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A b s t r a c t .  Action systems is a formalism designed for the construction 
of parallel and distributed systems in a stepwise manner within the refine- 
ment calculus. In this paper we show how action systems can be derived 
and refined within a mechanical proof tool, the B-Tool. We describe how 
action systems are embedded in B-Tool. Due to this embedding we can 
now develop parallel and distributed systems within the B-Tool. We also 
show how a typical and nontrivial refinement rule, the superposition re- 
finement rule, is formalized and applied on action systems within B-Tool. 
A derivation towards a distributed load balancing algorithm is given as 
a case study. 

1 introduction 

Action systems are used to construct parallel and distributed systems in a step- 
wise manner  as described by Back et al. [2, 4]. They  are often developed using 
a poweful program modularization and structuring method called superposition 
[7, 9, 2]. In superposit ion some new functionMity is added to an algor, i thm in the 
form of additional variables and assignments to these while the original compu- 
ta t ion is preserved. 

Stepwise refinement of action systems is formalized within the refinement 
calculus [4] based on the weakest precondition calculus of Dijkstra [6]. A formal- 
ization of superposit ion as a refinement step within this calculus is put  forward 
by Back and Sere [3]. Superposing one mechanism onto another often consti tutes 
a large refinement step with many  proof obligations. An example of verifying a 
complex distr ibuted algorithm using superposition refinement is given in [13]. To 
get more confidence in the correctness proofs we need to use some mechanical 
tool. In this paper  we show how superposition refinement of action systems can 
be performed using B-Tool. 

The  name B-Tool will in this paper  refer to the B-Method and the B-Toolkit. 
The  B-Toolkit  [11] comprises a set of tools supporting a method of software de- 
velopment,  the B-Method [1]. This method is succesfully used in many  industrial 
projects applying formal methods. The B-Method is founded on the set theory 
and relies on an extension of the weakest precondition calculus of Dijkstra [6]. 

In this paper  we show how action systems can be embedded in the B-Tool. 
We compare the refinement notions of the two systems, the action systems and 
the B-Method, and show how the superposition refinement rule formalized on 



86 

action systems can be applied within the B-Tool. Since the superposit ion is a 
method for developing parallel and distributed systems, embedding the superpo- 
sition method in the B-Tool makes it possible to develop parallel and distr ibuted 
systems within B-Tool. 

We will first briefly describe action systems and superposit ion refinement 
in section 2. In section 3, we give an overview of the B-Tool. In section 4, we 
show how action systems and superposit ion refinement are embedded in B-Tool. 
Finally, B-Tool is used for developing a load balancing algorithm of Hofstee et 
al. [8]. The  first refinement step towards a distributed algorithm is given as 
an example. The complete derivation is reported in [14]. The load balancing 
algorithm within B-Tool is described in section 5. We conclude in section 6. 

2 A c t i o n  S y s t e m s  a n d  S u p e r p o s i t i o n  R e f i n e m e n t  

We first consider the action systems framework together with its associated 
refinement calculus. We only give a very brief introduction here. More on these 
topics and further references can be found elsewhere [2, 3, 4]. 

2.1 A c t i o n  S y s t e m s  

An action system A is a s ta tement  of the form 

A de=f [[ v a r x ; x : = x o ; d o A l ~  . . .  ~ A,~ o d  ] l : z  

on state variables y = x 0 z, where the variables z are the global variables and x 
are the local variables. Each variable is associated with some domain of values. 
The  set of possible assignments of values to the s tate  variables consti tutes the 
state space. The initialisation s ta tement  x := x0 assigns initial values to the s ta te  
variables x. 

Each action Ai is of the form gi -~ Si where the guard gi is a boolean expres- 
sion on the s tate  variables and the body Si is a s ta tement  on the s tate  variables. 
We denote the guard gi of Ai by gAi and the body  Si by sAi. Furthemore,  we 
say tha t  an action is enabled in a state when its guard evaluates to true in tha t  

state. 
The behavior of an action system is tha t  of Dijkstra 's  guarded iteration 

s ta tement  [6] on the state variables: the initialisation s ta tement  is executed first, 
thereafter,  as long as there are enabled actions, one action at a t ime is nondeter- 
ministically chosen and executed. When all the actions are disabled the action 

system terminates.  
If  two actions are independent, i.e. they do not have any variables in common, 

they can be executed in parallel. Their parallel execution is then equivalent to 
executing the actions one after the other, in either order. 
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2.2 Ref inement  of  A c t i o n  S y s t e m s  

The superposition method has been formalized as a program refinement rule 
within the refinement calculus for action systems. Let us now briefly describe 
this calculus. 

Let  S be a statement on the program variables x, z and S' a s tatement  on 
the program variables x', z. Let the invariant R(x,  x', z) be a relation on these 
variables. Then  S is data refined by S' using the data  invariant R, denoted 
S --<R St, if for any postcondition Q 

R A wp(S, Q) ~ wp(S' ,  3x.R A Q) 

holds. Here wp is the weakest precondition predicate transformer [6]. Successive 
data  refinements are modelled as follows: If So --<R1 S1 and S1 -<R2 $2 then 
So <RI^R2 S2. 

Data refinement of actions is defined in a similar way, considering that  the 
weakest precondition [6] for an action is defined as: 

w p ( d , R )  dej gd ~ wp(sd,  R). 

Let A be an action on the program variables x, z and A' an action on the program 
variables x', z. Let the invariant R(x,  x', z) be a relation on these variables. Then 
A is data  refined by A' using R, denoted A --<R A', if 

(A1) (gd'};  sd <~R 8A' and 
(A2) R A gA' ~ gA. 

