
Combining Statecharts and Z for the Design of
Safety-Critical Control Systems

Matthias Weber

Technische Universit~it Berlin
we@cs.tu-berlin.de

A b s t r a c t . In this report, we describe an approach that integrates a
mathematical specification language with more traditional software de-
sign techniques to yield a practicable methodology for the specification
of safety-critical control systems, To manage complexity and to foster
separation of concerns, the system design model is divided into three
views: the architectural view, specified with object and class diagrams;
the reactive view, specified with statecharts; and the functional view,
specified with Z. A systematic relationship between the reactive and the
functional view entails proof obfigations to guarantee semantic compat-
ibility. We illustrate this approach with a case study on controlling a
heavy hydraulic press.

1 I n t r o d u c t i o n

Formal methods have been seriously applied during the past years in various
industrial and academic pilot projects as reported, for instance, in [3]. However,
the breakthrough has not yet been achieved. Many companies involved in such
projects are scaling down their use of formal methods to a level that is in ac-
cordance with their current industrial relevance. For instance, they have only
small teams of highly trained research staff working on selected critical aspects
of systems.

Wha t are the reasons for the failure of formal methods to achieve broader
acceptance? From our own experience and f rom our analysis of experience reports
([3, 8, 12], for instance), we believe tha t one major reason is tha t presently
formal methods come with too broad a goal.. Often, they aim at a superior
and uncompromising methodological f ramework for the development of perfectly
correct systems. They often presuppose idealized circumstances, and they have
usually been developed in academic environments where such circumstances can
be guaranteed. Also, such a monolithic approach does not leave much room for
coexistence and interaction with other methodologies that are in s tandard use
within an industrial development context. Still, research on such methods is
necessary and has provided us with many useful techniques and results, but it
is highly unlikely to lead to methods tha t will be quickly accepted in practice.

We believe tha t a more modest approach to the integration of formal tech-
niques into the system design process will lead to a more immedia te application
of such techniques [7]. Start ing out from existing and accepted conventional de-
sign methods which are amenable to the integration of ma themat ica l techniques,

308

one should investigate at which points during the design process mathematical
techniques can be smoothly and usefully integrated. The rationale for the use
of formal techniques at these points should be convincing to the experienced
engineer. Once experiments and case studies have provided evidence that the
formal elements introduced are accepted, one can start to investigate further
possible anchor points for mathematical techniques. This investigation can then
be based on the experience gained during the first phase and on the evolving
formal literacy of the design team. Hence, in principle, by iterating this process,
one obtains a method that has more and more formal elements. It is important
to note, that we do not a t tempt to embed conventional techniques into a formal
method but rather the other way around.

In this report, we sketch an approach that sets out to integrate a mathe-
matical specification technique into a well-known engineering technique in order
to yield a practicable methodology for the specification of safety-critical control
systems. Our starting point is the statechart notation, which is currently gain-
ing acceptance in industry for the specification of embedded systems. To cope
with the growing complexity and the safety requirements of these systems, we
propose an integration of the specification language Z into statecharts, Z being
used to model the data structures and data transformations within the system.

The idea of combining statecharts and Z is certainly not new; for example [1]
uses a combination of Z and timed statecharts in the context of an application
from avionics. The next section explains key ideas of our approach. The remain-
ing sections illustrate the approach by developing a control system for a heavy
hydraulic press.

2 Specification Methodology

A widely used technique in modern software engineering is to model a system
by a combination of different - but semantically compatible - "views" of that
system. The primary benefit of such an approach is to keep very complex systems
manageable and to detect misconceptions or inconsistencies at an early stage.
In the approach presented here, we divide the modeling into three views: the
architectural model of the system, the reactive model of the system, and the
functional model of the system (Figure 1).

The architectural model of a system describes the relationships between the
types of components used in the system as well as the actual configuration of
the system components itself. For the description of this model, we adopt the
object-oriented modeling paradigm [2, for instance]: We understand an embed-
ded control system as a hierarchicMly structured collection of objects that change
state and interact with each other throughout their lifetime. The relationships
between object classes are described using well-known elements of class dia-
grams, i.e. diagrams displaying classes and their structural relationships, such
as aggregation and inheritance.

