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A b s t r a c t .  We propose a categorical and logical formalism and apply it 
in order to compositionally specify and verify the fault-tolerance mecha- 
nisms of the Modulor system. We claim that our approach is well-suited 
to the validation of real-sized critical systems. 

1 I n t r o d u c t i o n  

In this paper,  we present how we have formally validated some fault tolerant 
mechanisms of the Modulor system, using a combination of a logical and a cate- 
gorical approach. Through this experiment,  we aim to demonstrate  the interest 
of the approach for validating critical real-sized systems. 

The Modulor system was developed at CERT jointly with the design of a 
flexible, massively parallel machine architecture. I t  supplies the programmers  
with ad-hoc software tools allowing to take advantage of the processor net of the 
machine. We were interested in validating the principle of the detection mech- 
anism dedicated to the machine. The validation process was mainly influenced 
by the following system features. 

- First, the whole system is distributed and large because it is composed of 
numerous replications of a basic set of processes; each set of processes runs 
on a processor and interacts with other sets of processes by communicat ion 
channels building a net of processors. A modular approach allows control of 
the complexity of the validation induced by the size of the system. 

- Next, the topology of the net of processors is flexible and changes during 
a runtime. In order to have general results, the validation results must  be 
generic, i.e. independent of the net topology. 

- Finally, the system provides fault-tolerance mechanisms. Consequently, the 
validation process must  deal with fault modeling. 
Before using the validation approach described in this paper,  we have car- 

ried out validations based on CCS and model-checking principles (see [13]) and 
exhibited limits of these approaches for our purpose. 

On one hand, logical formalisms such as TLA ([10]) or Unity ([2]) are expres- 
sive enough to easily specify distributed systems and their properties. However, 
these formalisms lack means of structuring specifications and fully automat ic  
verifying tools. These gaps make the formal validat~ion of a real-sized system 
difficult. 
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On the other hand, algebraic approaches such as CCS ([12]) or CSP([8]) of- 
fer composition and communication laws allowing structuring of specifications. 
Moreover, a lot of analysis tools are currently available (bisimulation analysis, 
model-checking of p-calculus formulae,...). However the operational way of mod- 
eling systems makes the fault modeling cumbersome in our case. Each faulty 
state must be pointed out individually by performing a "fault-action" which 
triggers other actions describing the ad-hoc erroneous behavior. The specifica- 
tion is more concise using a descriptive approach since the features of the faulty 
states can be summed up by a few generic formulae once and for all. 

The lack of means of expressing state properties also penalizes the description 
of the data  properties. In case of fault tolerant systems, redundancy resources 
must be taken into account. In the case of the Modulor system, these resources 
evolve with time and we must deal with their generic properties. Operational 
approaches are not well-suited to express state invariants. 

Our proposM Mms to bridge the gap between the two trends: we wish to keep 
the expressiveness of the logical formalisms and the composition laws a la CCS. 
We have based our work on the categorical framework proposed by Fiadeiro and 
Maibaum [6]; each component of the system is described by a logical theory 
and the whole system results from the interconnection of the components by 
means of categories. We have defined a new logic to describe a component,  
mixing linear temporal logic ([11]), and dynamic logic ([7]). The linear temporal 
logic has proved to be well suited for expressing properties of concurrent and 
reactive systems; and the behavior of systems is easily described thanks to the 
explicit use of actions in the dynamic logic. Our logic is, in fact, a fragment of a 
particular p-calculus [9] , but we have found an axiomatic sound and complete 
with respect to the proposed semantics [17]. This result makes the proofs easier 
on a component theory. The properties of the global system can be derived in a 
modular way in the categorical framework. 

In section 2, we present the Modulor machine and its fault-tolerance mech- 
anisms. The aim of section 3 is to introduce our formalism, using as a simple 
example the synchronization at the beginning of a phase. Section 4 finally gives 
the results we obtained about Modulor and shows the adequacy of the formalism 
for the specification and verification of fault-tolerant systems. 

2 M o d u l o r  

The research project named Modulor 1 is directed towards the design and realiza- 
tion of a massively parallel, modular and dynamically reconfigurable computer, 
as well as the design and realization of the associated software tools. The ar- 
chitecture is a network of processors, and the physical reconfigurability of the 
hardware links connecting the processors allows us to satisfy two objectives: 

1 Modulor project has been mainly funded by DRET (Research Division of the French 
Defense Department). 
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- An opt imal  topology can be chosen for each application or each phase of the 
application. We limited our objectives to explicit, quasi-dynamic reconfigu- 
ration. We ask programmers  to decompose their application into algorithmic 
phases. Each phase is a graph of communicat ing processes, written up to now 
in Occam, and necessitates a specific communicat ion topology. 

- Reconfiguration capabilities can be used to offer the dynamic redundancy 
needed for fault- tolerant computing (the likelihood of the occurrence of a 
faulty processor grows with the number of such processors). 

Up to now, the interest of the approach has been validated by implementing 
algorithms ranging from numerical algorithms through to tree searching algo- 
rithms. More details about  these experiments can be found in [4]. 

The development of a reconfigurable application is assisted by a set of soft- 
ware tools. A lot of them have been validated by practical experiments. Now, 
our main concern is to formally validate : 

- the synchronization mechanisms for the phase initialization and completion. 
- the fault-tolerance mechanisms. 

2.1 F e a t u r e s  o f  the  net  p r o c e s s o r s  

We call "net processors" the processors required by an application. All the net 
processors are connected by oriented links. Considering one link, we call the 
source processor "father processor" and the target  one "son processor". Among 
the net processors, we distinguish the host processor. It  is connected to one of 
the net processors and is not supposed to break down. In this paper,  we will 
base all our illustrations on the following configuration: 

H 1 2 

3 4 

The process running on the host processor plays a supervisory role with 
respect to the execution of the computat ion phase: it chooses the type of the fol- 
lowing phase in accordance with the results of the previous one and synchronizes 
the beginning and the end of each phase. 

