
Consistency and Refinement for Partial
Specification in Z

Eerke Boiten, John Derrick, Howard Bowman and Maarten Steen

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, U.K.
(Phone: +44 1227 827553, Email: {eab2,jdl,hb5,mwas}@ukc.ac.uk) *

Abstract . This paper discusses theoretical background for the use of Z
as a language for partial specification, in particular techniques for check-
ing consistency between viewpoint specifications. The main technique
used is unification, i.e. finding a (candidate) least common refinement.
The corresponding notion of consistency between specifications turns out
to be different from the known notions of consistency for single Z spec-
ifications. A key role is played by correspondence relations between the
data types used in the various viewpoints.

1 P a r t i a l s p e c i f i c a t i o n

It is generally agreed that systems of a realistic size cannot be specified in single
linear specifications, but rather should be decomposed into manageable chunks
which can be specified separately. The traditional method for doing this is by hi-
erarchical and functional decomposition. Nowadays, it is often claimed [11] that
this is not the most natural or convenient (in relation to "perceived complexity")
method - rather systems should be decomposed into different aspects. For each
such viewpoin~ a specification of the system restricted to that particular aspect
should be produced. Such partial specifications may omit certain parts of the sys-
tem, because they are irrelevant to the particular aspect, and need not describe
certain behaviours because they do not concern that specific viewpoint. Descrip-
tions of this nature seem particularly appropriate for systems with various kinds
of "users", each with their own view of the system. (Imagine, for example, the
views of a library system that library managers, loan officers, clients, system
operators, and programmers of the system would have.) Another reason for de-
composing problems into aspects rather than subproblems is that different types
of aspects have different specification languages that are best suited for them, for
example dataflow diagrams for control flow, process algebras for "behaviour",
data definition languages, et cetera.

There is one very serious problem in partial specification. Multiple viewpoints
will describe what is intended to be the same system, and their descriptions will
not in general be identical. Different viewpoints have different perspectives of

* This work was partially funded by the U.K. Engineering and Physical Sciences
Research Council under grant number GR/K13035 and by British Telecom Labs.,
Martlesham, Ipswich, U.K.

288

the system, and they may even describe the system in different specification
languages. This gives rise to an obligation to ensure that the partial specifica-
tions do not pose contradictory requirements: we need to check for consistency,
potentially between descriptions in different languages and at different levels of
abstraction.

One particular area in which viewpoint specification plays an important role
is in Open Distributed Processing (ODP), an ISO standardisation initiative. The
ODP reference model [9] defines five viewpoints for the specification of open dis-
tributed systems, with so-called correspondence rules as the links between the
viewpoints (thus pinpointing the "is intended to be the same object" relation-
ships). Our project 'Cross Viewpoint Consistency in Open Distributed Process-
ing' aims to develop tools and techniques that enable the consistency of ODP
specifications to be maintained. In previous papers [3, 5, 6] we have investigated
techniques for consistency checking through unification in two of the main ODP
specification languages: LOTOS [4] and Z [15]. The results obtained so far have
convinced us that we need to explore further the nature of consistency checking
and composition of partial specifications, and the role played by correspondence
rules. This paper provides partial answers to these questions, mainly concentrat-
ing on the Z technique. Many of the issues raised will (thus) also be important
to viewpoint specification in Z in general. The reader will be assumed to have a
basic understanding of Z.

The next section presents a framework for consistency checking through uni-
fication, where the unification of specifications is a common refinement according
to some refinement relation. Section 3 presents a number of general notions of
consistency in Z. A concrete unification method for Z is then shown in section 4.
We study mutual refinement in section 5, and conditions for a unified Z specifi-
cation to be called consistent in section 6. In the final section we will draw some
general conclusions and mention issues that need further research.

2 C o n s i s t e n c y , u n i f i c a t i o n , a n d r e f i n e m e n t

We need to define what it means for a collection of viewpoint specifications
to be consistent. Viewing the specifications as predicates over some universe,
the logical definition of consistency is that it is impossible to derive both some
proposition and its negation from the combined viewpoints.

In a context of specification and development of a concrete system, however,
this abstract logical approach does not seem too useful. What is the universe
we are quantifying over, and how do we map our specification language(s) to
predicates over that universe? Would not a common semantic basis for possibly
multiple languages necessarily be at such a low level that performing any kind
of consistency proof becomes extremely complex [16]? What do we mean by
"the combined viewpoints", will it always just be the logical conjunction of their
formal interpretations, or do we need a more complex operator for combining
viewpoints?

289

A more constructive view of consistency is one tha t is oriented towards sys-
t em development. Instead of providing semantics for the specification languages,
we encode our view of what specifications mean in development relations. Two
specifications are in such a development relation if we consider one to be a cor-
rect development of the other on the way to an eventual implementat ion. A
development relation may cross a language boundary, examples of such relations
are semantics and translations, or it may not, in which case refinement relations
form the main example, and equivalences another.

