
Identification of and Solutions to Shortcomings
of LCL, a Larch/C Interface Specification

Language

Patrice Chalin, Peter Grogono and T. Radhakrishnan

{chalin, grogono, krishnan} @cs. c oncordia, ca

Concordia University, Department of Computer Science
1455 de Maisonneuve Blvd. West

Montrdai, Qudbec, Canada H3G 1M8

Abstract . We present some of the more significant shortcomings of
LCL, a Larch/C specification language used to document the interfaces
of modules written in ISO C. We illustrate inadequacies in the definition
and insufficiencies in the expressiveness of LCL by means of examples
that cover dependencies between objects, the trashing of objects, and im-
plicit parameter constraints in function specifications. A violation of the
principle of referential transparency is also shown. We describe changes
to the LCL language that overcome the identified shortcomings. Since
most of the shortcomings are not particular to LCL, this paper will be
of interest to language designers and users of other module interface
specification languages.

1 I n t r o d u c t i o n

The Larch approach to specification promotes the modular development of pro-
grams and encourages the use of data abstraction. In Larch there are two spec-
ification tiers or levels. The shared tier contains specifications (called traits)
written in the Larch Shared s (LSL) [8]. A trait defines a multisorted
first-order theory. The in~erface fief contains interface specifications written in a
Larch interface language. There are several Larch interface languages. The most
widely used are LCL, LCPP (an interface language for C + +) and LM3 (an in-
terface language for Modula-3). Each 1 interface language is specialized for use
with a particular programming language. Using constructs and concepts from
the programming language, an interface specification describes what resources
are being provided by a module.

Specification languages can be used during the entire software development
process to document requirements, designs and the interface specifications for
modules and program components. One must be careful in choosing an appro-
priate specification language for the task at hand [9, 1]. The specialization of
a specification language to a particular programming language is an important

1 With the exception of the two generic interface languages GIL [3] and GCIL [14].

386

characteristic of module interface specification languages (MISL's). Most speci-
fication languages are general purpose languages. Among the most popular are
VDM-SL [13] and Z [18]. These languages are best suited for design specification.

Much less attention has been given to MISL's by the research community
than to design or wide-spectrum specification languages. To our knowledge, the
only MISL's are the Larch interface languages and an adaptation of the lan-
guage used with the Trace Assertion Method (TAM) [16]. Of the Larch interface
languages, LCL would seem to be the most developed and used. Development
of the TAM-based language is at a preliminary stage and a new release is in
preparation [10].

MISL's are an excellent way of introducing formal methods into industrial
settings [12]. It is particularly important to industry that start-up costs be min-
imized and that benefits be apparent even with small investments; we believe
that MISL's can offer this. Some of the advantages of the use of MISL's are
enumerated next 2.

MISL's can be immediately and 'unintrusively' integrated into current in-
dustrial development processes [21]. A company that has invested considerable
resources in the creation and installation of their development processes (e.g.
training of personnel and construction of tools) is more likely to welcome formal
methods that can be used in conjunction with inhouse development standards.

One of the greatest challenges faced by industry is the maintenance of legacy
code. Not only can MISL's be applied to new developments, they can also be
integrated into the maintenance cycle of existing software systems. This is of
great value since it means that formal methods can be retroactively brought
into projects that were developed without formal methods.

MISL's can be gradually integrated into a project:

- they can be applied to isolated portions of a system (such as those aspects
for which reliability is most critical),

- MISL's can be used with varying degrees of rigor: from merely documenting
function signatures to providing complete behavioral descriptions for func-
tions. In all cases one can reap benefits.

Tool support for most other classes of specification language is limited to
type checking. More automated checks can be performed for MISL's. For ex-
ample, LCLint, a tool for checking LCL specifications and C code, can be used
to detect abstraction boundary violations, illicit access to global variables, and
undocumented modification of client-visible objects [6]. As another example,
Vandevoorde has developed a prototype program optimizer that makes use of
the information derived from module interface specifications to perform opti-
mizations that cannot be accomplished by the inspection of code alone [20].

This paper contributes to the evolution of LCL by documenting some of
the more significant shortcomings of LCL 2.43and by proposing solutions to the

2 These advantages are not necessarily exclusive to MISL's--they may be shared by
other classes of specification language.

3 Version 2.4 is the latest public release of LCL.

387

identified shortcomings. The authoritative references for LCL 2.4 are the Larch
book [8] and Tan's PhD thesis [19]. A basic understanding of LCL is assumed.

2 D e p e n d e n c i e s B e t w e e n O b j e c t s

In this section we introduce the concept of object dependency and describe how
dependencies can arise. We argue that programmers rely on certain "desirable"
kinds of dependency and that they tend to overlook other "less desirable" forms.
Our examples will serve to illustrate that LCL lacks operations that would allow
specifiers to document and reason about dependency relationships in interface
specifications.

2.1 D e f i n i t i o n s

In C, an object is a region of data storage consisting of a contiguous sequence
of storage units [11, p. 2]. In LCL, the term is used in a more abstract sense (in
particular because of the need to model objects that are instances of abstract
types): an object is a container for values of a particular type [8, p. 59].

