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A b s t r a c t .  In this report, we describe an approach that integrates a 
mathematical specification language with more traditional software de- 
sign techniques to yield a practicable methodology for the specification 
of safety-critical control systems, To manage complexity and to foster 
separation of concerns, the system design model is divided into three 
views: the architectural view, specified with object and class diagrams; 
the reactive view, specified with statecharts; and the functional view, 
specified with Z. A systematic relationship between the reactive and the 
functional view entails proof obfigations to guarantee semantic compat- 
ibility. We illustrate this approach with a case study on controlling a 
heavy hydraulic press. 

1 I n t r o d u c t i o n  

Formal methods  have been seriously applied during the past years in various 
industrial and academic pilot projects as reported, for instance, in [3]. However, 
the breakthrough has not yet been achieved. Many companies involved in such 
projects are scaling down their use of formal  methods  to a level that  is in ac- 
cordance with their current industrial relevance. For instance, they have only 
small teams of highly trained research staff working on selected critical aspects 
of systems. 

Wha t  are the reasons for the failure of formal  methods to achieve broader 
acceptance? From our own experience and f rom our analysis of experience reports  
([3, 8, 12], for instance), we believe tha t  one major  reason is tha t  presently 
formal  methods  come with too broad a goal.. Often, they aim at a superior 
and uncompromising methodological  f ramework for the development of perfectly 
correct systems. They often presuppose idealized circumstances, and they have 
usually been developed in academic environments where such circumstances can 
be guaranteed. Also, such a monolithic approach does not leave much room for 
coexistence and interaction with other methodologies that  are in s tandard  use 
within an industrial development context. Still, research on such methods  is 
necessary and has provided us with many  useful techniques and results, but  it 
is highly unlikely to lead to methods tha t  will be quickly accepted in practice. 

We believe tha t  a more modest  approach to the integration of formal  tech- 
niques into the system design process will lead to a more immedia te  application 
of such techniques [7]. Start ing out from existing and accepted conventional de- 
sign methods which are amenable to the integration of ma themat ica l  techniques, 
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one should investigate at which points during the design process mathematical  
techniques can be smoothly and usefully integrated. The rationale for the use 
of formal techniques at these points should be convincing to the experienced 
engineer. Once experiments and case studies have provided evidence that  the 
formal elements introduced are accepted, one can start  to investigate further 
possible anchor points for mathematical  techniques. This investigation can then 
be based on the experience gained during the first phase and on the evolving 
formal literacy of the design team. Hence, in principle, by iterating this process, 
one obtains a method that  has more and more formal elements. It is important  
to note, that  we do not a t tempt  to embed conventional techniques into a formal 
method but  rather the other way around. 

In this report, we sketch an approach that  sets out to integrate a mathe- 
matical specification technique into a well-known engineering technique in order 
to yield a practicable methodology for the specification of safety-critical control 
systems. Our starting point is the statechart notation, which is currently gain- 
ing acceptance in industry for the specification of embedded systems. To cope 
with the growing complexity and the safety requirements of these systems, we 
propose an integration of the specification language Z into statecharts, Z being 
used to model the data  structures and data  transformations within the system. 

The idea of combining statecharts and Z is certainly not new; for example [1] 
uses a combination of Z and timed statecharts in the context of an application 
from avionics. The next section explains key ideas of our approach. The remain- 
ing sections illustrate the approach by developing a control system for a heavy 
hydraulic press. 

2 Specification Methodology 

A widely used technique in modern software engineering is to model a system 
by a combination of different - but semantically compatible - "views" of that  
system. The primary benefit of such an approach is to keep very complex systems 
manageable and to detect misconceptions or inconsistencies at an early stage. 
In the approach presented here, we divide the modeling into three views: the 
architectural model of the system, the reactive model of the system, and the 
functional model of the system (Figure 1). 

The architectural model of a system describes the relationships between the 
types of components used in the system as well as the actual configuration of 
the system components itself. For the description of this model, we adopt the 
object-oriented modeling paradigm [2, for instance]: We understand an embed- 
ded control system as a hierarchicMly structured collection of objects that  change 
state and interact with each other throughout  their lifetime. The relationships 
between object classes are described using well-known elements of class dia- 
grams, i.e. diagrams displaying classes and their structural relationships, such 
as aggregation and inheritance. 