In such a framework, the consistency checking problem for a collection of
viewpoint specifications is to find a specification which is a development of each
of the viewpoint specifications according to the relevant development relations.
Such common developments could also be called unifications. We are particularly
interested in least unifications. In the special case where the development relation
is a part ial order (for example with refinement), a least unification is a minimal
element in the set of unifications (where "minimal" is understood in the sense of
fewest development steps done, least detail added, etc.) Such a least unification
will be a most abstract specification that represents the viewpoints, which makes
it a good choice to continue the unification process with. Suppose we wish to
find a common development with yet another viewpoint. I f the unification we
chose is too concrete, we may have added details tha t make unification with
the new viewpoint impossible. On the other hand, if we chose the most abstract
one, we can be sure 2 tha t a unification with the new viewpoint, if it exists,
can be found by unifying our previous unification with the new viewpoint. This
guarantees tha t unifications of larger sets can be obtained by sequences of binary
unifications.

In the examples we have looked at, it turned o u t tha t a lot of clarity was
gained by being explicit about the overlap between the viewpoints. In many
cases we can get away with assuming that equal names in different viewpoints
refer to the same system object or function, but in some cases we cannot. A clear
example of tha t is two objects with the same name but with different types: how
do their types relate? Such relations between viewpoint specifications we will
include explicitly as correspondence relations (as the name suggests, we think
these may make up an impor tan t par t of the correspondence rules in the ODP
model). Unification and (existence of a) least common refinement will be with
regard to a given correspondence relation.

In this way we have defined consistency as the existence of a least unification,
with no additional tests. In practice, however, it is often convenient to generate
a candidate least common development, i.e. some specification tha t is the least
unification if one exists, and then to perform some consistency tests on it to
determine whether it actually is a least unification. We will call such candidates
"unifications" as well (using the te rm in a slightly sloppy sense). Finally note
tha t it is strictly speaking incorrect to talk about the least unification of a

2 Provided there are not multiple least unifications that are incomparable in the re-
finement ordering. Fortunately this will never occur with most known refinement
relations, in particular Z refinement.

290

collection of viewpoint specifications, since for most specification languages and
development relations there will be many equivalent ones.

3 G e n e r a l f o r m s o f c o n s i s t e n c y i n Z

The language Z [15] is often used for viewpoint specifications, see for example
[1, 10, 11], so there is a clear need for the investigation of consistency between
partial specifications in Z, as most of the cited papers observe. What makes it
particularly important for our project is that the ODP reference model [9] has
adopted Z as one of the formal description techniques to be used as a viewpoint
language, in particular for the information viewpoint.

Before going into the consistency between Z specifications in later sections, we
briefly look at some ways in which a Z specification on its own can be considered
inconsistent.

First, there are the direct contradictions, which all allow us to prove both P
and -~ P for some predicate P, or in other words (removing the quantification)
which allow us to derive "false" from the specification. This is the simplest and
most obvious definition of inconsistency in Z. The strong typing system of Z
prevents quite a few classes of errors, but some kinds of contradictions can still
be written, for example:

- Postulating that an empty set has an element:

] x:;D

- Abusing the fact that a function is a set of pairs:

/ :N-~ N

f={(1,2),(1,3)}

(of course similar examples exist for all the different types of functions,
including sequences).

- Inconsistent free types (a lot has been written on this, see [15, 2, 14]), for
example T : : : atom((N))lfun((T--* T)).

It is clear that inconsistencies of this type will also be inconsistencies if they
occur in partial specifications.

A different type of possible inconsistency occurs when schemas have empty
sets of bindings, for example (trivially)D ~ [x:S [false]. As long as we do
not assert that we have a value from D, this is not an actual inconsistency.
In the states-with-operations interpretation of Z, described for example in [15,
chapter 5], a schema with an empty set of bindings is probably a specification
error. A special case of this condition is known as the Initialisation Theorem:
the schema describing the initial state of an abstract data type should not be
empty. Even though we will be adopting the states-with-operations approach to
specification in Z, it is not clear at this point if we should mark empty schemas

291

as inconsistencies in partial specifications, and whether we should distinguish
between state schemas and operation schemas in that respect.

In the sequel we will see that (candidate) unifications of Z viewpoint speci-
fications may satisfy all of the above notions of consistency, and still not retain
the interpretations of the viewpoints. Before we can observe this, we have to
show how to construct unifications.

4 A uni f icat ion m e t h o d in Z

In this (long) section we construct candidate least unifications for pairs of Z
specifications, with the normal Z refinement relation as the development relation
for both partial specifications. The unification will turn out to be a least common
refinement provided two conditions hold of the viewpoint specifications.

We will concentrate on the unification of state and operation schemas, since
we envisage the viewpoint specification style for Z to have those as its major
elements. Other Z constructs are degenerate cases of these, or not expected to
occur in more than one viewpoint. Operations change states, so we need to unify
state schemas first. After that we can adapt and unify operation schemas.

4.1 Unif icat ion of state schemas informally

Let us (for now) take as the underlying interpretation of a state schema D1
[x:ApplelNotWormEaten x] that it allows us to choose from all apples, but
we have to discard the worm-eaten ones. To unify this with D~ ~ Ix:Fruit I
NotRotten x] we have to take the union of the base sets (which is Fruit in this
case) and the intersection of the conditions (NotRotten and, if it is an Apple,
also Not WormEaten). Thus, we interpret the type declaration as giving a "set
we choose from", and unification extends the range of choice. The predicates
on the other hand are interpreted as restrictions, which need to be combined
in unification. Formally predicates and subtypes are of course equivalent, which
suggests we should have disjunctions or conjunctions in both cases. For the exam-
ples we have dealt with so far [6, 7], however, this default interpretation seemed
to capture the intuition much be~tter.