We say that an object zl depends on an object x2 if changing the value
contained in z2 may affect the value contained in zl. It is possible for zl to
depend on z2 without z2 depending on zl 4. If zl depends on z2 or z2 depends
on zl, then we say that a dependency exists between zl and x2. If zl is not
dependent on z2, then we say that zl is independent of z2. The objects in a
given collection are independent, if each object from the collection is independent
of every other object in the collection. Given an expression e that refers to an
ob jec t - -e is called an Ivalue in C--we shall often lighten our prose by speaking
of "the object e" instead of the more verbose but precise "the object referred to
by e". Thus, for example, we may state that el and e2 are independent by which
we mean that the objects that are denoted by the expressions are independent.
As a consequence, we note that if el and e2 are independent then the expressions
cannot be aliases.

Turning to the low-level model of C for an example, we understand that
two objects with overlapping regions of storage are dependent on each other.
Thus, objects of array, structure and union types depend on the objects that
correspond to their members and vice versa. For example, given the following
declarations

s t r u c t { i n t i ; } s ;
i n t a [l O] ;

s . i and s depend on each other since these expressions refer to the same re-
gion of memory. Also, by definition, s and s. i are dependent on each other
since changing the value of one will affect the value of the other. Similarly, a

4 This kind of asymmetry may exist between instances of an abstract type.

388

depends on its members--e.g, a[93. On the other hand, a[0], a [i] , ..., a[93,
and s. i are independent. The dependency relationship that holds between an
aggregate or union object and its members is one of the kinds of dependency
that programmers rely on and actually take for granted.

When dealing with abstract types we can no longer appeal to the low-level
concept of overlapping storage for an intuitive model of dependency. Whether a
dependency exists between two instances of an abstract type will depend on the
implementation of the abstract type [4].

2.2 Mot iva t ing Example: Er ro r in t h e Larch Book

The purpose of this example is twofold: we wish to illustrate that there are
legitimate uses of dependencies (beyond those mentioned in Section 2.1) and
that there are certain kinds of dependency that are often overlooked by specifiers
and implementors.

typedef struct {... char name[maxEmployeeName] ; ...} employee;

bool employee_setName(employee *e, char na[]) {
requires nullTerminated(na ̂) ;
modifies e-->name;
ensures result = lenStr(na ̂) < maxEmployeeName

A (if resul t
t h e n sameStr(e-->name', na n)

A nullTerminated(s->name')
e l s e e->name' = e->name^);

}

Fig. 1. An Excerpt from employee.lcl

Our example (see Figure 1) is an excerpt from the Larch book employee
specification [8, p. 65]. This specification is part of a small database program
used to store and perform simple queries on employee records. Employee records
are represented by the exposed type employee which is defined as a C structure.
Of the functions provided for manipulating employee records we show only the
function employee_setName. It can be used to assign a string to the name field
of an employee record. Before calling employee_setName, a client must make
sure that the parameter na is a null terminated string. The expressions e ̂ and
e' denote the values contained in the object referred to by the subexpression e in
the pre-state (the program state before function entry) and post-state (the state
after function return) respectively. After the call, the name field of the given
employee record will be set to the string contained in na if the string length
is less than maxEmployesName. Otherwise, the name field of the record is left

389

unchanged. The function result is true if and only if the length of the string
contained in na is less than maxEmployeeName.

Suppose that all of the employee records in a given database begin with either
of the titles "Mr." or "Ms." and that the database maintainer wishes to remove
the titles. He or she decides to write a program that will accomplish this task
by accessing each employee record, say, as the variable e, and then performing
the call

employee_setName(ke,e.name + 3)

Unfortunately the program crashes s and inspection of the implementation of
employee._set:Na~e reveals the cause:

bool employee_setName(employee *e, char na []) {
int i ;

for (i = O; na[i] != '0'; i++)

if (i == maxEmployeeName) return FALSE;
strcpy(e--+name, na);
return TRUE;

}

The particular way in which employee..setSame is being invoked causes the
standard library function s t r c p y to be called with overlapping arguments (since
e->name and na are part of the same array). The behavior of s t r c p y is undefined
when it is called under such circumstances [11, w The specification of
employee_setName does not prohibit calls for which its arguments are depen-
dent. It is possible that the specification inaccurately reflects the intent of its
authors or that the source of error is the implementation: in either case the
implementation is incorrect with respect to its specification. With appropriate
(but small) changes, the implementation can be corrected by making use of the
standard library function memmove instead of s t r c p y (since memmove may be
called with overlapping arguments). The reader may wonder whether memmove
can be specified in LCL; we address this question in Section 2.4.

