Q.j . i := true

def init_ji = load.i > top A load.j <_ top A F (i , j) -~ Q.i. j := true,

where F (i , j) is given above.

In the changed actions bal_load_iy and bal_load_S where the loads are ac-
tual ly changed the corresponding links are set to false again stat ing tha t the
changing of loads has been completed.

100

bal_load_ij' d eJ load.i < top A load.j > top A Q.j.i -~
Q.j.i := false; load.J, load.j := Ioad.i + 1, load.j - 1

bal_load_ji' de=f Ioad.i > top A load.j <_ top A Q.i.j
Q.i.j := false; load.J, load.j := load.i - 1, load.j + 1

The following addition to the invariant 11 of the action system B defines how
the variables are used in the new action system B/:

& ~ /21A/22A/23

where

~r21 : (Vi , j E V : (i , j) E E : Q.j. i ~ load.i < top A load.j > top)
I22 : (Vi , j E V : (i , j) c E : Q.i.j ~ load.i > top A load.j <_ top)
123 : (Vi , j C V : (i , j) c E V (j , i) E E : Q.i.j ~ (~Q.j . i A

(Vk E V : ((i ,k) c E V (k , i) E E) A k ~ j : -~Q.i.k A-~Q.k.i) A
(Vk e V : ((j , k) e E V (k , j) �9 E) A k # i : -~Q.j.k A-~Q.k.j)))

The invariant /21 states that if there is something on the link from node j to
node i, i.e. the value of Q.j.i is true, then node j is overloaded and node i has
a load lower than the treshotd. A similar reasoning holds for the invariant I22.
Invariant 123 says that if there is something on the link from node i to node j
then the link in the other direction has to be empty as well as all other incoming
and outgoing links of nodes i and j .

We will now write the same refinement within B-Tool. The Abstract Machine
refinement is given in Figure 6. The sees clause, SEES Bool_TYPE, is needed for
reading boolean values. Since the operations in the machine refinement cannot
involve variables of the machine being refined, we need to introduce new variables
for the loads, lloadl and lload2. They are, however, stated to be equal to the
old load variables in the invariant, (lloadl = loadl) A (Uoad2 = load2). The
invariant /2 given above is also included in the invariant of the refined machine.
The initialisation and the operations are created in the same way here as for
the machine specification. For verification purpose we introduce the operation
exit_cond.

The termination condition for the auxiliary actions are checked with a WHILE-
loop in a machine implementation. The WHILE--loop for the loadbalancing a l -
gorithm is given in Figure 7. The disjunction of the guards of the operations
init_12 and init_21 compose the guard of the loop. These operations are also
included in the IF-substitution within the loop. The relation between the link
variables Q and the variables C1 and C2 of the variant are added to the invari-
ant. These relations give the definition of the function BTS:BOOL used f~r the
variant, returning one for a parameter with the value true and zero otherwise.

101

R E F I N E M E N T
Load_Bal_2

R E F I N E S
Load_Bal_l

SEES
B o o I _ T Y P E

V A R I A B L E S
lloadl, lload2, Q12, Q21

I N V A R I A N T
lloadl : N A T A lload2 : N A T A Q12 : B O O L A Q21 : B O O L
A (lloadl = loadl) A (lload2 = load2)
A (Q21 = T R U E ~ lloadl < top A lload2 > top)
A (Q12 -- T R U E ~ lloadl > top A lload2 ~ top)
A (Q12 = T R U E ~ Q21 - - F A L S E)
A (Q21 = T R U E ~ Q12 = F A L S E)

I N I T I A L I S A T I O N
(lloadl, lload2 := Loadl , Load2) II (Q12, Q21 := F A L S E , F A L S E)

O P E R A T I O N S
init_12 --

S E L E C T lloadl < top A Uoad2 > top A Q21 = F A L S E A Q12 = F A L S E T H E N

Q21 := T R U E
E N D ;

bal_load_12 -=
S E L E C T Uoadl < top A lload2 >_ top A Q21 = T R U E T H E N

Q21 := FALSE; (lloadl := lloadl § 1 II lload2 := lload2 - 1)
E N D ;

init_21 =
S E L E C T lloadl > top A lload2 ~_ top A Q21 = F A L S E A Q12 = F A L S E T H E N