Intuitively, (A1) means that  A' has the same effect on the program variables 
tha t  A has when A' is enabled and R holds and moreover, A' establishes R. The 
condition (A2) requires tha t  A is enabled whenever A' is enabled provided R 
holds. 

The superposition refinement of action systems is a special kind of data  
refinement and it is formally expressed as follows. Let .4 and .4' be the two 
action systems: 

.4 de f ][ va r  X; X := X0; do  AI ~ . . .  ~ Am od  ]1: z and 

.4, dej [[ va r  x, y; x, y := xo, yo; do  A'I ~ . . .  ~ A'~ ~ B1 ! . . .  ~ B~ o d  ][ :z .  

Let g.4 be the disjunction of the guards of the actions Ai, g.4' the disjunction of 
the guards of the actions A~ and gB the disjunction of the guards of the actions 
Bj. Then .4 <R .4' using R(x,  y, z) , if 

(sl) R(~o, y0, z), 
($2) Ai_<RA~, f o r i = l , . . . , m ,  
($3) skip <--R Bj, for j ---- 1 , . . . ,  n, 
(S4) R A -~(g.4' V gB) ~ -~g.4, 
($5) R ~ w p ( d o  B1 ~ . . .  ~ B n o d ,  t~ue). 

Informally, an action system .4 is correctly data  refined by another action system 
.4' using the data  invariant R when 
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($1) the initialisation in ~4 t establishes R, 
(S2) every action Ai is data  refined by the corresponding A~ using R, 
($3) every action Bj is a data  refinement of the empty statement skip using R, 
($4) all actions in A are disabled whenever all actions in A ~ are disabled when 

R holds, i.e. the exit condition ~(g,4 t V gB) of ,4 ~ implies the exit condition 
-~gA of A when R holds, and 

($5) the computation denoted by the actions B 1 , . . . ,  B~ terminates provided 
R holds. 

3 O v e r v i e w  o f  t h e  B - T o o l  

A superposition refinement step is often large. In order to give more confidence 
in the correctness proof of a superposition step we want to use a mechanical 
tool. We will s tudy B-Tool to see how it applies to action systems and how its 
proof rules agree with the superposition rule. The B-Toolkit [11] comprises a set 
of tools,  which support  a method of software development called the B-Method. 

The B-Method is a mathematical method which gives a model oriented ap- 
proach to software construction. The method is founded on set theory and relies 
on an extension of Dijkstra's weakest precondition calculus [6]. 

A program derivation in B-Method consists of a specification, possibly a 
number of refinements and an implementation. The specification is a high level 
description of a program under development and it usually involves a lot of non- 
determinism. By the refinements the specification can stepwise be transformed 
into an implementation. This implementation represents the last refinement. It 
can directly be translated to executable code and it may not contain any non- 
determinism. 

Within B-Method the specifications, the refinements and the implementa- 
tions are represented as Abstract Machines consisting of a context of global 
constraints and of operations on state variables. For specifying the operations 
B-Method uses the Abstract  Machine Notation (AMN), which is a generalisa- 
tion of Dijkstras guarded command notation. Every statement in AMN is a form 
of substitution. Each generated substitution S is defined as a predicate trans- 
former which transforms a postcondition R into the weakest precondition for S 
to establish R, wp(S, R). 

The processing of Abstract Machines begins with syntax- and type-checking. 
Verification conditions needed for proving the specification consistency and the 
correctness of refinement steps can be automatically generated within the B- 
Toolkit. Furthermore, these verification conditions can be automatically or in- 
teractively proved using the so called autoprover or interprover, respectively. The 
provers are built on a mathematical  library containing a collection of mathemat-  
ical laws for the underlying set-theoretic notation. The autoprover first tries to 
discharge the proof obligations using the mathematical library. If the s tandard 
library is not enough, the user may supplement it with new necessary rules and 

\ 
then with the help of the interprover discharge the rest of the proof obligations. 
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MACHINE 
Machine_name(p) 

CONSTRAINTS 
P 

CONSTANTS 
c 

PROPERTIES 
Q 

VARIABLES 
x 

INVARIANT 
R 

INITIALISATION 
T 

OPERATIONS 
Operation_name = PRE L THEN S END ; 

END 

Fig. 1. The syntactic structure of an abstract machine. 

In addition to the above mentioned functions there are also facilities within 
B-Toolkit for generating code and documentation. 

4 Embedding Superposition Refinement within B-Tool 

We now show how action systems, their refinement, and the superposition re- 
finement rule can be embedded in B-Tool. 

4.1 Act ion  Systems within  B-Tool  

A b s t r a c t  Machine Specif ication We first look closer at how specifications 
are constructed within B-Tool. The syntactic structure of an abstract machine 
is given in Figure 1. An abstract specification, or abstract machine, in B-Tool 
is identified by a unique machine name. It  can be supplied with parameters p 
for giving dimensional characteristics of the specification. The properties P of 
these parameters are given in the constraints clause. Furthermore, within the 
abstract machine we can introduce constants c which are defined in terms of the 
parameters and some given sets. The properties clause gives the definition Q of 
these constants. 

The variables x in an abstract machine are defined in the invariant clause 
and initialised in the initialisation clause. The invariant R consist of a set of 
predicates including set-theoretical typing of each variable. The initialisation 
T is a substitution statement. A machine can also include variables of other 
machines to different extents. 
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An abstract machine has a number of operations. These operations are named 
procedures which might have parameters and/or  be of resulting type. The oper- 
ations are given in the form of substitutions using the AMN language. They  are 
the interface of the machine. In Figure 1 the operation consists of a substitution 
S with a precondition L. 