We can trace the publication of the database program to the original techni-
cal report on LCL 1.0 [7]. The program was subsequently revised and published
as part of the Larch book [8, w To determine the effectiveness of LCLint
at detecting certain classes of errors in LCL specifications and their implemen-
tations, David Evans applied LCLint to (among others) the database program.
Evans writes:

"The specifications [of the database program] had been checked by the
LCL checker [a predecessor of the LCLint tool] . . . , and the source code
had been compiled and tested extensively. Since the code and specifica-
tions were written by experts, and checked copiously by hand prior to

5 A sample program compiled with gcc version 2.6.3 and run under SunOS release
4.1.3 generates a segmentation fault.

390

publication, it was expected that not many bugs would be found." [5,
p.41]

The case study "did uncover two abstraction violations, and one legitimate
modification error" [5, p. 50]. We have demonstrated an additional error in the
database program which has also escaped the scrutiny of the original designers
and subsequent reviewers.

This example illustrates that there are legitimate uses of dependencies (such
as the dependency permitted between *e and na in employee_setName) be-
yond those mentioned in Section 2.1. It also illustrates that errors resulting from
unexpected dependencies between arguments can easily be overlooked. We be-
lieve that this is true because developers have not been encouraged to think
about dependencies that may exist among parameters or between parameters
and global variables. A specification language that permits dependencies must
have constructs that allow the description of dependency relationships as well as
a semantic model that supports reasoning about dependencies: LCL is deficient
in both these respects.

2.3 E x a m p l e : lookup

The specification given in Figure 2 defines a global s t r u c t variable as consisting
of an array of elements, e l t s , and the size of the prefix of e l t s that is in use. It
also defines the function lookup which can be used to search for an occurrence
of the given value v in as 6. If v is present in as, then *i is set to the index of
an element of as containing v and as is left unchanged; otherwise, v is added
to as and *i is set to the index of the newly added value. The function result
is true precisely when the value v occurs in as (before lookup is invoked). The
predicate that follows the e l s e in the ensures clause of lookup is not shown
since it is not relevant to our discussion.

After a careful review, the reader may feel that the specification of lookup is
accurate. It is actually inconsistent--there is no implementation that can satisfy
it--since there are situations for which the postcondition cannot be satisfied.
For example, suppose that v occurs in as and that *i is an alias for as . s i z e or
any of the elements of as . e l t s that are in use. Then the ensures clause states
that the value of *• may change while requiring that the value of as remain
unchanged; this constraint, in general, will be unsatisfiable in the presence of
the described aliasing.

We can at tempt to remedy the situation by strengthening the precondition of
lookup so that * i is prohibited from being an alias for any of the subcomponents
of as (see Figure 3). The resulting specification is less clear and more complex
(this augments the risk of introducing errors into the specification) and less
maintainable since the specification is now more sensitive to changes in the AS
structure.

e We will at times use the term "as" to refer to the prefix of a s . e l t s that is in use.

391

constant int N;
s t ruct AS {int size; int sits[N];} a s ;

bool lookup(int v, int *i) s t ruct AS as;
r e q u i r e s a s . s i z e ^ < N;
modifies *i, as;

ensures result = v q prefix(as.elts^,as.size ^)

A if result
then 0 < (*i)' A (*i)' < as.size ̂

A as.elts ̂ [(*i)'] = v
A as I ~ as ^

else /* v is inserted into as.elts */ ...;

Fig. 2. Specification of lookup

bool lookup(int v, int *i) s t ruct AS as; {
r e q u i r e s a s . s i z e ^ < N A * i ~ a s . s i z e

A (V j : i n t ((0 < j A j < a s . s i z e ^)
=~ *i ~ a s . e l t s [j])) ;

}

Fig. 3. Strengthened Precondition for lookup

More importantly, the specification is still inconsistent since it is possible
for *i and a s to satisfy the requires clause without being independent. In for-
mulating the strengthened precondition we have relied on the following false
assumption: if two distinct objects are instances of base types (char, • etc.),
then they must be independent. In C, as in some other imperative programming
languages, this assumption can be invalidated by the use of union types. Type
casting can also invalidate the assumption.

This example illustrates the need for new LCL language constructs which
would allow specifiers to accurately and succinctly express the independence of
objects.

2.4 Example: ISO C St r ing L ib ra ry Funct ions

It would be reasonable to expect LCL to be expressive enough to allow one to
document the behavior of most ISO C standard library functions. Consider the
task of writing specifications for the standard string copying functions memcpy
and memove [11, w

void *memcpy(void *sl, const void *s2, size_t n);

392

void *memmove(void *sl, const void *s2, size_t n);

Both functions can be used to copy n characters from the object pointed to by
s2 into the object pointed to by s l . There is an extra requirement for memcpy:
the objects *s l and *s2 must not overlap [11, w It is impossible to write
an LCL specification for memcpy since we cannot express the requirement that
its arguments are independent of each other.

2.5 Dependencies and Abstract T y p e s

The fresh operator is the only LCL operator, other than equality over objects,
that allows specifiers to document dependency relationships between objects.
An occurrence of the expression f r e s h (e) in the ensures clause of a function
specification asserts that the object referred to by e is not aliased to any object
that was visible to the client before function entry [8, p. 77]. By means of the
next example, we highlight the need for LCL primitives that would allow for a
more precise description of the dependency relationships that may exist between
objects.