2.2 S y n c h r o n i z a t i o n  mechan i sms  

A round of synchronization message exchanges occurs at the phase initialization. 
The used algori thm allows each processor 2 to receive the phase number,  and 
then to begin the algorithmic phase with the suitable topology. 

2 For the sake of simplicity, we will identify a processor with the process that it is 
executing. 
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During the synchronization, the host processor sends the phase number to 
its son and it begins the execution of the phase. A net processor waits for a 
phase number from one of its fathers. Then it sends it to all its sons and waits 
for it from all its other fathers (if it has any) ; it can send and receive in parallel. 
Finally, when all the sendings and receivings are finished, it begins the execution 
of the phase. 

A second rendez-vous takes place at the phase completion, which is the com- 
pletion of each process. A communication tree exists for this synchronization 
(the root of this tree is the host processor). When a process has ended its com- 
putation, it waits for all its sons to send an OK message and then sends an O K  
message to its father. 
After this ending synchronization, the supervisor physically modifies the com- 
munication links for the next phase. At this time, no process of the network must 
send messages, it is only waiting for a new phase to begin. All these mechanisms 
are only written with message exchanges. 

Synchronization properties. The synchronization algorithm aims at triggering 
the computation of the phase and ensuring the consistent use of the exchanged 
data  during the phase. Consistency is reached when a process does not receive 
synchronization messages while it is waiting for data  messages. 

So in the context of our application, we may express more precisely these 
requirements by: 

- PI:  each process receives at least one synchronization message before begin- 
ning the phase computation; 

- P2: each process receives no more synchronization messages after entering 
the phase computation. 

2.3 F a u l t - t o l e r a n c e  m e c h a n i s m s  

Fault tolerance is achieved by passive redundancy. So detection, isolation and 
recovery mechanisms have been implemented (fault detection, diagnosis and re- 
configuration of the architecture in order to replay the phase). We detail the 
detection mechanism because it is this part we are interested in for the valida- 
tion. 

We assume that  a failure of the processor or of one of the communication 
links corresponds to a total stop of the processor. Besides, every processor at- 
tempting to communicate with a faulty processor is blocked. We also assume 
the user's code has been already validated and then we assume a maximum 
time for  each phase execution. So exceeding this limit is assimilated with an 
error, and means that  a processor is faulty. The added mechanisms allow the 
deadlock to be detected when timers exceed the upper limit for the phase. 

On each net processor of the net, the running process is divided into three 
processes (timer, server and phase) in order to control the state of the phase 
during its execution. 
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- The phase process is responsible for the execution of the phase. To achieve 
this execution, it communicates with the processors it is connected with. 
The phase process can break down at any time during the execution, or it 
can become blocked while trying to communicate with a processor that  has 
broken down. The phase process regularly asks the server the current state 
of the phase. If the state is not correct, it stops its execution. If it can finish 
its execution correctly, it signals the correct end to the server. 
The server process updates the state of the phase (which becomes in error 
if a time-out has happened). The server also gives the state of the phase 
to the phase process. Finally, it stops the timer when the phase has ended 
correctly. 

- The timer process initializes a timer at the beginning of the phase. When the 
execution of the phase is not finished in time (the process is locked, waiting 
for a communication with a locked or faulty processor), a time-out happens 
and the timer process unlocks the phase process if necessary. Otherwise, the 
timer process is stopped by the server process. 

Detection Properties. We focus our experiment on the detection algorithm. We 
stated at least four requirements which express the correctness of this algorithm: 

- P3: Every failure is detected: "Each time a processor is faulty, the host knows 
it". 

- P4: The detection allows to resume communications between non-faulty pro- 
cessors: "All blocked processors will be released". 

3 Specifying a component  by means of the logic of 
actions and t ime 

We have designed a logic to deal in the same formalism with the specification 
of a system behavior and the expected properties. This logic inherits the way 
of specifying the system actions from the dynamic logic and the expression of 
the properties from linear temporal logic. We first present the logic and then 
illustrate how to use it with the synchronization algorithm at the beginning of 
a phase. 

3.1 Logic of actions a n d  t i m e  

S y n t a x .  For a given component of a system, let Ac  = (CONSTc, ATTc, 
ACTc) be the component signature. CONSTc, ATTc, and ACTc are three 
disjoint and finite sets of name symbols denoting respectively the name of con- 
stants, attributes and actions of the component. We introduce the new action 
symbol v which does not belong to ACTc and denotes external actions of other 
components outside C. 

From Ac,  we inductively construct the set of the well-formed formulae rela- 
tive to the component C: 
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- i f x E A T T c  a n d c E C O N S T c ,  x = c i s a w f f f o r C  
- if A and B are wff for C and a E A C T c  U {r} then --A, A ~ B, A A B, 

A V B, A *-+ B, T, F ,  [a]A, < a > A, OA, rnA, OA, A Until  B are wff for C. 

--, --% A, V, *-* are the connectives of the classical logic whereas [a], < a >, 
O, o, (}, Until  are modal  operators which have the following meaning : 
< a > A: it is possible to execute a reaching a si tuation in which A is true. 
[a]A: every execution of a leads to a si tuation in which A is true. 
OA :at the next step of the execution, A will be true. 
rnA: now and in the future, A will always be true. 
~A:  A will be true. 
A Until  B: A will remain true until B becomes true. 