The two other views are primarily concerned with the specification of the
behavior of single components of the embedded control system. We make a

309

Architectural Model

class structure
system structure

Y
Reactive Model

object interaction
time control

Functional Model

data definitions
data invariants

data transformations

Fig. 1. The three modeling views of an embedded system

fundamental distinction with respect to the behavior of system components. The
functional model of a component comprises da ta definitions, da ta invariants, and
data transformation relations, in particular, for any component, its encompasses
its local state and the inpu t /ou tpu t relation of its operations. Constraints, e.g.
related to safety properties, about the components states can be derived based
on these descriptions. The reactive model comprises the life-cycle of components,
i.e. interactions with other components and the control of time during these
interactions. Reactive behavior is modeled by specifying how, and under which
timing constraints, operations from external objects are requested or supplied
(or both) in the state changes of objects.

We specify reactive behavior using an appropriate variant of t imed hierarchi-
cal state transition diagrams, i.e. with a variant of statecharts [5]. There are two
reasons for this choice: firstly, statecharts have proven to be sufficiently expressive
for modeling complex component interactions and time control, and secondly,
the use of statecharts, or close variants of statecharts, is currently spreading in
industry. This also enables us to use existing analysis and simulation tools for
this notation.

Often, functional behavior in state-based systems is specified by textual or
formal descriptions of pre- and postconditions and of data invariants. In our
approach, we specify the functional behavior of objects using the state-based
formal specification language Z [13]. There are two main reasons for using Z:
firstly, in our view, Z has proven to be particularly useful for modeling complex
functional data transformations; and secondly, both in academia and industry,
Z has become one of the most widely used formal specification notations. Since
we aim at a practical approach when modeling functionality, we try to stick
to a constructive subset of Z, i.e. a subset that can be compiled into efficient
code, whenever this is reasonable in a particular application. The use of a math-

310

ematical notation for modeling functional behavior enables us to prove abstract
safety properties about the control system, such as provisions that the system
may never enter certain hazardous states. Safety conditions imposed on data
structures and data relationships should, of course, be specified using the full
expressive power of the Z language.

Note that we are not arguing in favor of a monolithically formal approach.
Rather, our goal is to systematically embed mathematical elements into industri-
ally used engineering techniques. As will be seen, this leads to an approach some
parts of which are "hard", i.e. fully precise, while others remain "softer", i.e.
allow for a certain range of interpretations. In our view, such an approach leaves
more room to be adapted to the actual circumstances in particular industrial
application contexts.

3 T h e C a s e S t u d y : C o n t r o l o f a H y d r a u l i c P r e s s

We consider a simple embedded control system, a controller for a heavy hy-
draulic press that is operated manually. Hydraulic presses are devices for press-
ing workpieces into a certain shape. The human operator, at the press, places
the workpiece in the press and initiates the closing of the press. The plunger of
the press moves down, presses the workpiece and subsequently moves up again.
The workpiece can then be removed from the press and the entire process may
be repeated.

Hydraulic presses are dangerous, since the worker operating the press may
hurt himself by accidentally trapping his hand in the press. A typical safety
device to prevent hand injuries are two-hand controllers, i.e. control units with
two buttons, located about 1 meter apart, that must both be kept pressed while
a potentially dangerous action is performed [4]. In addition, both buttons must
be pressed within a small period of t ime (in our example 0.5 sec) in order to
successfully initiate the closing of the press. The obvious intention behind two-
hand controllers is to keep both of the worker's hands out of the danger area. If a
but ton is released while the press is closing, the press will immediately stop and
reopen. However, after a certain point is reached, which we call the critical point,
the closing press can no longer be stopped physically, and hence cannot react
to the release of a button. Finally, for reasons of reliability, the system should
be capable of detecting sensor readings that are incompatible with the physical
properties of the press. In such a situation, which might be due to a broken
sensor or a failure in message transmission, the system should immediately stop
the press.

This very simple embedded system is a good example to introduce and ex-
plain our approach, since it comes with interesting safety and real-time con-
straints, but is simple enough to not clutter the presentation with technical
details. It should be obvious that the above informal specification is far too
sketchy to adequately specify the required system behavior.

311

4 A r c h i t e c t u r a l V i e w

In the previous section, we have presented the informal requirements of the
hydraulic press control case study. Since this is a very small example, the analysis
and architectural design is straightforward. The results are summarized in the
diagrams presented in Figures 2 and 4. For this example, we mostly use notations
inspired from OMT [10] and Booch [2]. However, choice of notations is by no
means essential and it should not be difficult for the experienced to adapt the
information content of the following diagrams to his favorite notation.