So, suppose we have the following two state schemas (which, given the above
interpretation, will not be normalised3). They have the same name (with a distin-
guishing index), which means that they are linked by an implicit Correspondence
rule.

DI D2

I: red s T

According to our intuive view of state schemas, their unification should be [6]:

3 The normalisation of a state schema changes the variables to be of their maxima]
type, and puts all other typing information in the predicate.

292

D

I x E S ~ pred s
| z E T ~ pred T

However, this is not type correct in general: S U T is an error unless S and T
have the same maximal type. A disjoint union of S and T would not be right
either, since then values that S and T have in common would be considered
different.

4.2 Totalised correspondence relations provide unions

So how do we resolve the situation that S and T may have values in common
and may also be type-incompatible? The answer is to modify the second-best
known implementation of disjoint union as a product 4 and to use correspondence
relations.

(In order to keep this explanation simple, we venture outside the Z typing
system for a moment.) If 11 is a type with a single element not in S or T, let us
call it _L, then we could define the disjoint union of S and T by

S+T=Sx~U~xT

i.e. S + T = { (s , t) [(s E S A t = • E T)}. The smallest product set
containing this set is S• x T• where Q• is the union of Q and 11. (Still a disjoint
union, but of an appreciably simpler kind.) Now what we will do is construct
particular subsets within S• x T• starting from S + T. The rules are simple:
we can add tuples (s,t) for which s E S and t E T, provided we then remove
tuples (s , • and (/ ,~) from the set. (The interpretation of this is tha t we no
longer consider s and t different. Compare the interpretation of disjoint union:
no element from the one set is equal to any element from the other.)

Let us call such sets totalised correspondence relations. Totalised correspon-
dence relations over S and T are characterised by the fact that for each s E S
there is a tuple (s,x) for some z E T• and exactly one such tuple if x=_L, and
similarly for all t E T. Totalised correspondence relations are linked in a one-to-
one way with correspondence relations between S and T: for tot R the totalised
correspondence of R, we have tot R = R U (S \ dom R) x 11 U]1 x (T \ ran R), and
t~ = tot 1~ fq S x T. In particular, the empty relation corresponds to the disjoint
union. For any correspondence relation (given by the specifier), the totalised
correspondence relation will provide the desired union of state spaces.

Here ends our brief excursion outside the Z typing system; we now give the
formal definitions in Z. The main differences arise from the need to use explicit
injection functions (into free types) where we used set unions above. The one-
to-one correspondence also holds in Z, it just looks a bit more complicated.

r The best known one is S + T = {0} x S U {1} x T.

293

Defini t ion 1 (Type wi th b o t t o m) For any type S, we define the type S•
by the following free type definition:

S• ::= I s I justS((S))

For all such types, a function theS is defined as the inverse of the injection justS:

theS :S• -+~ S

dora theS = ran j u s t s
V x:S * theS (justs x)=x []

Defini t ion 2 (Tota l isa t ion of a re la t ion) The totalisation tot R of a rela-
tion R on two given types S and T is defined as follows:

~. [S,T]
tot: (S ~-* T) ~ (S• ~ T•

| tot R = theS ~ R ~justT
[] | U { x : S \ d o m R . (j u s t S x , . L T) } U { y : T \ r a n R . (_ L s , j u s t T y) }

Totalised correspondences provide the possibility to specify anything between
disjoint union (take the correspondence to be the empty relation) and union (take
the correspondence to be the identity relation on the intersection). Moreover,
they provide the opportunity to relate elements of types that cannot be directly
related in Z even if they appear to be identical.

Example 3 (Union of e n u m e r a t e d types) If we have S = a [b I c and
T = a I d, we can form the obvious union where both a's are identified by taking
the correspondence to be {(a,a)}. The totalised correspondence relation is then
the set {(jus ts b,-LT),(justS c,_LT),(justS a, justT a) , (.Ls, justT d)} which can be
seen as a renaming of the set {b,c,a,d}.
[]

If we provide a correspondence relation between S and T, which points out
exactly which values in S correspond to which values in T, the totalised corre-
spondence provides the required union of S and T. In many cases the specifier
need not explicitly state what the correspondence relation is, the default corre-
spondence relation defined below may give the desired result.

Def in i t ion 4 (Defaul t cor respondence) The default correspondence rela-
tion on schemas D1 ~ [x : S lpred s] and D2 ~ Ix: Tlpred T]is {(x,x) �9 x e S N T }
if S O T is a well-typed expression (i.e. S and T have a common supertype);
otherwise it is the empty relation.
[]

(In a n o t h e r p a p e r [3] we have descr ibed how the cor respondence re la t ion can be used to unify

v i ewpo in t s t h a t use different r ep re sen ta t ions of the same da t a , us ing the same unif ica t ion rules.

In the cur ren t p a p e r we concen t r a t e on cor respondence re la t ions t h a t are pa r t i a l iden t i ty re la t ions

or o the r in jec t ive funct ions; the p a p e r [3] shows t h a t a l lowing genera l re la t ions ex t ends v iewpoin t

un i f ica t ion w i t h d a t a t y p e imp lemen ta t i on .)

294

4.3 State unif ication using correspondences

Let us assume that the correspondence relation between the types S and T is
given by the relation g _ S x T. The inhabitants of the unified state schema
will be the tuples of to~ R.