We will give the semantics and an axiomatic for the connectives -,, --% the 
family of modal  operators [a] and the temporal  operators  o ,  O and Until. The 
meaning of the other connectives, modal operators  and the formulae T (true) 
and F (false) is given by the definitions above: 
T -'~def A --+ A A +-+ B =de/ (A -+ B) A (B ~ A) 
F ~-de] -~T < ~ > A ~---def --[a]-~A 
A A B --dr] -,(A --~ -,B) OA ~---de] V a e A C T C U { r }  < Ol > A 
A Y B =dr/ -,A --* B 

S e m a n t i c s  The formulae of our logic are interpreted within an infinite sequence 
of states standing for a computat ion of a component.  In order to deal explicitly 
with actions, we label the transitions from one state to its immediate  successor 
in the sequence, by a subset of A C T c  U {r}. We do not assume any hypothesis 
about  the parallelism but an interleaving semantics can be gained by labeling 
the transition by an unique name of A C T c  U {v}. 

We chose a linear t ime semantics rather than a branching one as proposed 
by Fiadeiro and Maibaum, because it seems to be expressive enough for our 
purpose without requiring the complexity of a temporal  logic such as CTL* [5] . 

Model definition. A model M c  relative to the signature Ac  = ( C O N S T c ,  
A T T c ,  A C T c )  of a component  is a quintuplet (W, {R~Ict C A C T c  U {r}}, H, D, 

ICONSTC , IATTC ) where: 

- W is a non empty  set of worlds (or states) 
- each R~ is a partial  function over W. R ~ ( w ) = w '  also noted by w / ~ w '  means 

tha t  the successor w' of w is reached by performing a.  
- / / i s  the next-state function which associates with each world its successor 

in the computat ion.  In order to relate t ime and action, we add the follow- 
ing constraint: H = Uae(ACTCU. {r)) R~ , which expresses that  a transit ion 
always results f rom performing at least one action. 

- D is a domain of values 
-- I C O N S T C  is the function of interpretation of the constants. The interpreta- 

tion of the constants is t ime independent. I C O N S T C  : C O N S T c  --+ D 
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-- I A T T C  is the function of interpretation of the attributes. This function is 
t ime dependent since the value of an at tr ibute may change from one state 
to the other. IATTC : ATTc x W ---* D 

Satisfiability relation. The satisfiability relation ~ between pairs (Mc, w) and 
formulae is defined by the following rules : 
(Mc, w) ~ (z = c) iff IATTC(W, X) = ICONSTC(e) 
(Mc,  w) ~ -~A iff not((Mc, w) ~ A) 
(Mc, w) ~ A ~ B iff (Mc, w) ~ -~A or (Mc,  w) ~ B 
(Mc, w) ~ [a]A iff Vw' E W, if wR~w' then (Me, w') ~ A 
(Mc, w) ~ OA iff (Mc, II(w)) ~ A 3 
(Mc, w) ~ DA iff Vi > 0, (Mc, Hi(w)) ~ A 
(Me, w) ~ A Until B iff 3i > 0 such that  
(Mc, II~(w)) ~ B and Yj < i, (Me, Hi(w)) ~ A 

Satisfiability. A formula A is satisfiable if there is a model M and a world w 
of the set of world of M such that  (M, w) ~ A. 
Validity. A formula is valid iff it is satisfiable in every world of every model. 

A x i o m a t i c  The following system captures the semantics given in the previous 
section. 

-- Axioms of the propositional calculus and of the equality predicate 

- Axiom of the propositional dynamic logic: [a](A --* B) A [c~]A ~ [a]B 
We recall the linkage definition between action and time: 

O A  -'~def VaEACTCu{T}  < O~ > A 
- Axioms of the propositional linear temporal logic : 

D(A --. B) A DA --~ DB 
D(A ~ OA) A A ~ DA 
DA ~ A A ODA 

Inference rules: 

- R1 ~-A,~A--.B (modus ponens) bB 
- -  R2 ~ (D necessitation) 
- R 3  b A  ([a] necessitation) 

OA ~ -,O~A 
A Until B --* ~}B 
A Until B ~ B V (A A O(A Until B)) 

Theorem. We have proved that  the restriction of the proposed semantics to the 
pure propositional models is sound and complete with respect to the axiomatic 
below [17]. 

3 As OA is defined by a combination of operators < a >, the definitions of the relation 
/ /  and of the satisfiability relation for OA are not required; however we gave them 
for sake of readability. 
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3.2 S p e c i f i c a t i o n  o f  a c o m p o n e n t  

Each component C of a system can be described by a theory Oc of the logic 
of action and time presented above, using the object-oriented methodology pro- 
posed by Fiadeiro and Maibaum. The key point is the encapsulation principle 
allowing compositional specification and validation. 

T h e  c o m p o n e n t  e n c a p s u l a t i o n  

Principle. A component is defined by attributes and specific actions. Attributes 
are the state variables of the component; their values range over a set of con- 
stants. The actions are the "methods" related to the component. The encapsu- 
lation principle for a component C is stated as follows: 

- the attributes and the actions of a component are only those whose names 
occur in the signature Ac; 

- the possible values of an at tr ibute range over the constants denoted by the 
names of CONSTc.  

- Moreover, the scope of the effects of an action are local to the component; so, 
the at tr ibute values of a component C can only be modified by the actions 
of ACTc. 

Indeed, the signature Ac is a way to circumscribe a component. 

Modeling encapsulation in a theory q~c. To take into account the locality of 
the action effects, we add a locality axiom in each theory describing a given 
component. For a given component C and its signature Ac = (CONSTc, ATTc, 
ACTc), the locality axiom has the following pattern : 

locust: V < >Tru V( A ( V (x=e^O(x=c)))) 
aEACTC xEATTC cECONSTC 

This axiom means that  either an action of the component C is performed or the 
attributes keep their values in the next state. 