The two other views are primarily concerned with the specification of the 
behavior of single components of the embedded control system. We make a 
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Architectural Model 

class structure 
system structure 

Y 
Reactive Model 

object interaction 
time control 

Functional Model 

data definitions 
data invariants 

data transformations 

Fig. 1. The three modeling views of an embedded system 

fundamental  distinction with respect to the behavior of system components. The 
functional model of a component comprises da ta  definitions, da ta  invariants, and 
data  transformation relations, in particular, for any component,  its encompasses 
its local state and the inpu t /ou tpu t  relation of its operations. Constraints, e.g. 
related to safety properties, about the components states can be derived based 
on these descriptions. The reactive model comprises the life-cycle of components, 
i.e. interactions with other components and the control of time during these 
interactions. Reactive behavior is modeled by specifying how, and under which 
timing constraints, operations from external objects are requested or supplied 
(or both) in the state changes of objects. 

We specify reactive behavior using an appropriate variant of t imed hierarchi- 
cal state transition diagrams, i.e. with a variant of statecharts [5]. There are two 
reasons for this choice: firstly, statecharts have proven to be sufficiently expressive 
for modeling complex component interactions and time control, and secondly, 
the use of statecharts, or close variants of statecharts, is currently spreading in 
industry. This also enables us to use existing analysis and simulation tools for 
this notation. 

Often, functional behavior in state-based systems is specified by textual or 
formal descriptions of pre- and postconditions and of data  invariants. In our 
approach, we specify the functional behavior of objects using the state-based 
formal specification language Z [13]. There are two main reasons for using Z: 
firstly, in our view, Z has proven to be particularly useful for modeling complex 
functional data  transformations; and secondly, both in academia and industry, 
Z has become one of the most widely used formal specification notations. Since 
we aim at a practical approach when modeling functionality, we try to stick 
to a constructive subset of Z, i.e. a subset that  can be compiled into efficient 
code, whenever this is reasonable in a particular application. The use of a math-  
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ematical notation for modeling functional behavior enables us to prove abstract 
safety properties about the control system, such as provisions that  the system 
may never enter certain hazardous states. Safety conditions imposed on data  
structures and data  relationships should, of course, be specified using the full 
expressive power of the Z language. 

Note that  we are not arguing in favor of a monolithically formal approach. 
Rather, our goal is to systematically embed mathematical  elements into industri- 
ally used engineering techniques. As will be seen, this leads to an approach some 
parts of which are "hard", i.e. fully precise, while others remain "softer", i.e. 
allow for a certain range of interpretations. In our view, such an approach leaves 
more room to be adapted to the actual circumstances in particular industrial 
application contexts. 

3 T h e  C a s e  S t u d y :  C o n t r o l  o f  a H y d r a u l i c  P r e s s  

We consider a simple embedded control system, a controller for a heavy hy- 
draulic press that  is operated manually. Hydraulic presses are devices for press- 
ing workpieces into a certain shape. The human operator,  at the press, places 
the workpiece in the press and initiates the closing of the press. The plunger of 
the press moves down, presses the workpiece and subsequently moves up again. 
The workpiece can then be removed from the press and the entire process may 
be repeated. 

Hydraulic presses are dangerous, since the worker operating the press may 
hurt himself by accidentally trapping his hand in the press. A typical safety 
device to prevent hand injuries are two-hand controllers, i.e. control units with 
two buttons, located about 1 meter apart,  that  must both be kept pressed while 
a potentially dangerous action is performed [4]. In addition, both buttons must 
be pressed within a small period of t ime (in our example 0.5 sec) in order to 
successfully initiate the closing of the press. The obvious intention behind two- 
hand controllers is to keep both of the worker's hands out of the danger area. If a 
but ton  is released while the press is closing, the press will immediately stop and 
reopen. However, after a certain point is reached, which we call the critical point, 
the closing press can no longer be stopped physically, and hence cannot react 
to the release of a button.  Finally, for reasons of reliability, the system should 
be capable of detecting sensor readings that  are incompatible with the physical 
properties of the press. In such a situation, which might be due to a broken 
sensor or a failure in message transmission, the system should immediately stop 
the press. 