Motor

up,
Down,
Stop

A

TwoHandPress

PressLefl,
PressRight,
ReleaseLefl,
ReleaseRight,
AtTop,
AtBottom,
CrossPonR,
SignalError

i
i
1
4
i

PhysicaIPress Sampler
tNoO~alues:=3]

up,
Do~,z,
Stop
Read

S en so r
[NoOff aluesl

Read

J
Button
[NoO]Values:= l]

Read
Press
Release

Fig. 2. Class diagram of the press system

The class diagram describes a two-hand press-object as consisting of four
subobjects: two buttons to control the press, the physical press, and a data sam-
pler. Aggregation is denoted by links adorned with a rhomb. Multiplicities can
be specified explicitly along aggregation links. A button is a particular instance
of a sensor. It offers an operation to read its (only) measured value. This value
indicates whether the button is currently pressed. The parameter instantiation
relationship is denoted by dashed arrows. In addition to being an instantiation, a
button is also a specialization of a sensor, because it incorporates additional op-
erations for pressing and releasing a button. The specialization (or inheritance)
relationship is denoted by links adorned with a triangle. In the context of this
case study, the physical press is modeled as an entity specializing both a sensor

312

and a motor . In particular, besides an operat ion to read the current s tate of the
press, it includes operations to move up, down and to stop. The physical press is
also an instantiat ion of a sensor measuring three values. These values are further
described below.

In Figure 2, the sampler and the control of the subobjects of the two-hand
press together consti tute the software par t of the system. The press and the but-
tons model physical objects, connected to the control by communicat ion lines.
From a more traditional, software-centered point of view they would be repre-
sented as the environment of the software control component .

Since this is a ra ther simple system and it has a severe real-t ime requirement,
our main architectural decision is to adopt a t ime-frame approach to specify its
behavior (see Figure 3).

t sop,o I r os, I I Pr os,
I Frame " Frame Time

Fig. 3. Time-Frame Processing

More specifically, the idea is to let the sampler periodically read the cur-
rent values measured by the physical press and the but tons and then, based on
these values, to send control messages to the press control itself. The sending of
these messages can be interpreted like events affecting control. The press control
processes these messages and converts them into motor commands to move the
press. In this sense the purpose of the sampler is to abstract from the low-level
details of communicat ion with the external devices and to offer an appropr ia te
interface to the logical view of the controller. Of course, we must be concerned
tha t the control does not miss a relevant input, i.e. the m a x i m u m t ime for the
control to react to an input must be less than the length of sampling interval.
The controller requests the operation of individual but tons using natural number
indices, e.g. Button[1].Read reads values f rom the first but ton.

The communicat ion relationships between objects of this system are dis-
played in Figure 4.

Of course, there are many alternative approaches to this specific one, for
example the two sensors could themselves be active processes interrupting the
control by signaling events to it. However, the advantage of t ime-f rame based
processing is tha t we can more rigorously control the order of events. Further-
more, given the small number of sensors in this case s tudy a concurrent solution
would not be very realistic. In this example, all communicat ions links denote
synchronous communicat ion. Asynchronous communicat ion can be indicated by
appropr ia te adornment of communicat ion links.

313

TwoHandPress

Up,
Down,
Stop

PhysicaIPress]~ R~a

PressLeft,
PressRight,
ReleaseLefl,
ReleaseRight,
At Top,
AtBottom,
CrossPonR,
SignalError

Sampler
Read 2 J Button

]

Release
Press

Fig. 4. Communication links of the press system

5 R e a c t i v e V i e w

The top-level reactive behavior of the press control is described by the statechart
in Figure 5. Initially, the control remains idle until the sampler signals tha t the

TwoHandPress

UnexpectedSignal 1

Mal.~nction [

AtTop

t UnexpectedSignal / PhysicalPress, Stop

�9 Running I

Fig. 5. Top-level reactive behavior of the controller

press is in default position, i.e. at the top. The control then enters the running
mode. In case of a malfunction, the motor is s topped and a special error state

314

is entered. A malfunction is recognized if the sensors deliver values tha t are not
expected at any point of operation. UnexpectedSignals is an abbreviat ion for a
group of transitions. We return to its definition below.

Following common conventions, we denote states by rounded boxes and in-
dicate their names on the upper left corner. As usual, we use a dot-anchored
kind of arrow to point to default substates to be entered when entering a com-
plex state. In general we use two kinds of transitions, operation transitions and
timeout transitions.