Semantics point of view. Each time a transition is labeled by r (i.e. by no action 
of the observed component),  then the values of the component attributes remain 
unchanged after the transition. 

According to the Fiadeiro and Maibaum's terminology, we call a model M e  = 
(W, {R~ta E ACTc U {T}}, II, D, ICONSTC, IATTC) a Ac-locus with respect to 
the signature A c  iff: 
V(w, w') �9 W, if wRTw' and R~(w) is undefined for all a of ACTc, 
then Yx �9 ATTc, IATTC(X, W) = IATTC(X, W') 

Let Mzoc~sc be the set of models for C which are At-loci .  We proved ([17]) 
that  the locus axiom is exactly defined by the set of Mtocusc : 
VMc, Yw, (Mc, w) ~ locusC iff Me �9 Mlocu~c 

We say a formula A is loc i -va l id  and write ~lo~i A if 
VMc �9 Mlo~,c, (Me, w) ~ A. 
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D e s c r i p t i o n  t h e o r y  o f  a c o m p o n e n t  We saw in section 2 tha t  each compu- 
tat ion phase on the Modulor machine begins with a synchronization of all the 
active processes of the phase. We present here the logical theory describing the 
behavior of one processor during this synchronization round. 

Signature. For the description of a process, t h r e e  a t t r i b u t e s  are needed: 
ready_to_send, connect_to_j and connect_from_j. The at t r ibute  ready_to_send takes 
the value True  4 when the process has received a number for the phase, it means 
it is now able to send it to its sons. The at tr ibutes connect_to_j and connect_from_j 
describe the connections that  exist between the processors. They may take three 
values: 0 when the connection does not exist, 1 when the connection exists and 
2 when the connection with the processor j exists and the number has been sent 
or received to or from the processor j. 

The process can execute t h r e e  ac t i ons :  send the number to a process j 
send_j, receive the number from a process j receive_j and begin the phase be- 
gin_phase. 

Theory. Let us now define the theory associated with a component.  First we 
express the properties of the attr ibutes.  Their values range over subset of con- 
stants and cannot have simultaneously two different values. These properties are 
i n t e g r i t y  c o n s t r a i n t s  which must  always be satisfied during a computat ion.  In 
the case of the theory of a process in Modulor, we express this by the formula: 
D(ready_to_send = True  G ready_to_send = False)  A D(connect_from_j  -= 0 G 
connect_from_j  = l ~connec t_ f rom_j  = 2)A(connect_to_j = OGconnect_to_j = 
1 �9 connect_to_j = 2) where | stands for the exclusive or. 

In order to reason with initialized computat ion,  we may add formulae de- 
scribing the in i t i a l  s t a t e  o f  t h e  a t t r i b u t e s .  For instance, we have: 
ready_to_send = False  

Then we define formulae to express the features of the actions. We determined 
four classes of formulae: 

- n e c e s s a r y  p r e c o n d i t i o n s  to perform an action; for example, the process 
can only receive the number from a process j i f j  is connected with it: 
D(< receive_j > T ~ connect_frorn_j -- 1) 

- r e a c t i v i t y  o r  f a i r n e s s  f o r m u l a e  to guarantee the trigerring of enable ac- 
tions. For example, we have: 
O(ready_to_send = True  A connect_to_j = 1 --* (} < send_j > T)  
to ensure the action will be done if the preconditions are satisfied. 

- w e a k e s t  p o s t - c o n d i t i o n s  to describe the effects of the actions. For exam- 
ple, after the reception of the number from j, the a t t r ibute  ready_to_send 
takes the value True and connect_from_j the value 2: 
[~([receive_j](connect_from_j = 2 A ready_to_send = True)  

- f r a m e  a x i o m s  which characterize what a t t r ibute  values remain unchanged 
after an action. These axioms may be seen as specialization of the locus 

4 The two values True and T must be distinguished: T is a wff of our logic, True 
denotes a constant. 
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axiom: they express that  an attribute value changes during a transition if 
and only if some actions are performed. For instance: 
D(connect_from_j  = 1 A O(connect_from_j  = 2) --~< receive_j > T)  

The behavior of a process during the synchronization can then be summarized 
(forgetting the frame axioms, the integrity constraints and the initialization) as 
follows: 

Cons tan t s  : 
At tr ibutes  : 
Act ions  : 
A x i o m s  : 

True ,  False,  0, 1, 2 
ready_to_send, connect_from_j,  connect_to_j 
send_j, receive_j, begin_phase 
D([receive_j](conneet_from_j = 2 A ready_to_send = True)  
D(< reccive_j > T -~ connect_from_j  = 1) 
D([send_j]connect_to_j = 2) 
D(< send_j > T -+ connect_to_j = 1 A ready_to_send = True )  
D(ready_to_send = True  A connect_to_j = 1 --* ~ < send_j > T)  
D(< begin_phase > T ---, ]\je[o..5]( (connect_to_j = 0 V connect_to_j = 2) 

A(conneet_from_j = 0 V connect_from.j = 2))) 

4 Combining components by means of categories 

In this section, we present the category of object descriptions defined by Fi- 
adeiro and Maibaum in [6], and we consider the descriptions given in section 2 
as objects of this category. Our aim in this section is to explain that  the categor- 
ical framework offers a well-suited structure for the combination of components. 
In the category of descriptions, interactions between objects are described by 
the morphisms of the category, and we will see that  the characteristics of these 
morphisms have some consequences on the types of composition which can be 
achieved between the descriptions. A diagram is obtained by linking the descrip- 
tions of all the components with the morphisms representing the relationships 
between them. This diagram can finally be collapsed in an object of the category 
whose formulae specify the behavior of the whole system. 