This very simple embedded system is a good example to introduce and ex- 
plain our approach, since it comes with interesting safety and real-time con- 
straints, but  is simple enough to not clutter the presentation with technical 
details. It should be obvious that  the above informal specification is far too 
sketchy to adequately specify the required system behavior. 
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4 A r c h i t e c t u r a l  V i e w  

In the previous section, we have presented the informal requirements of the 
hydraulic press control case study. Since this is a very small example, the analysis 
and architectural design is straightforward. The results are summarized in the 
diagrams presented in Figures 2 and 4. For this example, we mostly use notations 
inspired from OMT [10] and Booch [2]. However, choice of notations is by no 
means essential and it should not be difficult for the experienced to adapt the 
information content of the following diagrams to his favorite notation. 

Motor 
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Down, 
Stop 

A 

TwoHandPress 

PressLefl, 
PressRight, 
ReleaseLefl, 
ReleaseRight, 
AtTop, 
AtBottom, 
CrossPonR, 
SignalError 

i 
i 
1 
4 
i 

PhysicaIPress Sampler 
tNoO~alues:=3] 

up, 
Do~,z, 
Stop 
Read 

S en so r  
[NoOff aluesl 

Read 

J 
Button 
[NoO]Values:= l ] 

Read 
Press 
Release 

Fig. 2. Class diagram of the press system 

The class diagram describes a two-hand press-object as consisting of four 
subobjects: two buttons to control the press, the physical press, and a data sam- 
pler. Aggregation is denoted by links adorned with a rhomb. Multiplicities can 
be specified explicitly along aggregation links. A button is a particular instance 
of a sensor. It offers an operation to read its (only) measured value. This value 
indicates whether the button is currently pressed. The parameter instantiation 
relationship is denoted by dashed arrows. In addition to being an instantiation, a 
button is also a specialization of a sensor, because it incorporates additional op- 
erations for pressing and releasing a button. The specialization (or inheritance) 
relationship is denoted by links adorned with a triangle. In the context of this 
case study, the physical press is modeled as an entity specializing both a sensor 
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and a motor .  In particular,  besides an operat ion to read the current s tate of the 
press, it includes operations to move up, down and to stop. The physical press is 
also an instantiat ion of a sensor measuring three values. These values are further 
described below. 

In Figure 2, the sampler  and the control of the subobjects of the two-hand 
press together consti tute the software par t  of the system. The press and the but- 
tons model physical objects, connected to the control by communicat ion lines. 
From a more traditional,  software-centered point of view they would be repre- 
sented as the environment of the software control component .  

Since this is a ra ther  simple system and it has a severe real-t ime requirement,  
our main  architectural decision is to adopt  a t ime-frame approach to specify its 
behavior (see Figure 3). 

t sop,o I  r os, I I Pr os, 
I Frame " Frame Time 

Fig. 3. Time-Frame Processing 

More specifically, the idea is to let the sampler  periodically read the cur- 
rent values measured by the physical press and the but tons  and then, based on 
these values, to send control messages to the press control itself. The sending of 
these messages can be interpreted like events affecting control. The  press control 
processes these messages and converts them into motor  commands  to move the 
press. In this sense the purpose of the sampler  is to abstract  from the low-level 
details of communicat ion with the external devices and to offer an appropr ia te  
interface to the logical view of the controller. Of  course, we must  be concerned 
tha t  the control does not miss a relevant input, i.e. the m a x i m u m  t ime for the 
control to react to an input must  be less than  the length of sampling interval. 
The controller requests the operation of individual but tons  using natural  number  
indices, e.g. Button[1].Read reads values f rom the first but ton.  

The communicat ion relationships between objects of this system are dis- 
played in Figure 4. 

Of course, there are many  alternative approaches to this specific one, for 
example the two sensors could themselves be active processes interrupting the 
control by signaling events to it. However, the advantage of t ime-f rame based 
processing is tha t  we can more rigorously control the order of events. Further- 
more, given the small number  of sensors in this case s tudy a concurrent solution 
would not be very realistic. In this example,  all communicat ions  links denote 
synchronous communicat ion.  Asynchronous communicat ion can be indicated by 
appropr ia te  adornment  of communicat ion links. 
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Fig.  4. Communication links of the press system 

5 R e a c t i v e  V i e w  

The top-level reactive behavior of the press control is described by the statechart  
in Figure 5. Initially, the control remains idle until the sampler  signals tha t  the 

TwoHandPress 

UnexpectedSignal 1 

Mal.~nction [ 

AtTop 

t UnexpectedSignal / PhysicalPress, Stop 

�9 Running I 

Fig.  5. Top-level reactive behavior of the controller 

press is in default position, i.e. at the top. The control then enters the running 
mode. In case of a malfunction, the motor  is s topped and a special error state 
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is entered. A malfunction is recognized if the sensors deliver values tha t  are not 
expected at any point of operation. UnexpectedSignals is an abbreviat ion for a 
group of transitions. We return to its definition below. 