_ D
xl:Sj_; z2:T•

(Xl,X2) E tot R

Vx :S �9 z l=jus tS z ~ pred s
V x :T �9 x2"-justTx :=~ pred T

This looks like we are actually maintaining two values for the state variable x;
however, due to (xl,x2) being in tot R it is the case that either exactly one of
the two values is _L and thus invalid, or the two values are "equal" (since they
are in R, a n d / / o n l y contains tuples of things we consider equal).

In the examples that follow, we will often observe isomorphisms between
schemas: the schemas that get constructed often have additional clutter of con-
structor functions and their inverses, and renamings of all inhabitants of the
schema usually exist that yield the intuitively desirable schemas. Such (injec-
tive) renamings of all inhabitants of a schema we call isomorphisms, they form
a special case of data refinement in both directions, see section 5.

Example 5 (Union of e n u m e r a t e d types , cont inued) Continuing from
example 3, suppose we have schemas O1 ~ Ix:S] and D2 ~- Ix:T] where the
types are given b y S ::= a I b [c and T ::= a I d, and the correspondence
relation by R={(a ,a) } (the default correspondence would be empty). Their uni-
fication is given by the schema

xD:s• z2: T•

(xl #2) ~ tot R
x:S * z l=justS x =:> true
z : T �9 z2=justT z ~ true

which (see example 3) is isomorphic to the schema D ~ Ix:V]
V ::= a 1 b [c I d. Using the default would result in two different a's.

[]

The next two examples do use the default correspondence.

Example 6 The schemas

-1_<z___3

02.

f a~:g

3z:N �9 z = z + z

where

295

have the same type of component so their correspondence relation is the identity
relation on that type. The schema that results from unification is

D

F Xl:Z• x2:7•

I V x : Z * x l = j u s t Z x ~ - 1 < x ~ 3
I Vx:Z*x2=justZx=:V 3 z : N . x = z + z

The totalised identity relation on Z is the set {(just][x,justZ x) I x E Z}, so this
schema is isomorphic to

D

F x:Z

- l < x < 3

I

which, as it turns out, is the intersection (or rather: the conjunction) of the input
schemas. This can be shown to hold in general: if the types of the components
are identical, the union of the schemas is their conjunction for the default cor-
respondence relation.

[]

E x a m p l e 7 Any similarity between this example and the previous one will be
discussed in later sections. Schemas D1 ~ I x : - 1 . . 3] and D2 -~ [x:{z:N �9 z+z}]
have the identity relation on the intersection of their component types as the
correspondence relation, i.e. {(0,0),(2,2)}. The schema resulting from their uni-
fication is isomorphic to D ~ I x : (- 1 .. 3) U {z:N * z -t- z}].

[]

The final example shows that a schema with an empty set of bindings might
fulfill a very useful role when we apply this state unification rule: it is the unit
of state unification, modulo a trivial renaming.

E x a m p l e 8 (T h e e m p t y s t a t e) For the states D1 ~ [x:O] and
D2 ~ [x :T Ipr edT] there is only one correspondence relation possible, viz.
the empty relation, the only subset of O x T - - O 5. Totalising yields the set
{x:T �9 (-ko,justT x)}. (Note that the type O• has only one element, viz. _l_o.)
Thus, the unified schema is

s We are aware that for strict Z typing we have to state the types of the elements that
the various empty sets do not contain.

296

.xD:o• z2: T•

I V,:O, x1:justOx ~ true
I Vx:T �9 x2=justTx ~ pred T

which is obviously isomorphic to D ~ [x : T I predT].

[]

The significance of this is that we have a uniform way of treating state
schemas across viewpoints: if a certain state schema is not defined at all in
one viewpoint, we may regard it as defined to be an empty state space.

4.4 U n i f i c a t i o n o f o p e r a t i o n schemas

The unification of operation schemas proceeds in two steps. In the first step,
all schemas get adapted to the unified state schemas. In the second step, op-
erations that are defined in both viewpoints are unified using their pre- and
postconditions.

In the presentation of these rules, we assume that the state has changed
exactly according to the rule for state unification given above, i.e. that no re-
namings of the inhabitants have taken place. Note, however, that because these
renamings are injective functions, we can freely translate back and forth be-
tween the isomorphic state spaces. In other words, in most concrete cases the
expressions with lots of constructor functions etc., as we give them here, can be
translated into something more intuitive, just as we did for state schemas in the
examples.

An operation that was originally defined on the state D1 by

gets adapted to the new state schema by changing it to

_ _ A d O p l
ZID; Decl l

xl 6 ran j u s tS
Xl ! E ran j u s t S

l e t x == theS xl ; x' == theS xl ' �9 predl

(and of course an almost identical rule is used for operations from the second
viewpoint.) A very similar rule can be given for operations that do not change

297

the state (i.e. that have ~ D in their declarations). The situation is only slightly
more complicated if operations operate on multiple states - the rule above can
then be applied repeatedly, and the only complication is the bookkeeping of
which references to states have been updated to refer to changed states.