The arrows for operation transitions are in general adorned as follows:

ProvidedOperations [Condition]/RequestedOperations

If the object is in the source state and one of the indicated provided opera-
tions, separated by or , is requested from an external object, then, if the condition
is satisfied, the indicated operations are requested from the indicated external
objects and the object changes into the target s tate of the arrow. The condi-
tion is optional, an omit ted condition acts as a condition that is always true.
Requested operations are optional too: if no requested operations are indicated,
the object just performs a change of the internal object state. The other form of
transitions, the t imeout transition, is explained below.

Running I

lnterruptClosing
/ PhysicalPress.Up [AtBottom/PhysicalPress.Up

~Opening t t }
t AtTop/PhysicalPress.Stop

Fig. 6. Refinement of the running state

The running state is further refined in Figure 6. The press is operated in a
continuous cycle of closing and opening. Entering the state Closing is associated

315

to a motor command to move down. The open state and the label InitiateClosing
are further refined below. The closing state may be left by either releasing one of
the but tons, or by reaching the b o t t o m of the press. Both cases lead to a motor
c o m m a n d to move up. Opening then continues until the sampler signals the press
being again at the top. Following a common convention about state diagrams,
we use s tubbed arrows to indicate transitions originating f rom substates of not
yet sufficiently refined states.

The behavior of the control in the opening and closing states has not yet been
refined to sufficient detail. First, we have to distinguish between those states in
which the closing press above or below the critical point, i.e. the point below
which the press can no longer be reopened before closing. This is clarified in
the s tate d iagram in Figure 7. The two arrows leaving the refined closing state

Closing [

/ PhysicalPress, Up
I CrossPo~

I AtBottom/PhysicalPress.Up

Fig. 7. Refinement of the closing state

correspond to the two arrows leaving the respective unrefined state in Figure 6.
Identification of such arrows should be unambiguous by graphical position and
by label.

At this point, we have sufficiently exposed the state structure of the two-
hand press, to define precisely the transit ion group labeled UnexpectedSignals in
Figure 5.

UnexpectedSignals - At Top[ClosingBelow]
or AtBottom[Ready V Open V ClosingAbove]
or CrossPonR[Ready V Open]
or SignaIError

The most complex aspect of the press behavior is obviously the transit ion
from the open to the closing state. This is described in detail in the state di-
agram in Figure 8 According to the logic of the two-hand press, in order to
initiate the closing of the press, the two but tons have both to be released and
subsequently both to be pressed within a specific t ime interval (MaxDelay mil-
liseconds). Therefore, the safety state, which the system enters initially, can
be left only when both but tons are released. Now when, e.g. the left but ton

316

o~e. I

[Pre.. ,J "a

~ReleaseRight

PressRight [
~I~ PhyMcalPres~,Down

PresxLeft

Fig. 8. Refinement of the open state

is pressed after both but tons were released, the right but ton must be pressed
within a certain t ime interval, MaxDelay milliseconds, otherwise a t imeout oc-
curs and the system re-enters the safety state. If the right but ton is pressed soon
enough, the system requests the motor to move the press down and enters the
closing state.

The transit ion groups labeled InitiateClosing and InterruptClosing in Fig-
ure 6 can now be defined as follows:

InitiateClosing -- PressLeftor PressRight
InterruptClosing -- ReleaseLeft or ReleaseRight

This example has made use of the second kind of transition, the t imeout
transition. The respective arrows are adorned as follows:

a f t e r TimeExpression : InternalEvent / RequestedOperations

If the system has been in the source state of such an arrow for the t ime
specified in the t ime expression, then it requests operations f rom other objects
and changes into the target s tate of the arrow. As for operat ion arrows, the con-
dition and requested operations may be omit ted. T imeout transitions are a very
simple, but often sufficient, means to deal with t ime constraints. If necessary,
they could be generalized to t imed transitions [9].

After modeling the reactive view of the global control of the hydraulic press
system, we have yet to describe the reactive behavior of the sampler: After
initialization, the sampler periodically samples the two but ton sensors and the
press sensor. For each sensor, the current values of its signals are read, and,

317

depending on the values of these signals, a certain operation from the controller
is requested. We do not detail the corresponding s tate diagrams at this point.
The s tate d iagrams for the motor , the buttons, and the physical press are not
par t of the controller but par t of its environment. Since their discussion does not
add anything interesting at this point, their t rea tment is not further detailed.