Following common conventions, we denote states by rounded boxes and in- 
dicate their names on the upper left corner. As usual, we use a dot-anchored 
kind of arrow to point to default substates to be entered when entering a com- 
plex state. In general we use two kinds of transitions, operation transitions and 
timeout transitions. 

The arrows for operation transitions are in general adorned as follows: 

ProvidedOperations [Condition]/RequestedOperations 

If  the object is in the source state and one of the indicated provided opera- 
tions, separated by or ,  is requested from an external object,  then, if the condition 
is satisfied, the indicated operations are requested from the indicated external 
objects and the object changes into the target  s tate  of the arrow. The  condi- 
tion is optional,  an omit ted  condition acts as a condition that  is always true. 
Requested operations are optional too: if no requested operations are indicated, 
the object just  performs a change of the internal object state. The other form of 
transitions, the t imeout  transition, is explained below. 

Running I 

lnterruptClosing 
/ PhysicalPress.Up [ AtBottom/PhysicalPress.Up 

~Opening t t } 
t AtTop/PhysicalPress.Stop 

Fig. 6. Refinement of the running state 

The running state is further refined in Figure 6. The press is operated in a 
continuous cycle of closing and opening. Entering the state Closing is associated 
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to a motor  command  to move down. The open state and the label InitiateClosing 
are further refined below. The closing state may  be left by either releasing one of 
the but tons,  or by reaching the b o t t o m  of the press. Both cases lead to a motor  
c o m m a n d  to move up. Opening then continues until the sampler  signals the press 
being again at the top. Following a common convention about  state diagrams,  
we use s tubbed arrows to indicate transitions originating f rom substates of not 
yet sufficiently refined states. 

The behavior of the control in the opening and closing states has not yet been 
refined to sufficient detail. First, we have to distinguish between those states in 
which the closing press above or below the critical point, i.e. the point below 
which the press can no longer be reopened before closing. This is clarified in 
the s tate  d iagram in Figure 7. The two arrows leaving the refined closing state 

Closing [ 

/ PhysicalPress, Up 
I CrossPo~ 

I AtBottom/PhysicalPress.Up 

Fig. 7. Refinement of the closing state 

correspond to the two arrows leaving the respective unrefined state in Figure 6. 
Identification of such arrows should be unambiguous by graphical position and 
by label. 

At this point, we have sufficiently exposed the state structure of the two- 
hand press, to define precisely the transit ion group labeled UnexpectedSignals in 
Figure 5. 

UnexpectedSignals - At Top[ ClosingBelow] 
or  AtBottom[Ready V Open V ClosingAbove] 
or  CrossPonR[Ready V Open] 
or  SignaIError 

The most  complex aspect of the press behavior is obviously the transit ion 
from the open to the closing state. This is described in detail in the state di- 
agram in Figure 8 According to the logic of the two-hand press, in order to 
initiate the closing of the press, the two but tons have both to be released and 
subsequently both to be pressed within a specific t ime interval (MaxDelay mil- 
liseconds). Therefore, the safety state, which the system enters initially, can 
be left only when both  but tons are released. Now when, e.g. the left but ton  
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Fig. 8. Refinement of the open state 

is pressed after both  but tons were released, the right but ton must  be pressed 
within a certain t ime interval, MaxDelay milliseconds, otherwise a t imeout  oc- 
curs and the system re-enters the safety state. If  the right but ton is pressed soon 
enough, the system requests the motor  to move the press down and enters the 
closing state. 

The transit ion groups labeled InitiateClosing and InterruptClosing in Fig- 
ure 6 can now be defined as follows: 

InitiateClosing -- PressLeftor PressRight 
InterruptClosing -- ReleaseLeft or  ReleaseRight 

This example has made use of the second kind of transition, the t imeout  
transition. The respective arrows are adorned as follows: 

a f t e r  TimeExpression : InternalEvent / RequestedOperations 

If  the system has been in the source state of such an arrow for the t ime 
specified in the t ime expression, then it requests operations f rom other objects 
and changes into the target  s tate of the arrow. As for operat ion arrows, the con- 
dition and requested operations may  be omit ted.  T imeout  transitions are a very 
simple, but  often sufficient, means to deal with t ime constraints. If  necessary, 
they could be generalized to t imed transitions [9]. 