Most abstract type constructors yield instances of the abstract type that are
independent of other client-visible objects. It is not uncommon, though, to find
"quick" or "destructive" versions of some constructors that fail to guarantee the
independence of the resulting abstract type instance; independence is sacrificed
for sake of efficiency.

mutable type List;

uses List (int, List) ;

List mkList(void) {
ensures result' ---- empty A fresh(result);

}
List concat(List xl, List x2) {

ensures result' ----Xl ̂ II x2^ A fresh(result);
}
List fastConcat(List xl, List x2) {

ensures result' = xl ̂ II x2^;
}

Fig. 4. List specification.

For example, a list module might provide two versions of the concatenation
operation--see Figure 4. Notice that the specification of fas tConca t does not
ensure f r e s h (r e s u l t) . It would be more useful, for example, if we could assert
that the only dependency created by fas tConca t is between r e s u l t and x2.
This extra information would allow us to make better use of fastConca% for
example, in the optimization of a series of successive concatenations.

393

3 Implicit Constraints on Parameters

In LCL, the specifications of functions with parameters have implicit constraints,
derived from the parameter declarations, that affect the meaning of the speci-
fications. Unfortunately, most of these implicit constraints are either not docu-
mented or inadequately defined. The purpose of this section is to expose some
of these implicit parameter constraints and to discuss the consequences of their
inclusion in LCL.

3.1 Constraint for All P a r a m e t e r s

There is an implicit constraint that applies to all parameters in a function spec-
ification. It requires that the parameters be defined. This implicit constraint on
parameters is not documented in the Larch book [8] nor in Tan's semantics [19].
We have only been able to find an explicit statement of the constraint in Evans's
thesis:

"LCL specifications denote if the values associated with parameters are
defined All other parameters [i.e. other than out-qualified pointer
parameters] are assumed to be defined when the function is entered." [5,
p.36]

(The out parameter qualifier is discussed in Section 3.3.) For example, consider
the function empset_cleax from the Larch book empset specification [8, p. 73]:

void empset_clear(empset s) {
modifies s;

ensures s' = ~ };

By the absence of a requires clause, no explicit requirements are placed on clients
of empset_clear. Implicitly, though, it is assumed that on function entry, s
is bound to a defined empset (as can be concluded from the informM descrip-
tion of empset_clear): "empset_clear, is provided for reinitializing an existing
empset" [8, p. 76].

3.2 P a r a m e t e r s of Po in t e r Types

There is an additional constraint for parameters of pointer types. The implicit
property requires that a pointer parameter reference an allocated object and that
this object be defined. This constraint is not documented in the Larch book nor
in Tan's semantics 7. Evans writes:

r Tan documents the effect of the out parameter qu~difier as applied to parameters of
pointer types, but he fails to describe the implicit constraints derived from pointer
parameters that are not qualified with out.

394

"Normally, if a parameter to a function is a pointer, it is assumed that
the value it points to is defined and may be used in the body of the
function." [5, p. 36]

We discuss some of the shortcomings associated with this implicit constraint.

Cons t r a in t is Over ly Res t r i c t i ve The implicit constraint for pointer param-
eters is overly restrictive since it prevents us from using certain useful imple-
mentation techniques. Consider the specification fragment

typedef struct node { ... } *List;
constant List emptyList = O;
List mkList(int info, List tail) { }

in which the empty list is represented by a null pointer. The function mkList
is meant to allow clients to construct a new list from a given integer and list.
The implicit constraint for pointer parameters effectively prohibits us from rep-
resenting the empty list by means of a null pointer, since,for example, we cannot
call mkList with emptyList as an argument for tail. This is because all pointer
parameters must refer to allocated objects and a null pointer "is guaranteed to
compare unequal to a pointer to any object or function" [11, w a
null pointer can never refer to an allocated object.

Constraint is Ambiguous and Problematic From a given pointer parame-
ter p we can access all of the objects p+i for i in the index set

I ---- { i I minIndex(p) < i < maxIndex(p) }

[8, p. 60]. With this in mind, there would seem to be two reasonable interpreta-
tions for the implicit constraint. Firstly, we can interpret the implicit constraint
as applying to all of the objects that can be accessed via p: i.e. all objects p+i
(for i 6 I) would have to be allocated and defined. Such an interpretation ren-
ders the constraint too restrictive. For example, this would require that every
member of a string (represented by a pointer into an array of char) be initialized
before the string is passed as an argument, even if the string does not occupy the
entire array. There is no reason to require that the string be initialized beyond
the null character that terminates the string.

Another possible interpretation for the implicit constraint would require that
all objects p+i (i 6 I) be allocated but that only the object at p need be defined.
Assuming 1 6 I, how would a specifier express the additional requirement that
p+l be defined? There are no LCL language constructs available to the specifier
that would allow the expression of this property.