A variety of formal semantics for statecharts have been developed [14]. The
present paper is more in the line of current work on embedding statecharts into
an object-oriented setting [11] [6]. Therefore, we would like to add two remarks
about basic semantic concepts of the statechart notat ion as used in this report:

- The basic communicat ion mechanism is point- to-point communicat ion rather
than broadcasting. Requesting an operat ion from an object can be inter-
preted as sending a message to an object, and providing an operat ion to
an object can be interpreted as receiving a message f rom an object. As
specified in the architectural view, communicat ions can be synchronous or
asynchronous. Following the approach in [11], operation transitions are thus
based on the concepts of request and provision of operations rather than the
concept of event.

- The execution of a transit ion is not timeless and external messages may
arrive at any time. As a consequence, the system may not be able to imme-
diately react to a message. Therefore, incoming messages must be queued
and then worked off individually. By convention, if there is no transit ion for
a particular message, then the system does not change state.

Further experience with case studies should guide the evolution of the nota-
tions and the semantics assumed here.

6 F u n c t i o n a l V i e w

Following common practice when presenting Z specifications, we first specify the
state space of the hydraulic press control and then the effect of its operations
on this space. The internal s tate space is essentially made up of appropriate
internal models of the physical components. These models contain all information
necessary for the control to decide on which action to take. In order to avoid
naming confusion, we introduce a systematic naming convention: The internal
model of a physical unit U is named UModel.

P r e s s c o n t r o l l e r : S t a t e

First, we define the states of the but ton control. A but ton is an object that can
be pressed or released.

Button ::= pressed lreleased

Remember , tha t the requirements of the press control described situations in
which both but tons must be released first before they may be pressed again to
initiate closing of the press. To model this information, we use the following set:

318

Doub leRe l ease ::= required] notrequired

We do not explicitly mirror the full substate structure of the press control from
the reactive view, e.g. the various substates of open. Rather, in this functional
view, we find it more convenient to model the but tons explicitly and later define
in terms of our Z model the states of the state diagrams.

__ B u t t o n M o d e l
le f t , r ight : B u t t o n

release : Doub leRe lease

(le f t = released A right = released) ~ release = no trequired

This schema describes the but ton model as consisting of the two but tons and
a flag tha t indicates whether a release of both but tons is required. A logical
constraint allows a release to be required only if at least one of the but tons is
pressed.

We introduce an auxiliary schema for describing those situations in which the
press is correctly triggered to s tar t moving, i.e. both but tons have been pressed
within the permit ted delay after both have been previously released.

__ P r e s s Tr iggered
B u t t o n M o d e l

lef t = pres sed

r ight = pres sed

release --= notrequired

Note, that in the functional view, we do not model real-t ime aspects, rather,
these aspects are delegated to the reactive view.

Next, we define the press states. The press, without the buttons, may be
ready, open, closing above or below the point of no return, opening, or in state

of error.

P r e s s S t a t e ::= ready l open I c los ingabove I c los ingbelow l open ing I ~rror

The internal model of the press is defined by:

P r e s s M o d e l
ress : P r e s s S t a t e

By means of the notions introduced so far, we can now specify the state of the
press control as follows:

319

f pTWOHa ndPress
PressModel

Bu t tonMode l

PressTr iggered ::~ press ~ open

ress = closingabove ~ Press Triggered

This schema describes the press control as consisting of the press state and the
but ton control all being subject to two constraining conditions related to func-
t ionality and safety: The first condition states tha t the press can be open only
if it has not been triggered. The second condition states that above the critical
point the press can be closing only if it has been triggered. These conditions
must be satisfied for any state of the system

Note tha t the functional specification of the state space reexpresses informa-
tion tha t is present in the state structure of the reactive view. For example, the
definition of PressS ta te is closely related, but not quite identical, to the states
used in the reactive view. for example the state Ready can be defined by the
following schema 1

__ Ready
TwoHandPres s

press = ready

In general, our p r imary intention is to specify each view, so that it makes max-
imal sense by itself, e.g., in case of the functional view, we are interested in
specifying clear and crisp da ta invariants. As in this example, this may well
lead to redundancies. If desired, redundancy can be avoided by allowing, within
the functional model, the use of states and operations derived f rom the reac-
tive model. The development of a notat ion for such derived func t iona l models is
subject of current work.