After modeling the reactive view of the global control of the hydraulic press 
system, we have yet to describe the reactive behavior of the sampler: After 
initialization, the sampler  periodically samples the two but ton sensors and the 
press sensor. For each sensor, the current values of its signals are read, and, 
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depending on the values of these signals, a certain operation from the controller 
is requested. We do not detail the corresponding s tate  diagrams at this point.  
The  s tate  d iagrams for the motor ,  the buttons,  and the physical press are not 
par t  of the controller but  par t  of its environment.  Since their discussion does not 
add anything interesting at this point, their t rea tment  is not further detailed. 

A variety of formal  semantics for statecharts  have been developed [14]. The  
present paper  is more in the line of current work on embedding statecharts  into 
an object-oriented setting [11] [6]. Therefore, we would like to add two remarks  
about  basic semantic concepts of the statechart  notat ion as used in this report: 

- The basic communicat ion mechanism is point- to-point  communicat ion rather  
than  broadcasting. Requesting an operat ion from an object can be inter- 
preted as sending a message to an object,  and providing an operat ion to 
an object can be interpreted as receiving a message f rom an object. As 
specified in the architectural view, communicat ions can be synchronous or 
asynchronous. Following the approach in [11], operation transitions are thus 
based on the concepts of request and provision of operations rather  than the 
concept of event. 

- The execution of a transit ion is not timeless and external messages may  
arrive at any time. As a consequence, the system may  not be able to imme- 
diately react to a message. Therefore, incoming messages must  be queued 
and then worked off individually. By convention, if there is no transit ion for 
a particular message, then the system does not change state. 

Further experience with case studies should guide the evolution of the nota- 
tions and the semantics assumed here. 

6 F u n c t i o n a l  V i e w  

Following common practice when presenting Z specifications, we first specify the 
state space of the hydraulic press control and then the effect of its operations 
on this space. The internal s tate space is essentially made up of appropriate  
internal models of the physical components.  These models contain all information 
necessary for the control to decide on which action to take. In order to avoid 
naming confusion, we introduce a systematic  naming convention: The internal 
model of a physical unit U is named UModel. 

P r e s s  c o n t r o l l e r :  S t a t e  

First, we define the states of the but ton control. A but ton is an object that  can 
be pressed or released. 

Button ::= pressed lreleased 

Remember ,  tha t  the requirements of the press control described situations in 
which both but tons  must  be released first before they may  be pressed again to 
initiate closing of the press. To model this information,  we use the following set: 
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Doub leRe l ease  ::= required ] notrequired  

We do not explicitly mirror  the full substate  structure of the press control from 
the reactive view, e.g. the various substates of open. Rather,  in this functional 
view, we find it more  convenient to model the but tons explicitly and later define 
in terms of our Z model the states of the state diagrams.  

__ B u t t o n M o d e l  
le f t ,  r ight  : B u t t o n  

release : Doub leRe lease  

( le f t  = released A right  = released) ~ release = no trequired  

This schema describes the but ton  model as consisting of the two but tons  and 
a flag tha t  indicates whether a release of both  but tons is required. A logical 
constraint allows a release to be required only if at least one of the but tons is 
pressed. 

We introduce an auxiliary schema for describing those situations in which the 
press is correctly triggered to s tar t  moving, i.e. both  but tons  have been pressed 
within the permit ted  delay after both have been previously released. 

__ P r e s s  Tr iggered  
B u t t o n M o d e l  

lef t  = pres sed  

r ight  = pres sed  

release --= notrequired  

Note, that  in the functional view, we do not model real-t ime aspects, rather,  
these aspects are delegated to the reactive view. 

Next, we define the press states. The press, without  the buttons,  may  be 
ready, open, closing above or below the point of no return, opening, or in state 

of error. 