The internal consistency of the abstract specification in Figure 1 can now be 
proved in B-Tool by showing that  the following five requirements are fulfilled: 

( e l )  3p.P 
(C2) P ==~ 3c.Q 
(c3) (P A Q) 3x.R 
(C4) ( P A Q ) ~ w p ( T , R )  
(C5) ( P A Q A R A L ) ~ w p ( S , R ) .  

The first three obligations are concerned with the consistency of the contextual 
information, i.e., the formal parameters,  the constants and the variables. The 
fourth checks that  the invariant is established initially and the fifth tha t  each 
operation maintains the invariant. 

A c t i o n  S y s t e m s  Let us now study how an action system can be embedded into 
this Abstract  Machine specification. The AMN substitution P ~ S is called the 
guarded substitution and is interpreted as guarding of the substitution S by the 
predicate P. The weakest precondition for the guarded substitution is defined as 

wp(P  ~ S, R) def P ~ wp(S, R). 

This is, however, the same as the weakest precondition for the action P --* S. 
Hence, an action can be interpreted as a guarded substitution. 

The syntax for a guarded substitution interpreted as an operation in B-Tool 
is: 

Operation_name = PRE true THEN ( SELECT P THEN S END ) END ; 

where the precondition has the value t~ue and can be left out. The  guarded 
substi tution as an operation is then 

SELECT P THEN S E N D .  

Hence, we choose to represent each action in B-Tool by such an operation. 
Let us now consider the following action system: 

~A de f [[ va r  x; x := X0; do  A1 ~ A2 ~ A3 o d  ][: z 

as well as its invariant R(x, z) and its constraint P(z). The invariant R(x, z) 
describes the behaviour of the local variables x possibly in terms of the global 
variables z, while P(z) gives the constraints of the variables z. We can now 
write the action system as the Abstract Machine specification ActionSystem as 
given in Figure 2. In the specification the global variables of an action system 
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I[ var  x; 
X :~--~ XO; 

do 

U 
l 
D 

od 
]l:z 

A1 

A2 
A3 

MACHINE 
Action@stem(z) 

CONSTRAINTS 
P(z) 

VARIABLES 
x 

INVARIANT 
R(x, z) 

INITIALISATION 
X : ~ X o  

OPERATIONS 
A1 -- SELECT gA1 THEN sA1 END ; 
A2 -- SELECT gA2 THEN sA2 END ; 
A~ = SELECT gA3 THEN sA3 END 

END 

Fig. 2. An action system and its embedding in an abstract machine. 

are considered as parameters  and, hence their constraints in P(z) are given in 
the constraint clause. For the rest, the translat ion of action systems into AMN 
is straightforward. 

A consistency proof of the specification is given using the autoprover in B- 
Toolkit verifying the proof obligations (C1) - (C5). 

4.2 S u p e r p o s i t i o n  Ref inement  w i th in  B-Too l  

We will now study how the superposition rule can be interpreted within B-Tool. 
We begin by describing the Abstract  Machine refinement in B-Tool. 

A b s t r a c t  M a c h i n e  R e f i n e m e n t  A refinement in B-Tool may either be a da ta  
refinement or an algorithmic refinement. Da ta  refinement is achieved by a change 
of variables and the operations on them, while the algorithmic refinement allows 
the operations to be reformulated thereby making them more concrete without  
changing the s tate  space. The refinement relation within B-Tool is transit ive and 
monotonic. 

If  we have the machines N and M, where N refines M, then N and M 
must  have identical operat ion signatures. This means tha t  the corresponding 
operations in N and M must  have identical names and, if the operations have 
parameters ,  these must  also be identical. The machines N and M need, how- 
ever, not contain the same variables. The machine N is produced by applying a 
syntactic construct,  Refinement, to the machine M. The syntactic s tructure of 
an Abstract  Machine refinement is given in Figure 3. 

Although, a Refinement and a Machine resemble each other in many  ways 
there are some differences. Firstly, a refinement has to state what  it will refine, a 
machine or another  refinement. Fhrthermore,  the invariant R t of the refinement 
is an abs t rac t  relation tha t  expresses the change of variables between the two 
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REFINEMENT 
Refinement_name 

REFINES 
Machine_name 

VARIABLES 
X I 

INVARIANT 
R' 

INITIALISATION 
T'  

OPERATIONS 
Operation_name = PRE L' THEN S ~ END ; 

END 

Fig. 3. The syntactic structure of a refinement. 

constructs, i.e. the relation between the variables x and x ~ in a da ta  refinement. 
The operations of the refinement refer only to the variables x ~. 

In order to prove the refinement correct, a number  of proof obligations are 
automatical ly  created by B-Tool. The proof obligations created for the machine 
in Figure 1 and its refinement in Figure 3 are given below: 

(Bt)  (3(x, x') .R A R') 
(B2) wp( Tr,-~wp( T, -~R') ) 
(B3) (V(x, x') .(R A R' A L) ~ L') 
(B4) (V(x, x') .(R A R' A L) ~ wp(S ' , - ,wp(S , - -R ' ) ) ) .  

The first proof obligation asserts tha t  the new invariant R ~ does not contra- 
dict the previous invariant R, while the second proof obligation checks tha t  the 
new initialisation T ~ establishes a situation where the previous initialisation T 
cannot fail to establish the invariant R t. The last two obligations ensure the cor- 
rectness of each operation. According to them the precondition L of operat ion S 
implies the precondition L r of S ~ when the invariants hold, i.e. the precondition 
is weakened. Moreover, an operation S t establishes a situation where the old op- 
eration S cannot fail to maintain R r. Due to the construction of the invariants, 
obligations (B2) and (B4) will also involve type-checking. 