395

3.3 The out Parameter Qualifier

It is common in C for a function to return values to its caller by means of objects
that are referenced by the function's pointer parameters; the out parameter
qualifier serves to indicate which parameters are being used for this purpose
[19, w The specification of add given in Figure 5 illustrates the use of out.
The out qualifier has the effect of partly "relaxing" the extra constraint that

void add(int m, in t n, out in t *sum) {
modifies *sum;
ensures (*sum)' = m + n;

}

Fig. 5. Use of out in a function specification.

is usually applied to pointer parameters. An out qualified pointer parameter is
still implicitly required to refer to an allocated object, but that object need not
be defined [19, w

As a final remark, we highlight a contradiction in [19]: although Tan states
that the out qualifier is applicable only to parameters of pointer types [19,
w he also applies it to array parameters [19, w Of course, this more
liberal use of out is reasonable (and is accepted by LCLint), but it has not been
documented. Array parameters are discussed in Section 3.4.

3.4 P a r a m e t e r s o f Array Types

Although we have found no explicit description of it, there is an implicit con-
straint on array parameters that is similar to the one for pointer parameters.
This would seem reasonable, due to the close relationship between pointers and
arrays in C. In fact, someone familiar with C might think that it would be un-
necessary to reformulate the implicit constraint for pointer parameters in terms
of array parameters because the type of an array parameter is "adjusted to"
a pointer type [11, w In LCL, parameters of array types have a different
semantics from those of pointer types [8, p. 60], [19, w particular, array
parameters are not treated as pointer parameters.

The specification of d a t e _ p a r s e [19, w given in Figure 6 provides evi-
dence of the implicit assumption that array parameters refer to objects that have
been allocated and whose contents are defined. In the specification, c s t r i n g ' s
are null-terminated arrays of char. If i n d a t e is a well-formatted date, then this
date is parsed and returned in *d. The function d a t e _ p a r s e makes use of the
content of i a d a t e , hence i n d a t e must refer to allocated storage and its contents
must be defined.

The implicit constraint over array parameters suffers from the same am-
biguities and drawbacks as the constraint for pointer parameters discussed in

396

bool date_parse (cstring indate,..., out date *d)... {
modifies . . . ;
ensures result = okDateFormat(getString(indate^))

h if result

then (*d)' = string2date(getString(indate^))
~

}

Fig. 6. Tan's date_parse Function

Section 3.2; i.e., it is not clear whether the implicit constraint requires that all
or only some of the array elements be defined--either interpretation leads to
difficulties.

3.5 Parameters o f Other Types

Consider a function specification with the header

void f (i n t **i)

The implicit constraints require that i be defined and that *• be allocated and
defined. Suppose that we further wished to constrain the parameter by requiring
that **i be allocated and defined. We cannot document this extra property
for lack of language primitives in LCL. Similar remarks can be made about
parameters of other types (e.g. array of pointer, struct containing a pointer
member).

3.6 P a r a m e t e r s v s . Global Variables

In designing a module one must decide on the mechanisms by which information
will be communicated between the module and its clients. In particular, one
must choose between information exchange by means of function parameters or
global variables. A designer's freedom of choice is impeded (in favor of the use
of function parameters) by the lack of expressiveness of LCL.

For example, given

int *gv ;

void f(int *pv) { ... }
void g(void) int *gv; { . . . }

one could not express, in the specification of g, a constraint on gv that would
be equivalent to the implicit parameter constraint on pv in f. This is because,
unlike for function parameters, implicit constraints are not imposed on variables
(like gv) that are part of the global variable list of a function specification. It is
also because there are no language constructs in LCL that express the property
that a given object is allocated, or that it is both allocated and defined.

397

4 T r a s h i n g o f O b j e c t s

The trashed operator can be used in the ensures clause of a function specifica-
tion to indicate that a given object cannot be reliably accessed after the function
returns. The t r a shed operator is typically used in the specifications of functions
that deallocate memory or that dispose of instances of mutable abstract types.
For example, after a call to the function t r a s h I n t 0 b j

void t r a s h I n t O b j (i n t *i) {
modifies *i;
ensures trashed(*i);

}

a client must not attempt to access the contents of *• "because referencing a
trashed object can even cause the client program to crash" [8, p. 76]. Notice
the presence of *i in the modifies clause: an object can be trashed only if it
is listed in the modifies clause--although specifications in the LCL literature
consistently mention trashed objects in the modifies clause, there is no explicit
statement of this requirement. Hence, the modifies clause plays a dual role: it
serves to identify those objects that may be trashed as well as those objects that
may be preserved but whose values may be modified.

On the other hand, after the invocation of changeVal

void changeVal(int *i) {
modif ies *i ;
e n s u r e s t rue ;

}

a client may still make use of *i (though no constraint is placed on the value con-
tained in *i) [8, p. 76]. Thus, an object that is not explicitly trashed is implicitly
preserved--i.e, not trashed. We will illustrate next that this aspect of the seman-
tics of LCL can lead to contradictory interpretations for function specifications
that should have the same meaning.

4.1 Referential Opacity

Consider the following specification of trash0rChange, which may nondetermin-
istically choose between trashing and not trashing *s

void t rash0rChange(J~t *i) {
modif ies *i ;
e n s u r e s t r a shed (* i) V ~ t r a s h e d (, i) ;

}

The predicate in the ensures clause is an instance of the law of excluded middle
and hence, it is logically equivalent to t rue . One would expect to be able to
simplify the ensures clause while preserving the meaning of the specification.