P r e s s S t a t e  ::= ready l open I c los ingabove  I c los ingbelow l open ing  I ~rror  

The internal model of the press is defined by: 

P r e s s M o d e l  
ress : P r e s s S t a t e  

By means of the notions introduced so far, we can now specify the state of the 
press control as follows: 
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f pTWOHa ndPress  
PressModel  

Bu t tonMode l  

PressTr iggered  ::~ press  ~ open 

ress = closingabove ~ Press  Triggered 

This schema describes the press control as consisting of the press state and the 
but ton  control all being subject to two constraining conditions related to func- 
t ionality and safety: The first condition states tha t  the press can be open only 
if it has not been triggered. The second condition states that  above the critical 
point the press can be closing only if it has been triggered. These conditions 
must  be satisfied for any state of the system 

Note tha t  the functional specification of the state space reexpresses informa- 
tion tha t  is present in the state structure of the reactive view. For example,  the 
definition of PressS ta te  is closely related, but not quite identical, to the states 
used in the reactive view. for example the state Ready can be defined by the 
following schema 1 

__ Ready 
TwoHandPres s  

press  = ready 

In general, our p r imary  intention is to specify each view, so that  it makes max-  
imal sense by itself, e.g., in case of the functional view, we are interested in 
specifying clear and crisp da ta  invariants. As in this example,  this may  well 
lead to redundancies. If  desired, redundancy can be avoided by allowing, within 
the functional model, the use of states and operations derived f rom the reac- 
tive model.  The development of a notat ion for such derived func t iona l  models is 
subject of current work. 

P r e s s  c o n t r o l l e r :  O p e r a t i o n s  

We now turn to the specification of the operations of the press controller. First, 
we specify the effect of pressing the left button.  Local to the but ton model,  the 
effect of this operation can be specified as follows. 

I The relation between the reactive and the functional view are discussed in detail the 
next section. 



__ P r e s s L e f t L o c a l  
A B u t t o n M o d e l  

le f t  = released 

le f t '  = pres sed  

r ight '  = r ight  

re lease '  = release 
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This operat ion can be extended to the two-hand press state by specifying how 
the press state is affected by the pressing of the left but ton.  There are two cases. 
I f  the right bu t ton  has already been pressed and no release is required yet, then 
the press begins to close. If  this is not the case, the press remains open. 

_ _ P r e s s L e f t  
A P r e s s M o d e l  

P r e s s L e f t L o c a l  

(press  = open A r ight  = pres sed  A release = notrequired)  

p r e s #  = clos ingabove 

(press  # open V r ight  = released V release = required) 

==~ p r e s #  = pres s  

This specification captures very succinctly the normal  behavior of the operation 
to press the left but ton.  The effect of pressing the right but ton can be specified 
analogously. 

Next, we turn to the release operations. Again, we begin by specifying the 
effect of releasing the left but ton local to the but ton control. 

__ Re l  ease L e f t  Local  
A B u t t o n M o d e l  

le f t  = pressed  

le f t '  = released 

r ight '  = r ight  

r ight  = released ~ release'  = notrequired  

r ight  = pres sed  ~ release '  = required 

Note, tha t  the release of a but ton may  affect the release flag. Next, we extend 
this operat ion to the state of the two-hand press. The interesting case here is to 
capture the effect of releasing a but ton at a t ime when the press is closing and 
still above the point of no return. 
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_ R e l e a s e L e f t  
A PressModel  

ReleaseLeftLocal 

press = closingabove =~ press'  = opening 

press 9s closingabove ~ press '  = press 

Analogously, we can specify the operation to release the right button.  
After specifying the but ton operations, we now turn to the operations de- 

scribing state changes resulting from signals received from the physical press. 
For example, the effect of the press indicating arrival at the top of the press can 
be specified as follows: 

_ _ A t T o p  
A TwoHandPress  

press 6 {opening,  ready} 

:=~ press I = open 

press 6 {opening,  ready} A (left = pressed V right = pressed) 

release' = required 

press E { elosingabove, closingbelow } 

(press'  = error A release' = release) 

l e f t ' =  left 

right I = right 

The first implication specifies the normal behavior, i.e. the signal is arriving 
during initialization or opening of the press. Note, in this case, the change of 
the release flag, i.e. after a arriving at the top, a full release of both buttons is 
required. The second implication specifies the abnormal behavior, i.e. the signal 
is arriving during closing of the press, in which case the press stops the motor  
and goes into the error state. The remaining operations CrossPonR,  A t B o t t o m ,  
and SignalError.  can be specified in a similar style. 