S u p e r p o s i t i o n  S t e p  w i t h i n  B - T o o l  Let us now consider a superposit ion re- 
finement r ~ of the action system A given above. We define A t as: 

A'  dej I[ var  x, y; x , y  := xo, Yo; do  A~ ] A~] A ~  B1 ] B 2 o d  ] l : z  

and the invariant of the refinement as R~(x, y, z). This refined action system can 
be embedded in an Abstract  Machine refinement RefActionSystem as shown in 
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I[ v a r  x, y; 
x~ y := x0, y0; 
d o  

U A~ 
AS 
A~ 

gB2 
o d  

]l:z 

REFINEMENT 
RefActionSystem 

REFINES 
AetionSystem 

VARIABLES 
X t, y 

INVARIANT 
R ' (Y,  y, z) A x'  = x 

INITIALISATION 
x t, y : =  x-o, Y0 

OPERATIONS 
A1 = SELECT gA~l THEN sA~ END ; 
A2 = SELECT gA~2 THEN sX2 END ; 
A3 = SELECT gA~ THEN sA'3 END ; 
BI = SELECT gB1 THEN sB1 END ; 
B2 = SELECT gB2 THEN sB2 END ; 
exit_cond = 

t I A I SELECT ~(gAt V gA2 V g 3 V gB1 V gB2) 
THEN skip END 

END 

F ig .  4. The refined action system and its embedding in a refinement machine. 

F i g u r e  4. T h e  invar ian t  R / includes  the  invar iant  R of t he  ac t ion  sy s t em be ing  
refined. 

In  an  ac t ion  sy s t em ref inement  some var iables  x are  left unchanged ,  these  are  
t he  so cal led old var iables .  However,  in B-Tool  we canno t  use t he  same var iab le  
n a m e s  in t he  spec i f ica t ion  and  the  ref inement .  We, thus,  r ename  the  old  var iab les  
to  x t in t he  re f inement  and  s t a t e  the  re la t ionsh ip  x ~ = x in t he  invar ian t  of  t he  
ref inement .  

F u r t h e r m o r e ,  in B-Tool  all t he  ref inements  use the  same o p e r a t i o n  names ,  
which  means  t h a t  all ope ra t i ons  t h a t  will exis t  in the  final re f inement  also have 
to  exis t  in t he  first specif icat ion.  Since we i n t roduc e d  the  ac t ions  B1, B2 and  
exit_cond as ope ra t i ons  in t he  mach ine  ref inement  RefActionSystem, we also need  
to  i n t roduce  co r r e spond ing  ope ra t i ons  in the  mach ine  speci f ica t ion  ActionSystem 
as Bi = B E G I N  skip E N D  for i = 1, 2, where  we have sk ipped  the  p recond i t i on  
true as previously.  We will r e t u r n  to  exit_cond la ter .  

We  have expressed  how an  ac t ion  sys t em and i ts  supe rpos i t i on  re f inement  
can  be  mode l l ed  as machines  in B-Tool .  Let  us now consider  t he  p roo f  rule  
for s u p e r p o s i t i o n  re f inement  of ac t ion  sys tems.  T h e  five condi t ions  (S1)-($5)  
in t h e  supe rpos i t i on  rule a re  equivalent  to  re f inement  rules  wi th in  B-Tool  as 
will  be  shown below. We s t a r t  by  showing the  equivalences  for t he  first four 
s u p e r p o s i t i o n  condi t ions .  T h e  t r e a t m e n t  of t he  las t  cond i t ion  ($5) is p o s t p o n e d .  
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(1) The condition (S1) is equivalent with the condition (B2), where 

( S l ) :  y0, z) 
(B2) :  wp((x' ,  y := xo, Y0),-~wp(x := Xo,-~(R'(x', y, z) A (x' = x)))), 

because 

wp((x' ,  y := ~0, Y0), ~wp(x := Xo, ~(n ' (x ' ,  y, z) A (x' = x)))) 
= wp((~',  y := ~0, Y0), (R'(x',  y, z) A (~' : ~o))) 
- (R'(~o, Y0, z) A (~0 = xo)) 
- R'(xo, y0, z). 

(2) The condition ($2) corresponds to the condition (B4[Ai]), where 

($2) :  As --<R' AS 
(B4[A~]) : R'(x' ,  y, z) A (x' = x) 

wp(A~, ~wp(Ai,-~(R'(x' ,  y, z) A (x' = x)))). 

B-Tool generates the following proof obligations from (B4[A~]) : 
(i) R'(x' ,  y, z) A (x' = x) ~ wp(A~,-~wp(Ai,-~(x' = x))) 
(ii) R'(x' ,  y, z) A (x' = x) ~ wp(A~, R'(x',  y, z)) 
(iii) R'(x' ,  y, z) A (x' = x) A gA~ ~ gAi 
These are, however, equivalent to the conditions (A1) and (A2) that  define 
the data  refinement between actions. The items (i) and (ii) correspond to 
(A1) and the item (iii) is the counterpart in B-Tool of condition (A2). Hence, 
($2) corresponds to the condition (B4[A~]). 

(3) The condition ($3) corresponds to (B4[B~]), where 

( s 3 ) :  skip <R, 
(B4[Bi]) : R'(x' ,  y, z) A (x' = x) 

wp(Bi, ~wp(skip,-~(R'(x',  y, z) A (x' = x)))), 

From (B4[Bi]) B-Tool generates the following proof obligations: 
(i) Rt(x',  y, z) A (x' = x) ~ wp(Bi, (x' = x)) 
(ii) R'(x' ,  y, z) A (x' = x) ~ wp(Bi, R'(x',  y, z)) 
(iii) R'(x' ,  y, z) A (x' = x) A gBi ~ true 
As above, these proof obligations correspond to the conditions (A1) and (A2) 
that  are equivalent to ($3) when instantiated appropriately. 