The unification of two viewpoint operations should exhibit possible behaviour
of each of the viewpoint operations in each situation where the viewpoint opera-
tion was applicable. This requirement can be formalised using pre- and
postconditions. 6 The unified operation should be applicable whenever one of
the viewpoint operations is, i.e. its precondition should be the disjunction of
the viewpoint operation preconditions. Moreover, when the unified operation is
applied to a state satisfying one particular precondition, a state should result
that satisfies the corresponding postcondition. Such an operation unification is
also described by Ainsworth et al. [1], there called union, but they fail to men-
tion that the union may not exist. The candidate least unification of operation
schemas AdOpl and AdOp2, both operating on the same state, is given by 7

_ _ U n O p

Decls ; A D

pre AdOpl V pre AdOp2

pre AdOpl ~ post AdOpl
pre AdOP2 ~ post AdOP2

where Decls is obtained by textually unifying the declarations of AdOpl and
AdOp2. Tha t this schema only defines the desired unification under additional
restrictions is clear from a little calculation. Note that the precondition of an
operation Op with no input or output, operating on State, is given by

pre Op = 3 State' �9 Op

We write pr% for pre AdOpl etc for clarity in the following calculation:

pre UnOp

=- { definition pre }

State' �9 (ore 1 V pre2)A(pre 1 =~ postl)A(pre 2 => post2)

{ pre 1 and pre 2 do not refer to State' }

(pre I V pr%)A 3 State' �9 (pr% ~ postl)A(pre 2 ~ post2)

8 Note that, unlike the precondition, the postcondition of a Z operation schema cannot
be uniquely determined. For a schema Op -~ [AD [pred] which (to avoid some
semantic problems) satisfies the condition pred ~ pre Op , any condition P such
that pre Op A P r pred will do as "the" postcondition, in particular pred itself. Thus
any occurrence of post Op in the sequel should be taken to refer to some possible
postcondition of Op.

r Wim Feijen pointed out the similarity between the conditions in this schema and
those in the w(eakest)p(recondition)-calculus for the guarded command P1 --+
Op 1 n P2 --~ Op2 where prei has the role of the guard.

298

{ case analysis, 3 State' �9 pr% ~ post~ holds }

(pre 1 V pr%)A 3 State' ,, pre 1 A pr% =~ post 1 A post 2

---- { pre 1 and pre 2 do not refer to State' }

(pr% V pr%)A(pre I A pr% ::~ 3 State' �9 post 1 A post2)

In other words, the precondition of the union is only the disjunction of the
preconditions if both postconditions can be satisfied when both preconditions
are. This is an essential condition which will form part of our consistency check.
In fact, it is already a condition for the union to be a common refinement of the
operations, and it is useful to give it a name.

D e f i n i t i o n 9 Operations A and B, operating on the same state space State,
are said to be operation consistent iff

YState �9 preAA preB ~ 3State ' �9 postAA post B.
[]

4.5 U n i f i c a t i o n is l eas t c o m m o n r e f i n e m e n t

Here we present what amounts to a correctness proof for the unification rules
given above. The proof will be in three steps: showing that the adapted opera-
tions with the unified state form data refinements of the viewpoints; showing that
unified operations are (operation) refinements of the adapted operations; and fi-
nally a proof that the unification is a least common refinement. The proof given
below imposes extra conditions on the viewpoint specifications in two places: one
is operation consistency as defined above, the other is state consistency which
follows from analysis of the preconditions of the adapted operations.

First we show that the unified state with the adapted operations form data
refinements of the viewpoints with operations. For that purpose we have to
formally link the state schemas using a retrieve relation. For the unified state
schema D and the state schema of the first viewpoint Di ~ [x : S l p r e d s] the
retrieve relation is given by the schema

~ Retrl
DI; D

There are two conditions to prove that this is a valid data refinement [15], making
any universal quantifications implicit:

1. pre Opl A R e t r l ~ pre AdOpl
2. p r e O p l A R e t r l A A d O p l ~ 3x ' . R e t r l ' A O p 1

The proof of the first property has a big hurdle in the middle of it. For simplicity
we ignore the contribution of Decll to the predicate AdOpl since it makes the
same contribution to Op 1.

299

pre AdOpl

- { definition o fp re }

3 xl'; xu' �9 AdOpl

- { definition AdOpl }

3 xl ~ ; x2 ~ �9 D A D' A xl E ran justS

A xl' E ran justS A pred 1 [theS Xl/X][theS xl ' /x']

- { conjuncts independent of new state }

D A xl E ran jus ts

A 3x1' ; x~' �9 D ' A x l ' E ran jus tSApred l[theSx l /x][theSx l ' / x ']

-- { W I S H : x2 ~ always exists here; translation x ~ := theS xl ~ }

D A Xl E ran justS A 3 x' �9 Dl[theS xl'/x]Apredl[theS Xl/X]

= { definition o fp re }

D A xl E ran justS A pre Op~[theS Xx/x]

{ definition Retrl , substitution }

Retr l A pre Opl

Of course the crux of this proof is the step marked with W I S H . It is clear
that we need an extra condition here, the predicate really depends on x2' through
the conjunct D'. A correct x2' may not exist in exactly one type of situation:
(xl ' , x2 ')= (justs x , justT y) and (x,y) �9 R, pred s holds but predT[Y/X] does not
hold. Tha t is to say, the output value of the operation is linked by the correspon-
dence relation to an "illegal" value, whereas the input value is linked to a legal
one (and thus not excluded from the translated precondition Retrl A pre OPl).
At this point we will assume that the viewpoints are state consistent to prevent
this problem:

D e f i n i t i o n 10 The two state schemas D1 ~ [x:S[pred s] and O2 ~ [x : T]
predT] are state consistent with respect to the correspondence relation R C_
S x T i f f

�9 R r (preds
[]