4.1 The category of  descriptions. 

First, we recall the definition of a category. A category is composed of two 
collections: the objecls of the category and the morphisms of the category, and 
of four operations. Two of these operations associate with each morphism f of 
the category respectively its domain dora(f)  and its codomain cod(f) ,  both of 
which are objects of the category. One writes f : C --* D to indicate that  f 
is a morphism with domain C and codomain D. The other two operations are 
an operation which associates with each object C of a category a morphism I v  
called identity morphism and an operation of composition which associates to 
any pair ( f ,  g) of morphisms such that  dora(f)  = cod(g) another morphism f o g .  
These operations are required to satisfy the following axioms: 

dora(&) = A = cod(&)  
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dom(f o g) = dom(g), cod(f o g) = cod(f) 
I A o f  = f ,  f o I A = f  
( f o g )  o h = f o (g o h) 

In this paper,  we will consider the category of descriptions defined by Faideiro 
and Maibaum. The objects of this category are descriptions like the ones present- 
ed in section 2 ( that  is to say composed of a signature and of a set of formulae 
specifying the behavior of the processes described. We have changed the logic 
used to build the formulae but the structure of a description has been kept). 
The morphisms of this category are defined as follows: 
Given object descriptions (A1,~1)  and (A2,~2),  a description morphism ~ : 
( A I , ~ )  - .  (A2,~2)  is a signature morphism A~ - .  A~. such that:  

~to~i~2 ~ ~ ~(F) ,  for all axiom F of ~1 
~loci,a2 ~2 -~ ~( Locus( z~l,~l )) 

where a signature morphism is defined by: given two object signatures A 1 -- 
(CONSTi ,ATTR~,  ACT1) and A2 = (CONST2, ATTR2, ACT2), a signature 
morphism c~ : A 1 --+ A 2 consists of 
for each cl in CONST1 a constant symbol a(c l )  in CONST2 
for each al in ATTR1 an at t r ibute  symbol o'(al) in ATTR2 
for each act1 in ACT1 an action symbol a(actl) in ACT2 

From the definition of description morphisms, we know tha t  the axioms of the 
source description are translated to theorems of the target  description; but  we 
can also infer the following property: given a morphism ~r : (A1, ~1) ---* (A2, ~2), 
I f  ~loci,~ ~1 -* F, then ~lociA2 ~2 --+ ~(F) 

All the properties of a specification can thus be exported along a description 
morphism. Moreover, the axiom of locality is translated to a theorem of the 
target  description. 

4.2 C o m b i n i n g  t w o  c o m p o n e n t s .  

In the introduction, we said we would like to keep composition laws a la CCS. 
Particularly, as we are dealing with concurrent and reactive systems, parallel 
composition and communication mechanisms (like the synchronization of CCS) 
would be very useful. In this section, we will see how these combinations can be 
achieved with the categories. In the categorical framework, morphisms are the 
tools to use to express relationships between components. The general principle 
to describe an interaction between two components is to create a common sub- 
component  in which they synchronize. Given two objects A and B, we create an 
object C and two morphisms f and g such tha t  f : C --~ A and g : C --+ B. It  
can be represented by the first scheme of the following figure. 

Then, to get an object describing the combination of A and B with cor- 
respondence on the elements of C, we build the push-out of this diagram. The 
push-out of such a diagram consists of another object D of the category together 
with two morphisms h : A --~ D and k : B --+ D such that ,  on the one hand, the 
second scheme of the following figure commutes (i.e. h o f = k o g, i.e. only one 
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copy of C is obtained in D); and on the other hand, D is minimal, i.e. for every 
commuting diagram (cf last scheme of the following figure) there is a unique 
morphism j : D --. E such that  j o h = h ~' and j o k = k ~. 

A 

C * B  g 

h 
A " D  

c ~ B  g 

In the category of descriptions, the push-out corresponds to the parallel compo- 
sition of two processes (A and B) with synchronization on the elements of the 
sub-component C. We are going to illustrate this method on the example of the 
composition of two processes of the Modulor machine. 

Suppose we have the descriptions of two processes i et j and we want to 
describe the parallel composition of these 2 processes, taking into account that  
when Pi sends a message to Pj, this action corresponds, for Pj, to a reception of 
a message from Pi. It is sufficient to create a new object channel  that  contains 
one at t r ibute and one action: at t r l  and act1 and two morphisms between this 
object and Pi and Pj respectively. 
Morphism ci: a t t r l  --* connect_to_j,  ac t l  --+ send_j  

Morphism cj: a t t r l  --+ connec t_ f rom_i ,  ac t l  ~ receive_i  
The role of the morphisms ci and cj is to indicate that  send_j and receive_i 
must correspond to the same action in the object that  will describe the parallel 
composition of the 2 processes (idem for the attributes). 

When we compute the push-out of this diagram, we get the following diagram: 

i 
Proc i , Pij 

ci I l J  
cj 

channel ~ Proc j 

The resulting description Pij is the following, where connect ioni j  corresponds 
to the a t t r l  in channel  and communica t ion i j  to the act1 in channel and where 
the attributes and actions that  take no part in the interaction between Pi and 
Pj stay the same but are prefixed by i or j in order to avoid conflicts of names. 
We do not give the axioms that  are not concerned by the interaction: they are 
the same that  in the example of 3.2, just prefixing the attributes and axioms by 
i or j (for example, rn[ i . rece ive_m]i .connec t_ from_m = 2). 
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Constants : 
Attributes : 

Actions : 

Axioms : 

True, False, 0, 1, 2 
connectionij, i.ready_to_send, j.ready2o_send 
i.connect_f rom_m, j.connect_to_m 
i.connect_to_m (m not equal to j), j .conneet_from_m(m r i) 
communicationij ,  i.begin_phase, j.begin_phase 
i.send_m (m not equal to j), j.receive_m (m not equal to i) 
i.receive_m, j.send_m 
[:][communicationij]connectionij = 2 
D( i.ready_to_send A connectionij = 1 

< communicationij  > T)  
[-l[communicationij]j.ready_to_send = True 

4.3 Description of the global system. 

In order to describe a system, we have seen that  each component must be first 
described individually, then all these components must be interconnected with 
morphisms and sub-components. A diagram is then obtained. For instance, in 
Modulor, the diagram is composed of the five processes interconnected by sub- 
objects and morphisms. In the previous paragraph, we built an object repre- 
senting the parallel composition of two components (push-out). Now, we want 
to obtain the parallel composition of all the components of the diagram, i.e. we 
have to generalize the notion of push-out for an arbitrary diagram. This notion 
exists: it is the colimit of a diagram. 