(4) The condition (S4) corresponds to (B4[exit_cond]), where 

(s4)  : R' A  (gA' v gB) - gA 
(B4[exit_cond]): R'(x' ,  y, z) A (x' = x) =~ 

wp(exit_cond',-~wp(exit_cond, ~(R'(x ' ,  y, z) A (x' : x)))). 

The operation exit_cond models the exit condition in an action system. The 
exit condition in the action system A ~ above is defined as -~(gA1 V gA2 v 
BA 3 V gB1 V gB2). The exit condition operation in the old action system .4 
needs to be introduced as: 

exit_cond = SELECT -~(gA1 V gA2 V gA3) THEN skip END 
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From (B4[exit_cond]) B-Tool generates the following proof obligations: 
(i) R'(x' ,  y, z) A (x' = x) A g(exit_cond') ~ (g(exit_cond) A (x' = x)) 
(ii) R'(x' ,  y, z) A (x' = x) A g(exit_cond') ~ (g(exit_cond) A R(x' ,  y, z)) 
(iii) R'(x' ,  y, z) A (x' = x) A g(exit_eond') ~ g(exit_cond) 
These are easily seen to correspond to ($4). 

The proof obligations (B1) and (B3) do not correspond to any of the condi- 
tions in the superposition rule. Since the invariant R is included in the invariant 
R ~ due to the superposition refinement, and the preconditions L and L r both  
have the value true, they trivially hold for the embedded action system. 

Preliminary to relating the condition ($5) to a condition in the B-Method 
we present some additional constructs of the method. 

A b s t r a c t  M a c h i n e  I m p l e m e n t a t i o n  The Abstract  Machine implementation 
is the only machine that  allows loop-constructions in the operations. Since con- 
dition ($5) refers to a loop, we need to consider the implementation with a 
loop-construct to create a similar condition within B-Tool. 

The loop-construct consists, apart from the loop, of an initialisation, an in- 
variant, and a variant as follows: 

T; WHILE P DO S INVARIANT R VARIANT E END , 

where P and R are predicates, T and S are AMN substitutions and E is an inte- 
ger expression. The proof obligation created for such a loop with postcondition 
Q is the following: 

(T1) wp(T, R) 
(T2) R ~ E C N 
(T3) (Vl.(R A P) ~ wp(S, R)) 
(T4) (V/.(R A P) ~ wp(n :-- E, wp(S,E < n))) 
(Th) (V/.(R A-,P) ~ Q). 

Here 1 denotes the variables modified within the loop. Following the obligations 
the initialisation T should establish the invariant R and the variant E should be 
an expression yielding a naturM number. Furthermore, when the guard P of the 
loop holds, the body S should maintain the loop invariant R and decrease the 
variant E. Finally, the postcondition Q should hold when the loop terminates, 
i.e., when P does not hold anymore. 

T e r m i n a t i o n  o f  A u x i l i a r y  A c t i o n s  Let us now proceed with the condition 
($5): R ~ wp(do  B1 ~ . . .  ~ B~ od,  true). We need to find a variant such that  
the invariant R implies that  the variant is a natural number and that  the variant 
is decreased each time one of the actions in the loop is executed. These conditions 
are created as proof obligations for the WHILE-loop within B-Tool. We, thus, 
need to make a separate refinement step within B-Tool using a WHILE-loop to 
prove this condition. 
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In this refinement step the refined abstract specification has true as the 
invariant and skip as the initialisation and as the only operation. In the Abstract 
Machine implementation we then give a WHILE-loop with a variant E operating 
on some variables e. This operation generated from the action system ~4' is 
written as: 

VAR x', y, e IN 
x' := x0; y := y0; e := e0; 
WHILE (gB1 V gB2) DO 

IF gB1 THEN sB1 
ELSEIF gB2 THEN sB2 
END 
INVARIANT R'(x', y, z) A R"(y, z, e) 
VARIANT E(e) 

END 
END 

The initialisation of the action system A t is the initialisation of the loop and 
the disjunction of the guards of the auxiliary actions is given as the WHILE- 
condition. Within the loop we represent the auxiliary actions with an IF - 
ELSEIF-substi tution.  Fhrthermore, the invariant R~(x p, y, z) of the Abstract 
Machine refinement is included in the invariant of the loop. The relation R" (y, z, e) 
gives the definition of the variant and is also included in the invariant. A new 
expression E(e)  is created as the variant. 

The condition ($5) in the superposition rule can now be translated into terms 
of proof obligations generated in B-Tool by: 

(5) ($5) = (T2) A (T4). 

The proof obligations (T1), (T3), and (Th) do not directly correspond to any 
condition in the superposition rule. The obligation (T1) (and (T3)) is partly 
proved by proving the obligation (B2) (and (B4[B~])), but additionally they 
check that the variant establishes the invariant RPt(y, z, e) in the initialisation 
and the operations. Since the postcondition of the action loop is considered to 
be true here, proof obligation (Th) holds trivially 

5 C a s e  s t u d y :  L o a d  B a l a n c i n g  A l g o r i t h m  

As a case study we will formalize the load balancing algorithm of Hofstee et al. [8] 
within action systems and B-Tool. A first refinement step towards a distributed 
implementation of the algorithm is used to exemplify superposition refinement 
with B-Tool. 