This is a sufficient, but not a necessary condition; for a further discussion of
related properties, see section 6. The second property is more easily proved:

3 x' �9 Re tr l 'A Opl

----- { defnit ions }

3 x ~ �9 D1 ~ A D ~ A xl~--justS x I A D A D' A pred 1

-- { D and D ~ independent of z'; theS is inverse of jus ts

(3 x' �9 DI' A theS x l '=x ' A p red l)ADAD'

= { one point rule for existential quantifier }

300

pred s [theS xl' / z] A pred 1 [theS xl' / x'] A D A D'

{ first conjunct follows from D'; property of substitution

pred 1 [theS ggl/x][theS xl'/x'] A xl =justs x A D A D'

r { definitions AdOpl and l:letrl, add conjunct }

pre Opl A AdOpl A Retrl

Of course the proof for the second viewpoint is completely analogous.
The second step is to show that UnOp is a common refinement of AdOpl and

AdOpt. In this case, too, it suffices to give only one half of the proof. Because this
step involves no change of state space, we only need to prove the two conditions
for operation refinement [15], again omitt ing universal quantifications:

1. preAdOpl ~ pre UnOp
2. pre AdOPl A UnOp ~ AdOPl

The first is only true if the operation consistency condition holds, see the calcu-
lation of pre UuOp above (and then it is a one line proof). The second is easily
proved using the fact that the predicate part of an operation schema A can be
given as pre A A post A.

The final step of the least common refinement proof is showing that the
unification is a least common refinement. This will be done by showing that
an arbitrary refinement of both viewpoints is necessarily a refinement of the
unification.

Suppose that state schema E with operation schema Opp also form a (data)
refinement of both viewpoint specifications (Di,Opl) and (D2,0p2), and that
the state of E is given by the (fresh) variable y. This means that two retrieve
relations exists, let us assume they are given by (i --1,2)

Retri ~ Di ; E

retri

The assumption that these are data refinements translates into assumptions we
can use in proofs:

1. pre OpiARetri =~ pre Opp
2. pre Opi A Retri A Opp =~ 3 x ~ * t~e~ri ~ A Op i

We now prove that , under these assumptions, (E,Opp) is a data refinement
of (D, UnOp). Thus we have to find some retrieve relation RettED such that

1. pre UnOpARetrED ~ preOpp
2. pre UnOpAIletrEDAOpp ~ Sx11; x2 ~ * RelrEDrA UnOp

Our choice for that retrieve relation is the following schema.

301

~ RetrED
D; E

retrl[theS Xl/X]Vretr2[theT x2/x]

(The main motivation for this particular choice is that it works.)
Now we prove the two properties. For the first we leave out universal quan-

tification over y, the "concrete state".

Vxl; x2 �9 pre Opp r pre UnOpARetrED

__= { assuming operation consistency }

V xl; x2 �9 pre Opp r (pre AdOpl V pre AdOp2)ARetrED

{ definition RettED }

V xl ; x2 �9 pre Opp~(pre AdOpl V pre AdOp2)ADAE

^retrl[theS xl/]wet 2[the T x2/x]
r { calculus }

V xl; x2 * pre.OppC=(pre AdOPl A D A E A retrl [theS x~/x])

V(pre AdOp2 A D A E A retr2 [theT x2/x])

- { definition pre AdOpi (state consistency);

translation (xl,z2) := (justs x,justT y) }

V x; y �9 pre OppC=(pre Op 1 A D1 A E A retrl)

v((pre ^ ^ E^
{ definition Retry; assumptions }

true

The second proof is a quite complicated one. We are asked to prove that
Vxl; x2; y �9 P ~ (3 zl ' ; x2 ~ �9 Q) for certain predicates P and Q. The proof pro-
ceeds by first showing how 3 Xl'; x2 ~ �9 Q can be rewritten as 3 x' �9 Q1V 3 x' �9 Q2.
Then we do a case introduction on P such that P=(PIVP2) and we show that
V xl; z2; y �9 Pi ~ (3 x ~ �9 Qi) follows from the assumption that E is a refinement
of the i-th viewpoint, which then completes the proof.

3 x11; x2 ~ * RetrED~ A UnOp

- { definition UuOp, assuming operation consistency }

(3 Zl'; x2' * RetrED' A AdOpt)V(3 xl'; x2' * RettED' A AdOp2)

The simplifications of these disjuncts will be completely analogous so we show
only one:

3 xl ~ ; x21 * RettED ~ A AdOp 1

{ definition of RettED ~ and AdOpl }

3 xl'; x2' * D' A E' A (retrl[theS xl/x])' A D A xl E ran justS

302

A xl' ran justS A pr dl[th S xl/][th S

-- { assuming state consistency, translate xl I :-= j u s t s x' }

3 x ~ �9 D1 ~ A E ~ A retrl t A D A xl E ran jus tS A predl[theS xl /x]

- { definition of Retrl }

3 x' * Re tr l ' A D A xl E ran jus tS A pred 1 Jibes x l /x]

The antecedent (we called it P in the proof overview above) of the universal
quantification can be rewritten in the form P1VP2 as follows:

pre UnOp A RetrED A Opp

-- { assuming operation consistency }

(xl E ran jus tS A preAdOp] A Ret tED A Opp)

V (x2 E ran j u s t T A pre AdOp2 A RetrED A Opp)

Now we show that each of the disjuncts in the antecedent (Pi) proves one of
the disjuncts in the consequent (Qi). Again these two proofs are completely
analogous, so only one is given.