P r e s s c o n t r o l l e r : O p e r a t i o n s

We now turn to the specification of the operations of the press controller. First,
we specify the effect of pressing the left button. Local to the but ton model, the
effect of this operation can be specified as follows.

I The relation between the reactive and the functional view are discussed in detail the
next section.

__ P r e s s L e f t L o c a l
A B u t t o n M o d e l

le f t = released

le f t ' = pres sed

r ight ' = r ight

re lease ' = release

320

This operat ion can be extended to the two-hand press state by specifying how
the press state is affected by the pressing of the left but ton. There are two cases.
I f the right bu t ton has already been pressed and no release is required yet, then
the press begins to close. If this is not the case, the press remains open.

_ _ P r e s s L e f t
A P r e s s M o d e l

P r e s s L e f t L o c a l

(press = open A r ight = pres sed A release = notrequired)

p r e s # = clos ingabove

(press # open V r ight = released V release = required)

==~ p r e s # = pres s

This specification captures very succinctly the normal behavior of the operation
to press the left but ton. The effect of pressing the right but ton can be specified
analogously.

Next, we turn to the release operations. Again, we begin by specifying the
effect of releasing the left but ton local to the but ton control.

__ Re l ease L e f t Local
A B u t t o n M o d e l

le f t = pressed

le f t ' = released

r ight ' = r ight

r ight = released ~ release' = notrequired

r ight = pres sed ~ release ' = required

Note, tha t the release of a but ton may affect the release flag. Next, we extend
this operat ion to the state of the two-hand press. The interesting case here is to
capture the effect of releasing a but ton at a t ime when the press is closing and
still above the point of no return.

321

_ R e l e a s e L e f t
A PressModel

ReleaseLeftLocal

press = closingabove =~ press' = opening

press 9s closingabove ~ press ' = press

Analogously, we can specify the operation to release the right button.
After specifying the but ton operations, we now turn to the operations de-

scribing state changes resulting from signals received from the physical press.
For example, the effect of the press indicating arrival at the top of the press can
be specified as follows:

_ _ A t T o p
A TwoHandPress

press 6 {opening, ready}

:=~ press I = open

press 6 {opening, ready} A (left = pressed V right = pressed)

release' = required

press E { elosingabove, closingbelow }

(press' = error A release' = release)

l e f t ' = left

right I = right

The first implication specifies the normal behavior, i.e. the signal is arriving
during initialization or opening of the press. Note, in this case, the change of
the release flag, i.e. after a arriving at the top, a full release of both buttons is
required. The second implication specifies the abnormal behavior, i.e. the signal
is arriving during closing of the press, in which case the press stops the motor
and goes into the error state. The remaining operations CrossPonR, A t B o t t o m ,
and SignalError. can be specified in a similar style.

P r e s s c o n t r o l l e r : c o n d i t i o n s

The condition that both buttons are released can be defined as follows:

_ _ BothReleased
TwoHandPress

left = released

right = released

322

P r e s s c o n t r o l l e r : i n t e r n a l e v e n t s

Finally, we specify the sole internal event that arises in case the press is open,
either one of the buttons was pressed, but the delay for pressing the other but ton
has been exceeded. In this case, the event changes the system back into its safety
position.

_ _ P r e s s T i m e O u t

A T w o H a n d P r e s s

p r e s s ~ = p r e s s = o p e n

l e f t = p r e s s e d r r i g h t = r e l e a s e d

r e l e a s e = n o t r e q u i r e d

r e l e a s e ~ = r e q u i r e d

l e f t ' = l e f t

r i g h t I = r i g h t

This completes the functional view of the control. At this point, the reader may
argue that this functional view of the system is redundant, since all behavioral
aspects of this finite state system could have been adequately specified using
statecharts alone. We would argue here that the functional view is useful in
its own since it shows in a very explicit way that the internal models of the
physical components satisfy important safety conditions. Admittedly, one could
have expressed all details of the "button logic" with statecharts, but this would
have definitely obscured the specification and the proof of its properties. Fur-
thermore, this is a very small example, and, in our experience, the data space
and the amount of data transformation tends to grow quickly in more complex
control systems.

7 C o n s i s t e n c y

The reactive and functional view of an embedded system can be checked against
each other in many interesting ways: The basic idea is to systematically and
consistently relate the state hierarchy and the transitions introduced in the stat-
echarts with the state spaces and operations as defined by the Z schemas.