398

void trashOrChange(int *i) {
modifies *i;
ensures true;

}

The resulting specification of trash0rChange cannot trash *i because of the
implicit constraint that *i be preserved.

We have illustrated a violation of the principle of referential transparency
which states, in essence, that the only important property of an expression is
its value and that we can, consequently, substitute equals for equals. Referential
transparency is a fundamental principle of mathematical formalisms.

Not only do formal specification languages permit precise documentation,
but they also provide the grounds for the formal analysis and transformation
of specifications. Formal arguments are most often conducted within a proof
system (rather than by direct application of a model theory). For example, in
the Refinement Calculus [15], one can make use of "refinement laws" (which can
be used as proof rules) to establish the correctness of an implementation with
respect to its specification. As a consequence of the identified referential opacity,
we note that laws, such as the strengthen postcondition law, do not hold for
LCL [2].

5 S h o r t c o m i n g s R e s o l v e d

5.1 D e p e n d e n c i e s B e t w e e n O b j e c t s

The history of programming languages has been marked by a tendency to make
languages more abstract. Increasingly, languages are based on programming con-
cepts (i.e. semantic objects) that allow designers to think at a level of abstraction
that is closer to the problem domain and further from the computer architectures
on which the programs are being executed. In the programming language com-
munity, object dependencies tend to be frowned upon. High-level languages tend
to severely restrict the kinds of dependency that can be created and low-level
languages are characterized by the opposite. In the extreme, object dependencies
are prohibited from high-level languages--as in logic or functional programming
languages in which computation is based on values rather than objects (by defi-
nition, object dependencies cannot exist between values, only between objects).
It is important to note that object dependencies cannot be eliminated from im-
perative programming languages that support abstract and indexable s types.

By suggesting the systematic adherence to certain programming conventions
(e.g. with respect to mechanisms for the implementation and use of abstract
types), LCL attempts to raise the level of abstraction at which C programmers
think. In providing a semantics for LCL, there would seem to be a tension:
although use of LCL promotes C programming at a higher level of abstraction,
it is also necessary that the semantic model of LCL subsume that of C since

s E.g. array or dynamic types.

399

LCL is an interface specification language/or C. The LCL semantic model must
capture the behavior of as large a class of C programs as is possible. Hence arises
the question: to what degree should dependencies be supported in LCL?

Usually, a model that supports descriptions from two levels of abstraction
must be defined in terms of concepts that are from the lowest level. Hence, the
semantic model for LCL must accurately capture the kinds of object dependency
that can be created in C programs. Our approach to modeling dependencies is
formally described in [2]. Of course, it is also necessary that the LCL language
have an expressively complete set of constructs for describing dependency rela-
tionships. These constructs are introduced next.

In its full generality, the object dependency relation is a dynamic property.
For example, dependencies between instances of abstract types implemented by
shared realizations may change at run-time [4]. Modeling the object dependency
relation as a dynamic property would complicate the semantics and would have
important repercussions at the language level. It is not clear, at this point in
our research, what language constructs would be best suited to supporting a
dynamic dependency relation. The extent to which the dynamic quality of the
dependency relation would be actually needed in documenting interface specifi-
cations is also unclear. Consequently, in this version of the semantic model the
object dependency relation is represented by a static relation, that is, a relation
whose value is independent of the program state.

We propose the introduction, in LCL, of two predicates:

- dep0n(e, e') holds when the object referred to by e depends on 9 the object
referred to by e'.

- indep(el , e2, . . . , e ,) holds when the expressions el, e2, . . . , e, denote ob-
jects that are independent.

The depOn predicate allows specifiers to describe any (static) dependency rela-
tion that can exist between objects. Although indep can be defined in terms
of dep0n, indep is more likely to be used in practice since we generally wish
to specify that the objects in a given collection are independent (as opposed to
characterizing a particular dependency relationship). For example, indep can be
used to write concise and accurate specifications for the functions lookup and
memcpy. Concretely, in the case of lookup, we capture the requirement that a s

and *• be independent by adding i n d e p (a s , * i) to the requires clause:

boo1 lookup(int v, int *i) struct AS as; {
requires as.size ̂ < N A indep(as,*i);
. . o

}

The last example of Section 2 required that we be able to strengthen the
specification of fas~Concat by ensuring that the only dependencies created by
fas tConca t are between r e s u l t and x2. More precisely, we wish to ensure that

9 The definition of dependence is given in Section 2.1.

400

result is independent of any client-visible object that is active in the pre- and
post-states and that is also independent of x2. One way of rewriting the specifi-
cation to include this property is as follows 1~

List fastConcat(List xl , List x2) {
ensures V void *x (

((*x)\activePre A (*x)\activePost
^ indep(*x,x2)) =~

indep(result,*x))
A resul t I = x l A [1 X2A;

)

(The \activePre and \activePost operators are discussed in the next section.) The
ensures clause is somewhat intimidating. Frequent occurrence, in specifications,
of properties like these may warrant the introduction of special notation that
would allow us to say, e.g. "fresh(result) ezcep~ for x2."