Vxl; x2; y * zl E ran jus tS A preAdOpl A RetrED A Opp

3 x ~ * Retrl ~ A D A xl E ran jus tS A predl[theS x l /x]

{ assuming state consistency, translate Xl :-- j u s t s x }

V x; y �9 pre Op 1 A D1 A E A retrl A Opp

==~ 3 x ~ ,, Retr l ~ A pred 1 A D1

-- { definition Retrl , assumption }

true

This concludes our proof that every common refinement of the viewpoints is a
refinement of the unification, and thus the unification is indeed the least common
refinement.

5 O n m u t u a l r e f i n e m e n t

The previous section has shown how the unification is (with a few conditions)
"the" least common refinement of the viewpoints, by proving that all common
refinements are refinements of the unification. Obviously, in general multiple
least common refinements exist - for example other unifications with different
correspondence relations that fulfill the state and operation consistency condi-
tions. One might think that the equivalence classes induced by mutual refinement
contain only specifications that are equal modulo an injective renaming of the
inhabitants of the schemas ("isomorphism"). This, however, is not the case.

Have another look at examples 6 and 7. The viewpoint specifications given
there are actually semantically identical, their only difference is that some in-
formation has shifted from the type of z to the schema predicate. The source of

303

difference in the examples is in the correspondence relation that was used. (Why
we would choose different default correspondence relations for "identical" spec-
ifications will be discussed in section 7.) The question of whether these unified
state schemas are refinements fully depends on what operations are defined in
the viewpoints. In general the unification of example 6 will not be a refinement,
because the state consistency condition is violated (x=4 is excluded by the first
viewpoint predicate, for example). On the other hand, state consistency holds in
example 7, so that is a correct refinement. However, if the only operation defined
on both viewpoints is

~ Op~
AD~

Xt~.2--X

the unification is a refinement in example 6 as well. (If state consistency holds
for the inhabitants of all operation schemas, i.e. in this case just 0 and 2, the
unification is a refinement. See section 6 for a further discussion of this.) The
unification of these two operations will (modulo renaming) be Opl in the situa-
tion of example 6, and Op2 in example 7 - quite different operations, but both
least common refinements. This may seem strange at first.

However, in general in Z any state schema with operations can be data-
refined by either embedding the state space in a superset (unconditionally), or
by restricting the state space to a subset which is closed under all operations.
(In the example, (0,2} is indeed closed under A z �9 2 -x .) The operations will be
unchanged in the first case, and restricted to the new state space in the latter
case. This may result in severely restricted operations; to see this, consider that
the rules for data refinement (if there is no initial state) are already satisfied if
the retrieve relation is empty (if Abs is false, in the terms of [15]).

So, classes of specifications that are mutual refinements will be (perhaps
unexpectedly) large. In the next section we will argue that not all of the least
common refinements reflect our interpretation of viewpoints, and we will look
for criteria for choosing among them.

6 C o n s i s t e n c y f o r p a r t i a l s p e c i f i c a t i o n i n Z

At this point we are able to assess what consistency means for partial speci-
fication in Z. First, we have to observe that our unification method does not
generate internal inconsistencies in the sense of section 3. We only produce state
and operation schemas, which do not lead to inconsistencies when contradic-
tions occur (rather to uninhabited schemas). The free types we introduce are
non-recursive. So we are confident that specifications unified with our method
will be consistent, considered on their own, whenever the viewpoint specifications
are.

Of course, as became clear in the proofs, a different consistency issue turns
up in the case of partial specification: not within a specification, but between

304

specifications. The unification may not always be a refinement of the viewpoints
involved, and if it is not, no common refinement satisfying the given corre-
spondence relation exists 8, so an inconsistency between the viewpoints has been
found. The condition of operation consistency is clearly a necessary and suffi-
cient one for consistency between viewpoints - however, it can only be checked
for operations that operate on the same state, i.e. only when a state unifica-
tion has been decided on. The choice of a correspondence relation is critical for
finding a correct state unification, considering the role that the correspondence
plays in determining state consistency.

Let us return briefly to the points in the proofs where we needed "state con-
sistency". It was Mready claimed there that weaker conditions would also suffice
in particular cases, and there is an example supporting that claim in the previous
section. The condition we are looking for is that if a before-state is linked to a
unified state by the state unification's retrieve relation, a possible corresponding
after-state should also be linked to the unified state by that retrieve relation.
State consistency guarantees that by making sure the correspondence relation
does not link legal with illegal values. Another option would be to demand
that all operations "respect" the correspondence relation, but this would give
a quantification over all present and future operations. Also, that would make
state unification dependent on operations, which seems to introduce a circular

dependency.
So, now we know that state consistency is formally too strong, is it a problem

to impose it as a condition on state unification? We should probably let our
interpretation come to the rescue here. In general, in Z data refinement it is
not necessary for every abstract state to be represented by a concrete state.
However, in the examples we have considered so far, the data types defined in
the viewpoints included only meaningful values that would be just as meaningful
in the unification. For a unified state space not to represent some values of a
viewpoint state space just seems wrong in our interpretation. This is exactly what
state consistency prevents. Thus, state consistency may be formally too strong
for checking that a unification is a refinement, in our interpretation it is the right
condition even when it is not formally necessary. A methodological advantage of
using the state consistency condition is that it greatly simplifies the unification
process: state unification can be done independently of operation unification.
Thus new operations may be added at any later point without introducing the
risk of an invalidated state unification.