P r e s s  c o n t r o l l e r :  c o n d i t i o n s  

The condition that  both buttons are released can be defined as follows: 

_ _  BothReleased 
TwoHandPress  

left = released 

right = released 
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P r e s s  c o n t r o l l e r :  i n t e r n a l  e v e n t s  

Finally, we specify the sole internal event that  arises in case the press is open, 
either one of the buttons was pressed, but  the delay for pressing the other but ton  
has been exceeded. In this case, the event changes the system back into its safety 
position. 

_ _ P r e s s T i m e O u t  

A T w o H a n d P r e s s  

p r e s s  ~ = p r e s s  = o p e n  

l e f t  = p r e s s e d  r  r i g h t  = r e l e a s e d  

r e l e a s e  = n o t r e q u i r e d  

r e l e a s e  ~ = r e q u i r e d  

l e f t '  = l e f t  

r i g h t  I = r i g h t  

This completes the functional view of the control. At this point, the reader may 
argue that  this functional view of the system is redundant,  since all behavioral 
aspects of this finite state system could have been adequately specified using 
statecharts alone. We would argue here that  the functional view is useful in 
its own since it shows in a very explicit way that  the internal models of the 
physical components satisfy important  safety conditions. Admittedly, one could 
have expressed all details of the "button logic" with statecharts, but  this would 
have definitely obscured the specification and the proof of its properties. Fur- 
thermore, this is a very small example, and, in our experience, the data  space 
and the amount  of data  transformation tends to grow quickly in more complex 
control systems. 

7 C o n s i s t e n c y  

The reactive and functional view of an embedded system can be checked against 
each other in many interesting ways: The basic idea is to systematically and 
consistently relate the state hierarchy and the transitions introduced in the stat- 
echarts with the state spaces and operations as defined by the Z schemas. 

7.1 R e l a t i n g  s t a t e s  

A straightforward way to relate states between the two different views is to map 
every state diagram state S into an appropriate Z schema St describing this 
state, and then to formulate various proof obligations for this mapping to be 
adequate. 

Assuming as given such a mapping for a particular component,  the consis- 
tency conditions can be presented in three steps. For an arbitrary state S from 
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the reactive model of this component ,  we distinguish between the following two 
cases: 

- S is an elementary state, i.e. there is no decomposit ion of S in the reac- 
tive model.  In this case, one has to verify tha t  the associated Z s tate  Sz is 
nonempty,  i.e. 

Consistency: ~- 3 Sz . 
- S is a hierarchically composed state, i.e. in the reactive model S is decom- 

posed into exclusive sub-states S1, $2, " ', and Sn (n > 0) with associated 
Z-schemas Sz, Slz,  S2z, " ", and S,z. In this case, one has to check sufficiency, 
necessity, and disjointness of the decomposition. 

Sufficiency: Slz V S2z V . . .  V Snz l- Sz. 
Necessity: S~ t- $1~ V $2~ V . . .  V S ~  

Disjointness:  Sz f- -1 (S~ /x Sj~) for all i , j  E {1 , . - . ,  n}, where i ~: j .  

Of course, the top-level s tatechart  of a component  must  be related to the Z 
schema defining the full state space of the component.  

7.2 H y d r a u l i c  p r e s s  e x a m p l e  

In case of the hydraulic press, the states from the state interaction diagrams 
can be defined in terms of the Z-model quite easily. We illustrate this for the 
substates of the open press (see Figure 8). 

__ SafetyPosi t ion 
TwoHandPress  

press = open 

left = pressed V right,= pressed ~ release = required 

The second condition states tha t  in the safety position, if any but ton is 
pressed, a release is required before the press may  begin to close. 

The substate RightPressed can be defined as follows. 

__ RightPressed 
TwoHandPress  

p r e s s  = o p e n  

left = released 

right = pressed 

release ---- notrequired 

The substate  Lef tPressed can be defined analogously. The composed state 
Open can be defined as follows. 



Open 
Two_____Ha__ndPress 

tess = open 
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To ensure consistency between these definitions, we have to prove necessity 
of the OR-composit ion:  

Open ~- ( SafetyPosition V LeftPressed V RightPressed) 

Sufficiency and disjointness can be shown in a similar way. Similar definitions 
and consistency proofs can be given for the other states. The reader might  object 
at this point,  that  one may  always define composed states in such a way as to 
automat ical ly  satisfy the completeness proof obligation. While we admit  that  this 
is possible, we want to stress at this point, that  our methodological  guideline 
is to define composed states as natural ly as possible f rom different points of 
view. In some cases, consistency between views may  follow by construction, in 
others, e.g. the Open state, consistency must  be ensured by a separate nontrivial 
reasoning. 