7.1 R e l a t i n g s t a t e s

A straightforward way to relate states between the two different views is to map
every state diagram state S into an appropriate Z schema St describing this
state, and then to formulate various proof obligations for this mapping to be
adequate.

Assuming as given such a mapping for a particular component, the consis-
tency conditions can be presented in three steps. For an arbitrary state S from

323

the reactive model of this component , we distinguish between the following two
cases:

- S is an elementary state, i.e. there is no decomposit ion of S in the reac-
tive model. In this case, one has to verify tha t the associated Z s tate Sz is
nonempty, i.e.

Consistency: ~- 3 Sz .
- S is a hierarchically composed state, i.e. in the reactive model S is decom-

posed into exclusive sub-states S1, $2, " ', and Sn (n > 0) with associated
Z-schemas Sz, Slz, S2z, " ", and S,z. In this case, one has to check sufficiency,
necessity, and disjointness of the decomposition.

Sufficiency: Slz V S2z V . . . V Snz l- Sz.
Necessity: S~ t- $1~ V $2~ V . . . V S ~

Disjointness: Sz f- -1 (S~ /x Sj~) for all i , j E {1 , . - . , n}, where i ~: j .

Of course, the top-level s tatechart of a component must be related to the Z
schema defining the full state space of the component.

7.2 H y d r a u l i c p r e s s e x a m p l e

In case of the hydraulic press, the states from the state interaction diagrams
can be defined in terms of the Z-model quite easily. We illustrate this for the
substates of the open press (see Figure 8).

__ SafetyPosi t ion
TwoHandPress

press = open

left = pressed V right,= pressed ~ release = required

The second condition states tha t in the safety position, if any but ton is
pressed, a release is required before the press may begin to close.

The substate RightPressed can be defined as follows.

__ RightPressed
TwoHandPress

p r e s s = o p e n

left = released

right = pressed

release ---- notrequired

The substate Lef tPressed can be defined analogously. The composed state
Open can be defined as follows.

Open
Two_____Ha__ndPress

tess = open

324

To ensure consistency between these definitions, we have to prove necessity
of the OR-composit ion:

Open ~- (SafetyPosition V LeftPressed V RightPressed)

Sufficiency and disjointness can be shown in a similar way. Similar definitions
and consistency proofs can be given for the other states. The reader might object
at this point, that one may always define composed states in such a way as to
automat ical ly satisfy the completeness proof obligation. While we admit that this
is possible, we want to stress at this point, that our methodological guideline
is to define composed states as natural ly as possible f rom different points of
view. In some cases, consistency between views may follow by construction, in
others, e.g. the Open state, consistency must be ensured by a separate nontrivial
reasoning.

7.3 R e l a t i n g o p e r a t i o n s

In the functional view, we have defined a Z schema for each service, internal
event, or guard in the statechart . Based on the association of a Z schema to each
s tatechart box one can verify conformance between the statechart transitions
and the Z definitions.

The idea is to consider an arbi t rary state and an arbi t rary operat ion and then
to check for consistency with respect to the transitions leaving tha t state. More
precisely, given an arbi t rary operation Op and state S, we have to prove tha t
each transit ion leaving S and labeled with Op, and possibly some condition,
behaves as expected, i.e. results in the desired state. We fur thermore have to
prove, tha t if the operation or event Op occurs and neither one of the conditions
of those transitions are true, the application of Op preserves this state.

First, we distinguish the case tha t no transitions labeled with Op are leaving
S. In such a case, we have to show that application of S preserves this state.

Preservation: Sz A Opz }- S~.

Sz and Opz are the Z schemata associated to S and Op.
I t remains to deal with the case tha t the transitions tl, . .- , tn (n > 0) are

labeled with Op and guards C1, ".-, Cn and move f rom S to states $1, .--, St,.
We check for consistency of these transitions as follows:

Applicability: Sz ~- pre Opz.
Explicit Correctness: S~ A Op~ A Ci~ t- S[~, for 1 < i < n.

325

Implicit Correctness: Sz A Op~ A -~ (C1~ V . . . V C~) ~ S~, if Sz is
primitive.

C,z and Siz are the Z schemata associated with Ci and S,. Note the applicability
check, i.e. any state from which a transition labeled with Op is leaving must imply
the precondition of Op. Note also, that implicit correctness has to be checked
only for primitive states, as it induces implicit correctness for composed states.