Push-outs and more generally colimits can be calculated in a category if this 
category is finitely cocomplete. Fiadeiro and Maibaum have proved that  the 
category of descriptions is finitely cocomplete, but more generally, there are at 
least two ways to build a finitely cocomplete category: the Comma construction 
and the finding of an initial object, coproducts and coequalizers; these two ways 
can be found in [15] and they have been implemented in a tool [16]. 

Let us see how to build this description concretely. We call 0,1,2,3,4 the mor- 
phisms between the descriptions of the processes (host,l,2,3,4) and the global 
description system. All the attributes and actions of the processes will be trans- 
lated through these morphisms to become attributes and actions of the system. 
But the correspondences imposed by the sub-objects (like channel) must be taken 
into account. So there is no actions send_i or receive_j left but only communi- 
cationfi, and the same thing for the connections. The axioms of the resulting 
theory are: 
Q[communicationij]connectionij = 2 
[3(i.ready_to_send A connectionij = 1 --+ ~ < communicationij  > T) 
D[communicationij]j.ready_to_send _= True 
[3(< i.begin_phase > T --~ Aje[o,s]((connectionji = 0 v connectionji = 2)A 
(connectionij = 0 V connectionji = 2))) 

Comment: the genericity of our formalism must be noticed here. With the 
previous method, we build a description of the system which is itself an object 
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of the category of descriptions and which may be reused as a component of an 
other diagram. We will see an example of this genericity in the next section. 

5 Verification 

In this section, we present how validation of a system specification can be 
achieved in the proposed hybrid framework. We first deal with the expression of 
the system properties and then describe our verification methodology. 

5.1 E x p r e s s i n g  p r o p e r t i e s .  

By inheriting both from the linear temporal logic and the dynamic logic, our 
logic allows dual ways to express the properties of the system. If the stress is 
put on action, we may express properties in a mu-calculus fashion thanks to 
the predefined temporal operators instead of fix-point formulae and the actions 
operators (see e.g. the user manual of the Concurrency Workbench [3] for an 
outlook in the branching time case). And we can also express properties by means 
of state formulae combined by temporal operators (and this is often easier). 

We give the following examples of properties for the synchronization algo- 
rithm. 

- PI:  each process receives at least one synchronization message before begin- 
ning the phase computation; 

- P2: each process does not receive any more synchronization messages after 
entering the phase computation. 

These properties can be expressed by the formulae: 
D(< begin_phase > T ~ ready_to_send = True) 
D([begin_phase] hje[0,5](c-,  < receive_j > T)) 

5.2  Ver i f i ca t ion  s t r a t e g y  

Our hybrid framework suggests a strategy to break down the complexity of 
the proofs. We based the strategy on exploiting the structure of the composed 
system. 

- For a given global property, we scan the constraint, at t r ibute and action 
names occuring in the formula. We intend to select the smallest component 
description which may enable the proof. The order between theories is in- 
duced by the description morphisms used to interconnect components: we 
say (A2, r is greater than (A1, ~1) if the descriptions are connected in the 
whole system by a morphism f: A1 ~ A2 . If the heuristic succeeds, we can 
put back the theorem in the wished theory by means of the morphisms. 

- When this heuristic fails, or when the least description results from colimit 
computation, we try to decompose the property in elementary lemmas prov- 
able in more basic descriptions (and these lemmas are translated along the 
morphisms to the global description). 
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- In the worst case, we have to prove the property in the object which describes 
the global system. 

Comments on the automation: 

- The development of a tool assisting the computation of push-outs and cot- 
imits of diagrams is experimented in CERT ([16]). 

- We have proved that  our logic is decidable ([17]); the sizes of the elementary 
component descriptions enable us to use automatic decision procedure which 
are always inefficient when the size of the specification is too big. 

- The decomposition of properties in sub-properties requires a priori a good 
knowledge of the application. However, the encapsulation of the components 
and the frame axioms lead to a common strategy to prove liveness or "un- 
til" properties: we are looking for the actions which may modify the val- 
ues of particular attributes. This strategy can be formalized in proof plans 
as in Bundy's approach in order to automatize the complete proof process 
[1]. Moreover, the proposed normalization of component descriptions should 
make the task easier. We show in the following section how these ideas may 
be exploited to lead proofs. 

6 R e s u l t s  a b o u t  M o d u l o r  

We saw in the previous section how to specify the synchronization at the begin- 
ning of a phase. We did not write down the verification of the properties, but 
we will show an example of proof in this section. 
We are now concerned with the detection mechanism of Modulor (see the de- 
scription of the fault-tolerance software tools in section 2). We want to prove 
that  this mechanism is correct. We decompose this verification in two parts: 

- the fact that,  locally (on a processor), if the process is blocked, this will be 
detected and there exists a time where the process will be released (local 
detection) 

- the fact that,  if there is a faulty processor somewhere in the net, the host 
processor will be blocked (propagation due to the synchronization at the end 
of the phase). 