5 . 2 Impl ic i t Cons t r a in t s on P a r a m e t e r s

Cons t r a in t s for All P a r a m e t e r s The values contained in objects are in-
evitably encoded in some medium--e.g, volatile storage. It may be the case
that for a given object of type T some encodings--e.g, bit patterns--will not
correspond to values of type T. We say that an object is well-defined with re-
spect to a type T if it contains an encoding that corresponds to a value of type T;
that is, if the object contains a valid representation of a value of type T. When
we say, without qualification, that an object is well-defined, we mean that the
object is well-defined with respect to its declared type.

Although the LCL literature is not clear about the logicM foundations of LCL,
we have chosen LL, the logic underlying LSL to be the logical base for LCL. LL
is a first-order multisorted logic with equality in which all function symbols are
interpreted as total functions and sorts do not have distinguished "undefined"
values [2]. Hence, we cannot model undefined values in LCL--although we do
model non-well-defined objects. The implicit constrMnt, discussed in Section 3.1,
that "all parameters must be defined" becomes a fundamental consequence of
the semantic model of LCL and is therefore no longer an implicit constraint.

New LCL Opera to rs In Sections 3.2, 3.5 and 3.6, we noted that it is not
possible in LCL to express the property that an object is allocated or that it is
both allocated and well-defined. For this purpose we propose the introduction
of the following boolean operators

-- \activePre, __ \wellDefPre,

__ \activePost, __ \wellDefPost,

__ \act• __ \wellDefAny : T -+ Bool

10 The notation that we are using foz the dedaration o f t h e quantifier variable ~ not

the notation of LCL 2.4.

401

The expression e \ ac t ivePre holds when the object e is active (i.e. allocated) in
the pre-state, e\wellDefPre holds when the object e is active and well-defined
in the pre-state. The other operations provide similar predicates over the post
and generic states. Note that the meaning of the trashed operator can be given
in terms of \activePost

trashed(gv) ~e~ ~ (gv\activePost)

Due to the problems discussed in Section 3, the implicit constraints for
pointer and array parameters are dropped. The new operators can be used to
express the necessary constraints. For example, the following specification of f
requires that the object pointed to by i be allocated and that the global vari-
able gv be well-defined. The function ensures that the post-state value of *i is
well-defined and that it is equal to the pre-state value of gv.

void f(int *i) int gv;
requires (*i)\activePre A gv\wellDefPre
modifies *i;
ensures (*i)\wellDefPost A (*i)' = gvA;

)

Although this approach results in function specifications that are more verbose;
elsewhere [2], we have suggested the use of Ada-like parameter qualifiers (in,
out, inout) that would allow us to recover the original terseness.

5.3 Trash ing of Objec ts

The semantics of function specifications, in LCL 2.4, is defined in such a way that
under certain circumstances some objects are implicitly preserved. We now ex-
plain this aspect of the semantics of LCL 2.4 in more detail than in Section 4 and
we reexamine the resulting violation of the principle of referential transparency.

The modified set of a function specification consists of those objects that are
referenced by expressions occurring in the modifies clause. The trashed set of a
function specification consists of those objects that are referenced by expressions
occurring as arguments to the t r a shed operator in the ensures clause [19, w
For example, the modified and trashed sets for the following specification of
trashSome are {.a, b, .c}, and {.a, b} respectively.

mutable type M;

void trashSome(int *a, M b, int *c) {
modifies *a,b,*c;
e n s u r e s (* c) ' = (* c) ^ + 1 A t r a s h e d (b)

A (i f (*a) A != (,c) A then
then ~trashed(,a) A (*a) I
e l s e t r a s h e d (* a)) ;

)

= (, c) A

402

As was indicated in Section 4, an object that is a member of the modified set
may be either trashed or modified. An object in the modified set is implicitly
preserved only if it is not a member of the trashed set. In the trashSome exam-
ple, *e is implicitly preserved. Thus, the presence or absence of certain argument
expressions (of the t r a s h e d operator) affects the meaning of the function speci-
fication. Since the meaning of a function specification depends on more than the
t ruth or falsity of the ensures clause predicate, this dearly leads to a violation
of the principle of referential transparency. To recover referential transparency
we need only eliminate that aspect of the semantics that relies on the presence
or absence of argument expressions to the t r a s h e d operator.

An obvious approach to achieving this would preserve the dual role of the
modifies clause while eliminating the implicit constraint that objects in the
trashed set are implictly preserved. As a consequence of this approach speci-
fiers would have to explicitly indicate when objects are to be preserved. For
example, the specification of trashSome would have to be rewritten as

void trashSome(int *a, M b, in t *c) {
modifies *a,b,*c;
ensures (*c) ' = (*c) ̂ + 1 A trashed(b)

A ~ trashed(*c)
^ (i f (*a) ̂ I= (*c) ̂ then

then ~trashed(*a) A (*a) ' = (*c) ̂
e l s e t rashed(*a)) ;

(Notice the addition to the ensures clause of a predicate asserting that *c is
not trashed.) In practice, very few functions trash the objects in their modified
sets. For example, of the fifty-two functions given in LCL specifications in the
Larch book, only two of the thirty-two expressions (that occur in the modifies
clauses) are arguments to the t r a s h e d operator [8]. Thus, requiring an explicit
statement of the fact that objects are preserved would (unnecessarily) lengthen
specifications; function specifications that are less concise are more difficult to
write, understand and maintain.