Note that implicit correctness is trivial in those cases in which the disjunction
of the guards is complete, for example in the frequent number of cases where
n = 1 and C1 r162 true.

7.4 H y d r a u l i c p r e s s e x a m p l e

First, we consider the operation PressLeft. Apparently there are only two rele-
vant transitions, giving rise to the obligations:

SafetyPosition A PressLefl A BothReleased F- LeflPressed'

SafetyPosition A PressLeft A -~ BothReleased F SafetyPosition ~

RightPressed A PressLeft F ClosingAbove ~

Furthermore, the operation is inapplicable in two states only, namely:

LeftPressed F -~ pre PressLefl

ClosingAbove F- -~ pre PressLeft

For the other primitive states, we have to prove preservation, e.g.:

Opening A PressLefl F- Opening I

An orthogonal analysis can be done with the other press and release opera-
tions. Next, we turn to the control event AtTop. The transitions to be verified
are:

Ready A AtTop F SafetyPosition I

Opening A AtTop F- SafetyPosition'

Running A ClosingBelow A AtTop F Malfunction I

Inapplicability is given in the states Open and Error. The other control events
can be analyzed in a similar fashion.

Finally, there is one internal event PressTimeOut. The following transitions
must be checked.

LeftPressed A PressTimeOut F- SafetyPosition ~

RightPressed A PressTimeOut F SafetyPosition'

Inapplicability is given in the the remaining states. All these properties amount
to very simple checks of the given definitions. Nevertheless, checking these con-
ditions is very helpful for debugging a specification.

326

8 C o n c l u s i o n s

The proposed combination of statecharts and Z for modeling embedded control
systems proved to be both semanticMly and pragmatically interesting. It is im-
portant at this point, to conduct more experiments with the aim of identifying
useful recommendations, guidelines, and heuristics for the process of developing
such combined specifications. Parallel to that, tools for translating specifications
into code should be developed or adapted. For statecharts, such tools are avail-
able. Concerning Z specifications, we would argue to stick to an operational
modeling style, from which efficient code can be generated. This was straight-
forward in the hydraulic press example. The degree to which such a style can be
reasonably adopted seems to depend on the particular application context.

R e f e r e n c e s

1. L. M. Barroca, J. S. Fitzgerald, and L. Spencer. The architectural specification of
an avionics subsystem. In IEEE Workshop on Industrial-strength Formal Specifi-
cation Techniques, pages 17-29. IEEE Press, 1995.

2. G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin
Cummings, second edition, 1994.

3. D. Cralgen, S. Gerhart, and T. Ralston. An international survey of industrial ap-
plications of formal methods. Technical Report NISTGCR 93/626, National Insti-
tute of Standards and Teclmology, Gaithersburg, MD 20899, 1993.

4. Zentralstelle f/lr Unfallverhiitung und Arbeitsmedizin. Pressen - Sicherheit-
sregeln fiir Zweihandschaltungen an kraftbetriebenen Pressen der Metallbearbeitung.
Hauptverband der gewerblichen Berufsgenossenschaften, Langwartweg 103, 5300
Bonn 1, 2nd edition, 1978.

5. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231-274, 1987.

6. D. Harel and E. Gery. Executable Object-Modeling with Statecharts. In
to appear, editor, Proc. ICSE 18, 1996.

7. M. Heisel, S. J/ihnichen, M. Simons, and M. Weber. Embedding mathematical
techniques into system engineering. In M. Wirsing, editor, ICSE-17 Workshop
on Formal Methods Application in Software Engineering Practice, pages 53-60,
1995.

8. I. Houston and S. King. CICS Project Report: Experiences and Results from the
Use of Z in IBM. In S.Prehn and W.J.Toetenel, editors, VDM'91 Formal Software
Development Methods, volume 551 of LNCS, pages 588-596. Springer-Verlag, 1991.

9. Y. Kestens and A. Pnueli. Timed and Hybrid Statecharts and their Textual Rep-
resentation, volume 299 of LNCS, pages 591 - 620. Springer-Verlag, 1992.

10. J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991.
11. B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling.

Jolm Wiley ~z Sons, 1994.
12. IEEE Software. Safety-Critical Systems. IEEE, January 1994.
13. M. Spivey. The Z Notation, A Reference Manual. Prentice Hall, 2nd edition, 1992.
14. M. yon der Beeck. A comparison of statecharts variants. In Symposium on Fault-

Tolerant Computing, LNCS. Springer, 1994.