Q12 := T R U E
E N D ;

bal_load_21 =
S E L E C T lloadl > top A lload2 ~ top A Q12 = T R U E T H E N

Q12 := F A L S E ; (Iloadl := lloadl - 1 II lload2 := lload2 + 1)
E N D ;

exit_cond =
S E L E C T (lloadl >_ top V lload2 < top V Q21 = T R U E V Q12 = T R U E)

A (lloadl > top V lload2 < top V Q21 -- F A L S E)
A (lloadl ~_ top V lload2 > top V Q21 = T R U E V Q12 = T R U E)
A (lloadl ~ top Y lload2 > t o p V Q12 = F A L S E) T H E N

skip
E N D

E N D

F i g . 6. Re f inemen t of t he a b s t r a c t m a c h i n e for t he load b a l a n c i n g a lgor i thm.

102

WHILE (lloadl < top A lload2 >_ top A Q21 = FALSE A Q12 = FALSE)
V (lloadl > top A lload2 ~_ top A Q21 = FALSE A Q12 = FALSE)

DO

IF (lloadl < top A lload2 >_ top A Q21 = FALSE A Q12 = FALSE)
THEN Q21 := TRUE; C2 ~- BTS_BOOL(Q21)

ELSIF (lIoadl > top A lload2 <_ top A Q21 = FALSE A Q12 = FALSE)
THEN Q12 := TRUE; C1 ~- BTS_BOOL(Q12)

END
INVARIANT (lloadl : N A T A lload2 : N A T

A Q12 : B O O L A Q21 : BOOL
A C I : N A T A C 2 : N A T
A (Q12 = TRUE ~ C1 = 1)
A (Q12 = FALSE ~ C1 = O)
A (Q21 = TRUE ~ C2 = 1)
A (Q21 -- FALSE ~ C2 = O)
A (Q21 = TRUE ~ lloadl < top A lload2 > top)
A (Q12 = TRUE ~ lloadl > top A lload2 ~ top)
A (Q12 = TRUE ~ Q21 = FALSE)
A (Q21 = TRUE ~ Q12 = FALSE))

VARIANT (2 - (C2 + Cl))
END

Fig. 7. The auxiliary actions of the load balancing algorithm.

V e r i f i c a t i o n The autoprover was able to discharge most of the proof obligations
genera ted for the toad balancing algorithm. W h e n a proof obligation canno t be
discharged using the ma themat ica l l ibrary of rules during the au toproof session,
the user m a y supplement the l ibrary with further rules. In our case s tudy the
following kind of proof obligations could not be discharged. For the proof t h a t
the new guard implies the old, the autoprover need to use the invariant relat ion
(l loadl = load1) A (lload2 = load2). Furthermore, the p roof obligations for
the exi t_cond-operat ion need to be t ransformed using logical rules to bring the
obligat ion into an expression which can be shown to be true. This proof can
easily be done by hand-waving. The autoprover would only need to be supplied
wi th these logical rules by the user. Finally, the proof obligat ion s ta t ing t h a t
the variant is a natural number was left unproved. Here it is again sufficient to
explicitely give the definition of the variant, already given in the invariant, as

an extra rule.
The proof obligations that are not discharged by the autoprover can first be

discharged by the interprover. Then running the autoprover once again these
obligations can be discharged by the autoprover as well using the user supplied
rules. Thus, using B-Toolkit we were able to discharge all the proof obligations
created for the superposition refinement step of the load balancing algorithm.
Sample outputs produced by B-Tool are included in the full version of this paper

[15].

103

6 C o n c l u s i o n

We have described how an action system is turned into an Abstract Machine
specification in B-Tool. We have construeted refinements which give rise to proof
obligations that correspond to the conditions of superposition refinement within
the action systems framework. We can, thus, do superposition proofs within B-
Tool. Since superposition proofs are used for deriving parallel and distributed
systems, we can now use B-Toolkit as a tool for deriving parallel and distributed
systems.