With these two parts, we prove the correction of the detection. Indeed: if a fault 
occurs somewhere in the net, the host processor will be blocked (propagation), 
this will be detected and the host will be released (local detection), so it will 
be able to start  a diagnostic phase. The other processors will be either OK 
and waiting for a new phase to begin, or faulty (and this will be found by the 
diagnostic phase), or blocked and in this case it will be detected and the processor 
will be released (local detection again). 

6.1 L o c a l  d e t e c t i o n  

We will just  present the specification of the local detection, because it is the 
most interesting part: we take advantage of the modularity and genericity of 
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the formalism for this specification. Indeed, in order to model this detection 
mechanism (see section 2) on a processor, we have to consider three processes: 
the phase process, the server and the timer. So we can consider each object proc i  

as build from three smaller objects as shown by the following scheme: 

" phase 

server , proc i 

" ' ' - ~  timer ~ 
/ System 

... proe j / 

So we have two levels: f rom the three processes (phase, server, timer), we 
build the description of a processor in Modulor. This description is itself an 
object that  can be combined with other objects (the other descriptions of pro- 
cessors) to build a description of the system. So here, we have a good example 
of the genericity of our formalism. 
For the description of these three processes, we try to be as close as possible to 
the real implementat ion.  When the phase process ends correctly, it notices this 
correct end to the server that  stops the timer. When a fault occurs, a t ime-out 
happens in the timer, the t imer warns the server that  changes the state of the 
phase and finally the timer releases the phase process. 

Description of  the phase process. 
The phase process represents in fact the behavior of the process during a phase; 
it contains the synchronization at the beginning of the phase (described in pre- 
vious section), the synchronization at the end of the phase (see after), and the 
behavior during the phase: the computat ion itself that  will not be described and 
the additional actions that  allows to detect a fault. It is this last part  we are 
interested in. 
We suppose we have an at t r ibute  end_ok  which takes the value T r u e  when the 
phase has ended correctly. The part  we are interested in is described by the 

following axioms: 
[] < s e n d _ s e r v e r _ o k  > T -+ e n d _ o k  = T r u e  

D [ r e l e a s e ] B E G  = T r u e  

D ( f a u l t y  = T r u e  ~ [] AaEACT m < a > T )  
where B E G  is an at t r ibute  tha t  takes the value T r u e  when the process is ready 
to begin a new phase. 

Description of  the s e r v e r .  
D [ t i m e  -- o u t ] s t a t e  = F a l s e  

O[rece ive_ok]  < s t o p  - t i m e r  > T 

Description of  the timer 
[](D-~ < s e n d _ s e r v e r _ o k  > T )  --+ <> < t i m e  - o u t  > T 

D < t i m e  -- o u t  > T -+ (D-~ < s e n d _ s e r v e r _ o k  > T )  
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D[t ime -- out] < release  > T 
D[stop -- t i m e r ] e n d _ t i m e r  = T r u e  

Comment:  the property D-, < send_server_ok  > T corresponds to the fact 
that  the process is blocked (it will never be able to end correctly). 

Then we have to build the description of a greater object that  is the combi- 
nation of the three with evident correspondences. And finally, we have to verify 
the following property which expresses the fact that  if the process is blocked, it 
will be detected and the process will be released: 
(D-~ < send_server_ok > T)  ~ <>(state = Fa l se  A B E G  = T r u e )  

6.2 P r o p a g a t i o n - S y n c h r o n i z a t i o n  a t  t h e  e n d .  

In this paragraph,  we want to show that ,  if there is a faulty processor somewhere 
in the net, the host processor will be blocked at least during the synchronization 
at the end of the phase. In order to specify this synchronization at the end, we 
adopt  the same methodology as for the synchronization at the beginning of the 
phase: we describe the behavior of a process and then we build the description 
of the system (cf example in 3.2). We do not give details because it is the same 
kind of description (it must  just  be noticed that  the connections are not the 
same because here we have a tree (cf 2.2, synchronization mechanisms)).  The 
description of a process is the following: 

C o n s t a n t s  : T r u e ,  False ,  O, 1, 2 
A t t r i b u t e s  : aconnect_to_j,  aconnec t_ f rom_j ,  f a u l t y  
Ac t i ons  : send_ok_j,  receive_ok_j  
A x i o m s :  D([rece ive_ok_j]aconnect_ from_j  = 2) 

D(< receive_ok_j  > T --+ aconnec t_ f rom_ j  = 1) 
D( [send_ok_j]aconnect_to_j = 2) 
D(< send_ok_j > T ~ Am~[o,5](aconnect_from_m = 2v 
a c o n n e c t _ f r o m _ m  = O) A aconnect_to_j = l 
D ( f a u l t y  = T r u e  .-+ (D AaeACT-~ < a > T) )  

The last axiom shows how we model the fault: when a processor becomes 
faulty, it is not able to execute actions any more. 

For the host, the description is the same, but an at t r ibute  end_ok must be 
added as well as the following axiom: 

D(end_ok ,-~ Ajc[o ,5](aconneet_ from_j  = 0 v aconnee t_ f rom_ j  = 2)) 

Descript ion of  the sys tem.  We do not give the description of the system, but it 
can easily be obtained in the same way as in the previous section. 

Expressing properties. The property we want to verify is: 
P4: if one of the processor is faulty, the host process will be blocked. 