5.1 Load Balancing Algorithm 

We consider a connected graph ( V, E), where V is a finite set of nodes and E 
a finite set of edges on V. Let the nodes denote processes and the edges denote 
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communicat ion links between the processes. Each process is assumed to know 
the identities of its direct neighbours and the number of tasks it posesses, i.e. 
the load. Communicat ion can only take place between nodes directly connected 
by an edge and it can go in both directions. Even so, the graph is considered to 
be a rooted directed tree, where the edges are directed towards the root. This 
assumption forces the load balancing to concentrate most  of the tasks to the 
leaves of the tree and make it possible for the other nodes to transfer tasks from 
one branch to another. 

The  load balancing algorithm is given as an action system B below. 

B dej I[ v a t  l o a d . i E i n t  for  i E  V; 
load.i := Load.i for  i E V; 
d o  (bal_load_ij ~ bal_load_ji) for  ( i , j )  E E o d  

]1: top E int 

Here top is a fixed positive number, the treshold, tha t  states the preferable load 
of a process. In node i the number of tasks is denoted by load.i and the initial 
value of the load is given by the constant Load.i. The indices i, j denote nodes. 
The actions are defined as follows: 

bal_load_ij def 
load.i < top A load.j >_ top ~ load.i, load.j := load.i + 1, load.j - 1 

bal_load_ji dej 

load.i > top A load.j <_ top --~ load.i, load.j := Ioad.i - 1, load.j + 1. 

The total  load of the system is stable after initialisation. If  node i does not 
have enough tasks, i.e. its load is less than the treshold, and its father, node 
j ,  in the tree s tructure has a load greater or equal to the treshold, the action 
bal_load_ij is enabled and a task can be moved from node j to node i. On the 
other hand, if node i has too many  task and its father, node j ,  has a load less or 
equal to the treshold, a task can be sent from i to j since the action bal_load_ji 
is enabled. Following this computat ion pa t te rn  no process is idle forever if there 
is enough work to be done. 

We assume tha t  the constraint (top > 0) holds for the global variable top and 
tha t  the constants Load.i have the proper ty  (Vi E V : Load.i _> 0) in the load 
balancing algorithm. The following invariant then holds during the computation:  

1t : (Vi E V : load.i >_ 0). 

This is due to the fact tha t  initially the load of a node i is assigned the value 
Load.i and during the computat ion the load is only decreased if it is greater or 
equal to top, otherwise it is increased. 

At terminat ion each node either has a load greater or equal to the treshold 
top or a load tess or equal to top: 

(Vi E V : load.i > top) V (Vi E V : load.i <_ top). 
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M A C H I N E  
Load_Bal_l ( top) 

C O N S T R A I N T S  
top > 0 

C O N S T A N T S  
Load1, Load2 

P R O P E R T I E S  
Load1 : N A T  A Load2 : N A T  

V A R I A B L E S  
load 1, load 2 

I N V A R I A N T  
load1 : N A T  A load2 : N A T  

I N I T I A L I S A T I O N  
loadl :=  Loadl II load2 :-- Load2 

O P E R A T I O N S  
init_12 = B E G I N  skip E N D  ; 

bal_load_12 = S E L E C T  load1 < top A load2 > top T H E N  
loadl :-- loadl + 1 II load2 := load2 - 1 

END ; 
init_21 -- B E G I N  skip E N D  ; 

bal_load_21 = S E L E C T  loadl > top A load2 < top T H E N  
load1 :=  load1 - 1 I] load2 :=  load2 + 1 

E N D  ; 
exit_cond = S E L E C T  

END 
END 

(loadl ~_ top V load2 < top) 
A (load1 ~_ top V load2 > top) T H E N  

skip 

F i g .  5. The  load balancing a lgor i thm represented in AMN.  

It is now straightforward to give the action system as the Abstract Machine 
specification in Figure 5. There are, however, some restrictions for specifications 
in B-Tool. We are for example not allowed to use sequential composition in a 

specification. Instead we have to use parallel composition of substitutions. Since 
these substitutions have to refer to distinct variables, we cannot assign values 
to distinct elements in an array in parallel. Thus, these elements have to be 
considered as distinct variables and the replicator functionality is lost. In our 
machine we have, thus, restricted the graph to one with two nodes, node 1 and 
node 2. Node 2 is considered to be the root. It is, however, easy to extend the 
algorithm to contain more than two nodes [14]. The treshold top is given as a 

p a r a m e t e r  a n d  ( top  > 0) as i ts  c o n s t r a i n t .  

T h e  o p e r a t i o n s  ini t_12 a n d  init_21 are  o n l y  r e p r e s e n t e d  as s k i p - s t a t e m e n t s .  
T h e y  wil l  l a t e r  be  i n t r o d u c e d  as a c t i ons  in t h e  r e f i n e m e n t .  A l s o  t h e  ex i t  c o n d i t i o n  

is g i v e n  e x p l i c i t e l y  as an  o p e r a t i o n  exi t_cond for ve r i f i ca t i on  p u r p o s e s .  
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5.2 A Superposition Refinement Step 

We will now do a first refinement step towards a distributed load balancing 
algori thm using superposition. We add a new variable Q for representing com- 
municat ion links between nodes. The link Q.i.j  denotes the link from node i 
to node j .  There is a link in both  directions for each edge. Thus, for the edge 
( i , j )  in the graph we have the links Q.i.j  and Q.j.i .  We consider the link as a 
one place buffer and since we are not concerned with what  is sent over the link 
at this stage, we can represent the link as a boolean variable. The link Q.i. j  is 
defined to be true if something is sent over the link and false otherwise. All links 
are initialised to false. 

In the refined action system we split the change of loads into two phases. 
First, a node chooses which neighbour to change loads with. In the second phase 
the change of loads takes place. A node must not commit  to change loads with 
more than  one neighbour at a time. This can be expressed as in the predicate 
F( i , j ) :  

F ( i , j )  : (Vk �9 V :  ( i ,k)  �9 E V  (k, i)  �9 E : -~Q. i . kA-~Q.k . i )  
A (Vk �9 V : ( j ,k)  �9 E V (k , j )  �9 E : -~Q.j.k A-~Q.k.j) .  