By using B-Tool we gain some extra features. B-Tool can for example assist
in finding the invariant for the system as well as help to find logical errors in the
system. These shortcomings of an algorithm can usually be found by studying
the proof obligations that cannot be automatically proved by the B-Toolkit.

There are, however, also drawbacks of using B-Tool for deriving action sys-
terns. The substitutions allowed in the specifications and refinements are very
restrictive. For example a while loop cannot be introduced until the last re-
finement step. Even sequential composition is not allowed in the specifications.
Furthermore, extra operations need to be introduced in order to be able to prove
the superposition rule within B-Tool. The more complex action system we have
the more complex these extra conditions will be.

We used a load balancing algorithm as a case study to exemplify how to
use B-Tool for refining action systems. Most of the proof obligations created
by B-Tool could be proved automatically and the rest were easily proved in an
interactive way. Here we only study the very first refinement step. The complete
derivation is reported in [14] .

We have also looked at other tools that could be used for refining action sys-
tems, such as the Synthesizer Generator [12] and the Refinement Calculator [10].
However, these tools still require introduction of the superposition rules in order
to be applicable for superposition refinement of action systems. Furthermore, we
have specified a program derivation editor [5] for strucuring and manipulating
formal program derivations.

Acknowledgements

The authors would like to thank Michael Butler for fruitful discussions about
the usage of B-Tool and the implementation of action systems. We would also
like to thank Emil Sekerinski for the useful discussions concerning the algorithm
and Wolfgang Weck for his comments on a previous version of this manuscript.
The work reported here has been carried out within the Irene-project supported
by the Academy of Finland.

References

1. J.-R. Abrial. The B Method for large software specification design and coding. In
Proc. of VDM'91 Vol. Z. Springer-Verlag, 1991.

104

2. R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with central-
ized control. In Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, pages 131-142, 1983.

3. R. J. R. Back and K. Sere. Superposition refinement of reactive systems. Series
A-144, Reports on Computer Science and Mathematics,/~bo Akademi University,
Finland, 1993. To appear in Formal Aspects of Computing.

4. R. J. R. Back and K. Sere. From action systems to modular systems. In Proc. of
FME'94: Industrial Benefit of Formal Methods. LNCS 873, pp. 1 - 25, 1994.

5. M. Butler, E. Hedman, P. Nilsson, R. Ruksenas, M. Walden and Y. Zhao. Specifi-
cation of a program derivation editor. Series_A-157, Reports on Computer Science
and Mathematics, .~bo Akademi University, Finland, 1994.

6. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
7. N. Francez and'I.R. Forman. Superimposition for interacting processes. In Proe.

of CONCUR '90 Theories of Concurrency: Unification and extension. LNCS 458,
pages 230-245,Amsterdam, the Netherlands, August 1990.

8. H. P. Hofstee, J. J. Lukkien and J. L. A. van de Snepscheut. A distributed imple-
mentation of a task pool. LNCS 574, pp. 338 - 348 , June 1991.

9. S. M. Katz. A superimposition control construct for distributed systems. A CM
Transactions on Programming Languages and Systems, 15(2):337-356, April 1993.

10. T. Lhngbacka, R. Ruk~nas and J. v. Wright. TkWinHOL: A tool for doing window
inference in HOL. Series A-160, Reports on Computer Science and Mathematics,
Abo Akademi University, Finland, 1995.

11. D. S. Nei]s~on and I. H. Sorensen. The B-Technologies: A system for computer
aided programming. B-Core (UK) Ltd., 1994.

12. T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, NY,1988.

13. K. Sere. and M. Walden Verification of a distributed algorithm due to Chu. Series
A-156, Reports on Computer Science and Mathematics, Abo Akademi University,
Finland, 1994. Abstract appeared in Proc. of The 13th Annual Symposium on the
Principles of Distributed Computing, Los Angeles, USA, page 391, 1994.

14. M. Walden Formal derivation of a distributed load balancing algorithm. Series
A-t72, Reports on Computer Science and Mathematics, Abo Akademi University,
Finland, 1995.

1'5. M. Walden and K. Sere. Refining action systems within B-Tool. Manuscript in
preparation. /~bo Akademi University, Finland, 1995.