This property can be expressed by the formula: 
D ( 1 . f a u l t y  = T r u e  V 2 . f a u l t y  = T r u e  V 3 . f a u l t y  = T r u e  V 4 . f a u l t y  = 

T r u e )  ~ DO.end_ok = Fa l se  
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Verificalion. We are going to verify the property in the case where this is the 
processor 4 which is faulty. We use intensively the modular i ty  of our formalism. 
Indeed, the proof  is decomposed in four lemmas and each t emma can be verified 
on a single process. These four lemmas are: 

- if proc4 is faulty then it does not send any message ok to proc2. This l emma 
must be verified on proc4 and can be expressed in the following way: 
f a u l t y  = T r u e  ~ D-~ < send_ok_2 > T 

- if proc2 does not receive any message ok from proc4, then it does not send 
any message ok to procl .  This l emma must  be verified on proc2 and can be 
expressed in the following way: 
D-~ < receive_ok_4 > T ~ o-~ < send_ok_l > T 

- if procl  does not receive any message ok from proc2, then it does not send 
any message ok to the host. This l emma must  be verified on procl  and can 
be expressed in the following way: 
[:]', < receive_ok_2 > T ~ D-~ < send_ok_O > T 

- if the host does not receive any message ok from procl ,  then end_ok will 
always stay false. This lemma must be verified on the host and can be ex- 
pressed in the following way: 
D-~ < receive_ok_l > T ~ bend_ok = Fa l se  

The first step is given by the axiom: 

D ( f a u l t y  = T r u e  ~-~ (rq Aa6ACT -~ < a > T ) )  

The second and third steps have the same demonstration,  so we just  give it 
for the second one. We work inside the description of proc2. We have: 
( ~ ( <  send_ok_j > T --+ Ame[o,5](aconnect_from_m = 2 y a e o n n e c t _ f r o m _ m  = 

O) A aconnect_to_j = 1) 
For proc2, the only j for which aconnec t_ f rom_j  is equal to 1 is procl  ; and the 
only m for which a c o n n e c t _ f r o m _ m  is different from 0 is 4. So the precondition 
for proc2 sending a message ok to procl  is that  aconnec t_ f rom_4 = 2. The only 
means for aconnect_frorn_4 to take the value 2 is to receive a message ok from 
proc4: 
[:]([receive_ok_4]aconnect_from_4 = 2) So we have proved the second step. 

There is the last step left. It  can be proved inside the description of the host. A 
similar reasoning as for the second step can be used to state tha t  the only mean 
for aconnec t_ f rom_l  to take the value 2 is to receive a message ok from procl .  
So if we suppose that  the host does not receive any message ok from proc] ,  we 
know tha t  aconnec t_ f rom_l  will always keep the value 1 and so, because of: 
D( end_ok *-~ A j  e[o,5]( a c ~  r ~  = 0 V aconnee t_ f  rom_j  = 2)) 
end_ok will always stay false. 
To get the complete proof in the global description of the system, we then trans- 
late the 4 properties along the morphisms (4,2,1,0 respectively) into the object 
sys tem ; and due to the correspondence of 
4.send_ok_2 and 2.receive_ok_4 
2.send_ok_l and 1.receive_ok_2 
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1 . s e n d _ o k _ O  and O . r e c e i v e _ o k _ l ,  

we have 
- 4 . f a u l t y  = T r u e  ~ [3-~ < c o m m u n i c a t i o n _ o k _ 4 2  > T 

- [3-~ < c o m m u n i c a t i o n _ o k _ 4 2  > T ~ D-~ < c o m m u n i c a t i o n _ o k _ 2 1  > T 

- o - ~  < c o m m u n i c a t i o n _ o k _ 2 1  > T ~ [:]-1 < c o m m u n i c a t i o n _ o k _ l O  > T 

- Q-~ < c o m m u n i c a t i o n _ o k _ l O  > T --~ O e n d _ o k  = F a l s e  

So finally, we get: 4 . f a u l t y  = T r u e  ~ O e n d _ o k  = F a l s e  

and the property of propagation is proved. 

7 C o n c l u s i o n  

We proposed in this paper an hybrid formalism which improves the mixing of 
categories and logic proposed by Fiadeiro and Maibaum. We keep their categor- 
ical structure which has several advantages. At the specification level, the mod- 
ularity induced by the categories allows to describe a big system more easily: 
each component is described independently (encapsulation); then the interac- 
tions between the components are specified; and finally, with composition laws 
a la CCS, we build a description of the system which is itself an object of the 
same category and can be reused. At the verification level, lemmas are verified 
locally on the components of the system (encapsulation) ; then these lemmas are 
translated along the morphisms to the global description. Thus, modular proofs 
can be achieved. 

We add to this framework a logic well-suited for the design and verification 
of concurrent and reactive systems. Our logic inherits both from dynamic logic 
and temporal logic. So at the specification level, we have got on the one hand the 
notion of states which is very useful for the expression of properties and for the 
modeling of some static characteristics; and on the other hand, actions allow us 
to specify easily dynamic behaviors and to handle communications. Moreover, 
we gave a methodology to guide writing of specification in this logic. At the 
verification level, our logic is proved sound, complete and decidable and we hope 
this result makes easier the automation of proofs. 

We applied this formalism to Modulor, a real-sized and fault-tolerant parallel 
machine. We thus realized our formalism was adapted to the specification and 
verification of such systems. As far as we know, there are few reports about the 
use of formal methods to validate fault tolerance mechanisms based on a pas- 
sive redundancy approach. Most of the experiments deal with masking transient 
fault by active redundancy. In this context, we have only found logical proofs 
of correctness of vote or synchronization algorithms ([14]). The authors explain 
their logical approach is really expensive and can be applied fruitfully only to 
the most critical part of the system, to get generic results. Our modular way 
of specifying and validating can complement these approaches and extend their 
scope. Moreover, the logic proposed is well-suited for modeling passive redun- 
dancy: action and communication concepts are useful for modeling the behavior 
of a distributed system whereas the state notion caught in the logic makes easier 
the fault handling. 
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