The predicate F states tha t  the nodes i and j have to be free of any commitment ,  
i.e., all their  links have to be empty. 

The refined action system B r is given below. 

][ v a r  l o a d . i E i n t  for  i E  V; 
Q.i.j  �9 bool for  i , j  �9 V; 

load.i := Load.i for  i �9 V; 
Q.i. j  := false for  i , j  �9 Y ( i  ~ j ) ;  
do  ( init_ij I bal-l~ l init-ji ] bal_load_ji') 

]]: top �9 int 
for  ( i , j )  C E o d  

The new actions init_ij and init_ji describe the first phase of the change of 
loads, the commit,  by setting the links Q.j. i  and Q.i.j ,  respectively, to true 
denoting tha t  the loads are ready to be changed. Neither node i nor node j can 
be commit ted  to any node for these actions to be enabled. The new actions are 
defined as follows. 

init_ij dej load.i < top A load.j >_ top A F ( i , j )  ~ Q.j . i  := true 

def  init_ji = load.i > top A load.j <_ top A F ( i , j )  -~ Q.i. j  := true, 

where F ( i , j )  is given above. 

In the changed actions bal_load_iy and bal_load_S where the loads are ac- 
tual ly changed the corresponding links are set to false again stat ing tha t  the 
changing of loads has been completed. 
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bal_load_ij' d eJ load.i < top A load.j > top A Q.j.i  -~ 
Q.j.i  := false; load.J, load.j := Ioad.i + 1, load.j - 1 

bal_load_ji' de=f Ioad.i > top A load.j <_ top A Q.i.j  
Q.i.j  := false; load.J, load.j := load.i - 1, load.j + 1 

The following addition to the invariant 11 of the action system B defines how 
the variables are used in the new action system B/: 

& ~ /21A/22A/23 

where 

~r21 : (Vi , j  E V : ( i , j )  E E : Q.j. i  ~ load.i < top A load.j > top) 
I22 : (Vi , j  E V : ( i , j )  c E : Q.i.j  ~ load.i > top A load.j <_ top) 
123 : (Vi , j  C V :  ( i , j )  c E V ( j , i )  E E : Q.i.j  ~ (~Q.j . i  A 

(Vk E V :  (( i ,k)  c E V (k , i )  E E) A k ~ j :  -~Q.i.k A-~Q.k.i) A 
(Vk e V :  ( ( j , k )  e E V (k , j )  �9 E) A k # i :  -~Q.j.k A-~Q.k.j)))  

The invariant /21 states that  if there is something on the link from node j to 
node i, i.e. the value of Q.j.i  is true, then node j is overloaded and node i has 
a load lower than the treshotd. A similar reasoning holds for the invariant I22. 
Invariant 123 says that  if there is something on the link from node i to node j 
then the link in the other direction has to be empty as well as all other incoming 
and outgoing links of nodes i and j .  

We will now write the same refinement within B-Tool. The Abstract  Machine 
refinement is given in Figure 6. The sees clause, SEES Bool_TYPE, is needed for 
reading boolean values. Since the operations in the machine refinement cannot 
involve variables of the machine being refined, we need to introduce new variables 
for the loads, lloadl and lload2. They are, however, stated to be equal to the 
old load variables in the invariant, (lloadl = loadl) A (Uoad2 = load2). The 
invariant /2 given above is also included in the invariant of the refined machine. 
The initialisation and the operations are created in the same way here as for 
the machine specification. For verification purpose we introduce the operation 
exit_cond. 

The termination condition for the auxiliary actions are checked with a WHILE- 
loop in a machine implementation. The WHILE--loop for the loadbalancing a l -  
gorithm is given in Figure 7. The disjunction of the guards of the operations 
init_12 and init_21 compose the guard of the loop. These operations are also 
included in the IF-substitution within the loop. The relation between the link 
variables Q and the variables C1 and C2 of the variant are added to the invari- 
ant. These relations give the definition of the function BTS:BOOL used f~r the 
variant, returning one for a parameter with the value true and zero otherwise. 
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R E F I N E M E N T  
Load_Bal_2 

R E F I N E S  
Load_Bal_l 

SEES 
B o o I _ T Y P E  

V A R I A B L E S  
lloadl, lload2, Q12, Q21 

I N V A R I A N T  
lloadl : N A T  A lload2 : N A T  A Q12 : B O O L  A Q21 : B O O L  
A (lloadl = loadl) A (lload2 = load2) 
A (Q21 = T R U E  ~ lloadl < top A lload2 > top) 
A (Q12 -- T R U E  ~ lloadl > top A lload2 ~ top) 
A (Q12 = T R U E  ~ Q21 - - F A L S E )  
A (Q21 = T R U E  ~ Q12 = F A L S E )  

I N I T I A L I S A T I O N  
(lloadl,  lload2 :=  Loadl ,  Load2) II (Q12,  Q21 :=  F A L S E ,  F A L S E )  

O P E R A T I O N S  
init_12 -- 

S E L E C T  lloadl < top A Uoad2 > top A Q21 = F A L S E  A Q12 = F A L S E  T H E N  

Q21 :=  T R U E  
E N D  ; 

bal_load_12 -= 
S E L E C T  Uoadl < top A lload2 >_ top A Q21 = T R U E  T H E N  

Q21 :=  FALSE;  (lloadl := lloadl § 1 II lload2 := lload2 - 1) 
E N D  ; 

init_21 = 
S E L E C T  lloadl > top A lload2 ~_ top A Q21 = F A L S E  A Q12 = F A L S E  T H E N  