A certain way of guaranteeing state consistency is to define R not on S • T
but on its subset {x:S I preds} x {x:T [predT}.

To summarize: unification of internally consistent viewpoint specifications
will result in an internally consistent (candidate) unification. In order to check
whether the unification is indeed a common refinement, two types of conditions
need to be checked. The state consistency condition is formally too strong, but
we cannot do better without looking at the operations that have been defined,

s Observe that any two specifications are consistent for the empty correspondence
relation.

305

and it conforms with our intuition of state unification. On each pair of oper-
ations that is unified we will have to check for operation consistency: if both
preconditions are satisfied, can both postconditions be satisfied too? The choice
of a correspondence relation is crucial for state consistency, and it indirectly also
influences operation consistency.

7 C o n c l u d i n g r e m a r k s

One might have expected that using Z for partial specification would require a
different specification style, a different interpretation, or even a different refine-
ment relation. This paper has shown that for the most part, the states-with-
operations style with standard interpretation and refinement will do just fine.
Particular interpretations for viewpoint specification occur at two points only:

�9 Our motivation for imposing state consistency is supported by our interpre-
tation. However, the formal condition of state unification being independent
of the operations would lead to the same requirement.

�9 The notion of a default correspondence is clearly dependent on an interpre-
tation of viewpoint specifications. Examples 6 and 7 show that there can
hardly be a formal motivation: semantically identical specifications lead to
different default correspondence rules. The correspondence relation is the
parameter in unifying viewpoint specifications; note, however, that we could
completely have left out our intuitive ideas about it by not defining a "de-
fault" correspondence at all.

The unification method we presented covers only a restricted part of Z: state
and operation schemas, in which we have mostly disregarded input and output.
These could easily be added to the unification rules. Unification rules for many
other Z specification constructs (for example Init operations) can be obtained
as degenerate cases of the state and operation rules.

This method for unifying two viewpoints has to be embedded in a larger scale
unification method. This addresses how to proceed if unifications do not satisfy
the consistency criteria - whether and how to choose different correspondence
relations, how to determine that no sensible correspondence relation exists and
thus viewpoints are fundamentally inconsistent, and how to deal with that [8].
Also, the method will have to be extended from two to an arbitrary number of
viewpoints. Fortunately, the binary method appears to be associative up to iso-
morphism under realistic restrictions on the correspondence relations involved.

As it is presented now, the results of unification contain many complicated
expressions due to occurrences of injection functions and "bottoms". We will fix
this by adding a "renaming" component to our unification method, which maps
tot/~ to some target data type, formalising the "isomorphisms" we appealed to
in most of the examples in this paper. The "default" renaming will give the
desired result immediately in most cases.

306

A c k n o w l e d g e m e n t s

We would like to thank Ralph Miarka for his comments on a draft of this paper. The
~TEX code for this paper was generated using the MathSPad editing tool
(http://www.win.tue.nl/win/cs/wp/mathspad/) with special stencils for oz.sty.

References

1. M. Ainsworth, A. H. Cruickshank, L. J. Groves, and P. J. L. Wallis. Viewpoint
specification and Z. Information and Software Technology, 36(1):43-51, February
1994.

2. R. D. Arthan. On free type definitions in Z. In Nicholls [12], pages 40-58.
3. E. Boiten, J. Derrick, It. Bowman, and M.Steen. Unification and multiple views of

data in Z. In J.C. van Vliet, editor, Computing Science in the Netherlands, pages
73-85, November 1995.

4. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25-29, 1988.

5. H. Bowman, J. Derrick, and M. Steen. Some results on cross viewpoint consistency
checking. In Raymond and Armstrong [13], pages 399-412.

6. J. Derrick, H. Bowman, and M. Steen. Maintaining cross viewpoint consistency
using Z. In Raymond and Armstrong [13], pages 413-424.

7. J. Derrick, FI. Bowman, and M. Steen. Viewpoints and Objects. In J. P. Bowen
and M. G. Hinchey, editors, Ninth Annual Z User Workshop, LNCS 967, pages
449-468, Limerick, September 1995. Springer-Verlag.

8. A.C.W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsis-
tency handling in multiperspective specifications. IEEE Transactions on Software
Engineering, 20(8):569-578, August 1994.

9. ITU Recommendation X.901-904 - - ISO/IEC 10746 1-4. Open Distributed Pro-
cessing - Reference Model - Parts 1-~, July 1995.

10. D. Jackson. Structuring Z specifications with views. Technical Report CMU-CS-
94-126, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, 1994.

11. D. Jackson and M. Jackson. Problem decomposition for reuse. Software Engineer-
ing Journal, 1995. To appear.

12. J. E. Nicholls, editor. Z User Workshop, York 1991, Workshops in Computing.
Springer-Verlag, 1992.

13. K. Raymond and L. Armstrong, editors. IFIP TC6 International Conference on
Open Distributed Processing. Chapman and Hall, Brisbane, Australia, February
1995.

14. A. Smith. On recursive free types in Z. In Nicholls [12], pages 3-39.
15. J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.
16. P. Zave and M. Jackson. Conjunction as composition. ACM Transactions on

Software Engineering and Methodology, 2(4):379-411, October 1993.