7.3 R e l a t i n g  o p e r a t i o n s  

In the functional view, we have defined a Z schema for each service, internal 
event, or guard in the statechart .  Based on the association of a Z schema to each 
s tatechart  box one can verify conformance between the statechart  transitions 
and the Z definitions. 

The  idea is to consider an arbi t rary state and an arbi t rary  operat ion and then 
to check for consistency with respect to the transitions leaving tha t  state. More 
precisely, given an arbi t rary operation Op and state  S, we have to prove tha t  
each transit ion leaving S and labeled with Op, and possibly some condition, 
behaves as expected, i.e. results in the desired state. We fur thermore have to 
prove, tha t  if the operation or event Op occurs and neither one of the conditions 
of those transitions are true, the application of Op preserves this state. 

First, we distinguish the case tha t  no transitions labeled with Op are leaving 
S. In such a case, we have to show that  application of S preserves this state. 

Preservation: Sz A Opz }- S~. 

Sz and Opz are the Z schemata  associated to S and Op. 
I t  remains to deal with the case tha t  the transitions tl, . .- ,  tn (n > 0) are 

labeled with Op and guards C1, ".-, Cn and move f rom S to states $1, .--, St,. 
We check for consistency of these transitions as follows: 

Applicability: Sz ~- pre Opz. 
Explicit Correctness: S~ A Op~ A Ci~ t- S[~, for 1 < i < n. 
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Implicit Correctness: Sz A Op~ A -~ (C1~ V . . .  V C~)  ~ S~, if Sz is 
primitive. 

C,z and Siz are the Z schemata associated with Ci and S,. Note the applicability 
check, i.e. any state from which a transition labeled with Op is leaving must imply 
the precondition of Op. Note also, that  implicit correctness has to be checked 
only for primitive states, as it induces implicit correctness for composed states. 

Note that  implicit correctness is trivial in those cases in which the disjunction 
of the guards is complete, for example in the frequent number of cases where 
n = 1 and C1 r162 true. 

7.4 H y d r a u l i c  p r e s s  e x a m p l e  

First, we consider the operation PressLeft. Apparently there are only two rele- 
vant transitions, giving rise to the obligations: 

SafetyPosition A PressLefl A BothReleased F- LeflPressed' 

SafetyPosition A PressLeft A -~ BothReleased F SafetyPosition ~ 

RightPressed A PressLeft F ClosingAbove ~ 

Furthermore, the operation is inapplicable in two states only, namely: 

LeftPressed F -~ pre PressLefl 

ClosingAbove F- -~ pre PressLeft 

For the other primitive states, we have to prove preservation, e.g.: 

Opening A PressLefl F- Opening I 

An orthogonal analysis can be done with the other press and release opera- 
tions. Next, we turn to the control event AtTop. The transitions to be verified 
are: 

Ready A AtTop F SafetyPosition I 

Opening A AtTop F- SafetyPosition' 

Running A ClosingBelow A AtTop F Malfunction I 

Inapplicability is given in the states Open and Error. The other control events 
can be analyzed in a similar fashion. 

Finally, there is one internal event PressTimeOut.  The following transitions 
must be checked. 

LeftPressed A PressTimeOut F- SafetyPosition ~ 

RightPressed A PressTimeOut F SafetyPosition' 

Inapplicability is given in the the remaining states. All these properties amount  
to very simple checks of the given definitions. Nevertheless, checking these con- 
ditions is very helpful for debugging a specification. 
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8 C o n c l u s i o n s  

The proposed combination of statecharts and Z for modeling embedded control 
systems proved to be both semanticMly and pragmatically interesting. It is im- 
portant  at this point, to conduct more experiments with the aim of identifying 
useful recommendations, guidelines, and heuristics for the process of developing 
such combined specifications. Parallel to that,  tools for translating specifications 
into code should be developed or adapted. For statecharts, such tools are avail- 
able. Concerning Z specifications, we would argue to stick to an operational 
modeling style, from which efficient code can be generated. This was straight- 
forward in the hydraulic press example. The degree to which such a style can be 
reasonably adopted seems to depend on the particular application context. 
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