Q12 :=  T R U E  
E N D  ; 

bal_load_21 = 
S E L E C T  lloadl > top A lload2 ~ top A Q12 = T R U E  T H E N  

Q12 :=  F A L S E ;  (Iloadl :=  lloadl - 1 II lload2 :=  lload2 + 1) 
E N D  ; 

exit_cond = 
S E L E C T  (lloadl >_ top V lload2 < top V Q21 = T R U E  V Q12 = T R U E )  

A (lloadl > top V lload2 < top V Q21 -- F A L S E )  
A (lloadl ~_ top V lload2 > top V Q21 = T R U E  V Q12 = T R U E )  
A (lloadl ~ top Y lload2 > t o p V  Q12 = F A L S E )  T H E N  

skip 
E N D  

E N D  

F i g .  6. Re f inemen t  of  t he  a b s t r a c t  m a c h i n e  for t he  load b a l a n c i n g  a lgor i thm.  
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WHILE (lloadl < top A lload2 >_ top A Q21 = FALSE A Q12 = FALSE)  
V (lloadl > top A lload2 ~_ top A Q21 = FALSE A Q12 = FALSE)  

DO 

IF (lloadl < top A lload2 >_ top A Q21 = FALSE A Q12 = FALSE) 
THEN Q21 := TRUE; C2 ~- BTS_BOOL(Q21)  

ELSIF (lIoadl > top A lload2 <_ top A Q21 = FALSE A Q12 = FALSE)  
THEN Q12 := TRUE; C1 ~- BTS_BOOL( Q12) 

END 
INVARIANT (lloadl : N A T  A lload2 : N A T  

A Q12 : B O O L A  Q21 : BOOL 
A C I : N A T A C 2 : N A T  
A (Q12 = TRUE ~ C1 = 1) 
A (Q12 = FALSE ~ C1 = O) 
A (Q21 = TRUE ~ C2 = 1) 
A (Q21 -- FALSE ~ C2 = O) 
A (Q21 = TRUE ~ lloadl < top A lload2 > top) 
A (Q12 = TRUE ~ lloadl > top A lload2 ~ top) 
A (Q12 = TRUE ~ Q21 = FALSE) 
A (Q21 = TRUE ~ Q12 = FALSE))  

VARIANT (2 - (C2 + Cl)) 
END 

Fig.  7. The auxiliary actions of the load balancing algorithm. 

V e r i f i c a t i o n  The  autoprover  was able to  discharge most  of  the  proof  obligations 
genera ted  for the  toad balancing algorithm. W h e n  a proof  obligation canno t  be 
discharged using the  ma themat ica l  l ibrary of rules during the  au toproof  session, 
the  user m a y  supplement  the l ibrary with further  rules. In  our case s tudy  the  
following kind of  proof  obligations could not  be discharged. For the  proof  t h a t  
the  new guard  implies the  old, the autoprover  need to  use the  invariant  relat ion 
( l loadl  = load1) A (lload2 = load2). Furthermore,  the  p roof  obligations for 
the  exi t_cond-operat ion need to  be t ransformed using logical rules to bring the  
obligat ion into an expression which can be shown to  be true. This proof  can 
easily be done by hand-waving.  The  autoprover  would only need to  be supplied 
wi th  these logical rules by the  user. Finally, the  proof  obligat ion s ta t ing  t h a t  
the variant is a natural number was left unproved. Here it is again sufficient to 
explicitely give the definition of the variant, already given in the invariant, as 

an extra rule. 
The proof obligations that are not discharged by the autoprover can first be 

discharged by the interprover. Then running the autoprover once again these 
obligations can be discharged by the autoprover as well using the user supplied 
rules. Thus, using B-Toolkit we were able to discharge all the proof obligations 
created for the superposition refinement step of the load balancing algorithm. 
Sample outputs produced by B-Tool are included in the full version of this paper 

[15]. 
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6 C o n c l u s i o n  

We have described how an action system is turned into an Abstract  Machine 
specification in B-Tool. We have construeted refinements which give rise to proof 
obligations that  correspond to the conditions of superposition refinement within 
the action systems framework. We can, thus, do superposition proofs within B- 
Tool. Since superposition proofs are used for deriving parallel and distributed 
systems, we can now use B-Toolkit as a tool for deriving parallel and distributed 
systems. 

By using B-Tool we gain some extra features. B-Tool can for example assist 
in finding the invariant for the system as well as help to find logical errors in the 
system. These shortcomings of an algorithm can usually be found by studying 
the proof obligations that  cannot be automatically proved by the B-Toolkit. 

There are, however, also drawbacks of using B-Tool for deriving action sys- 
terns. The substitutions allowed in the specifications and refinements are very 
restrictive. For example a while loop cannot be introduced until the last re- 
finement step. Even sequential composition is not allowed in the specifications. 
Furthermore,  extra operations need to be introduced in order to be able to prove 
the superposition rule within B-Tool. The more complex action system we have 
the more complex these extra conditions will be. 

We used a load balancing algorithm as a case study to exemplify how to 
use B-Tool for refining action systems. Most of the proof obligations created 
by B-Tool could be proved automatically and the rest were easily proved in an 
interactive way. Here we only study the very first refinement step. The complete 
derivation is reported in [14] . 

We have also looked at other tools that  could be used for refining action sys- 
tems, such as the Synthesizer Generator [12] and the Refinement Calculator [10]. 
However, these tools still require introduction of the superposition rules in order 
to be applicable for superposition refinement of action systems. Furthermore, we 
have specified a program derivation editor [5] for strucuring and manipulating 
formal program derivations. 
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