Fortunately there is a better solution. We suggest the introduction of a
trashes clause which is syntactically like the modifies clause except for the lead-
ing t r a s h e s keyword. That is, the trashes clause is optional and when present,
it may be followed by the n o t h i n g keyword, or by a list of lvalues (expressions
denoting objects). A function may trash an object if and only if that object
is referenced by an expression that occurs in the trashes clause11. Thus, the
modifies clause recovers its intended role: it identifies which objects may have
their values modified. The roles of the modifies and trashes clauses are indepen-
dent; an expression may occur in both, in either or neither of the clauses. Under
this scheme, the specification of t rashSome would be identical to its original
specification but with the addition of the clause t r a s h e s *a,b. Most function

11 Actually, object dependencies must be taken into account for both the modifies and
trashes clauses. Details are given in [2].

403

specifications will be written without a trashes clause, implying that no (client-
visible) object may be trashed. For those few functions that do trash objects,
these objects will be explicitly identified by listing them in the trashes clause.

6 Conclus ion

The specialization of a specification language to a particular programming lan-
guage is an important characteristic of module interface specification languages
(MISL's). The only well-developed MISL's are the Larch interface languages
and among these LCL would seem to be the most mature. We have argued
that MISL's are an excellent way of introducing formal methods into industrial
settings.

We have identified inadequacies and insufficiencies in the LCL language. In
particular, by introducing the concept of object dependency we illustrate, by
means of realistic examples, that there is a need for LCL language constructs
that would allow suecifiers to describe and reason about object dependencies.
We argue that the meaning of a function specification is affected by implicit
parameter constraints that have been poorly documented. These constraints are
shown to be problematic--in particular, they are ambiguous and potentially
overly constraining. We show that the current definition of the meaning of a
function specification relative to trashed and non-trashed objects leads to a
violation of the principle of referential transparency.

The version of LCL described in this paper differs from LCL 2.4, principally
in that:

- new primitives have been added for describing object dependencies,
- the implicit constraints over pointer and array parameters have been dropped

and new language primitives have been added that allow specifiers to assert
whether or not an object is active or well-defined,

- a trashes clause has been added to function specification bodies.

These changes increase the expressiveness of LCL and allow us to overcome the
identified shortcomings of LCL 2.4. In particular, we eliminate the instance of
referential opacity. The shortcomings and solutions documented in this paper, as
well as others that require a deeper understanding of the semantics of LCL, are
described in detail in [2], which also includes a formal semantics for a core subset
of LCL. Finally, we note that the identified shortcomings are not particular to
LCL, they are shared by other module interface specification languages.

A c k n o w l e d g m e n t s

We thank Gary Leavens and David Evans for their comments on an earlier draft
of this paper.

404

References

1. Jonathan Bowen and Mike Hinchey. Ten commandments of formal methods. IEEE
Computer, 28(4):56-63, April 1995.

2. Patrice Chalin. On the language design and semantic foundation of LCL, a
Larch/C interface specification language. CU/DCS TR 95-12, Computer Science
Department, Concordia University, December 1995. Ph.D. Thesis.

3. Jolly Chen. The Larch/Generic interface language. S. B. Thesis, Department of
Electrical Engineering and Computer Science, MIT, 1989.

4. George W. Ernst, Raymond J. Hookway, and William F. Ogden. Modular verifica-
tion of data abstractions with shared realizations. IEEE Transactions on Software
Engineering, 20(4):288-307, April 1994.

5. David Evans. Using specifications to check source code. TR 628, MIT LCS, June
1994. S.M. Thesis.

6. David Evans, John V. Guttag, James J. Horning, and Yang Meng Tan. LCLint:
A tool for Using specifications to check code. In Symposium on the Foundations o/
Software Engineering, December 1994.

7. John V. Guttag and James J. Homing. LCL: A Larch interface language for C.
Technical Report 74, DEC Systems Research Center, July 1991.

8. John V. Guttag and James J. Horning, editors. Larch: Languages and Tools
]or Formal Specification. Texts and Monographs in Computer Science. Springer-
Verlag, 1993.

9. C.A.R. Hoare. An overview of some formal methods for program design. IEEE
Computer, 20(9):85-91, September 1987.

10. Michal Iglewski, Jan Madey, David Lorge Pumas, and Philip C. Kelly. Documen-
tation paradigms. CRL TR 270, McMaster University, July 1993.

11. ISO/IEC 9899 : 1990 (E). Programming languages--C.
12. Ann Jackson and Daniel Hoffman. Inspecting module interface specifications. Soft-

ware Testing, Verification and Reliability, 4:101-117, 1994.
13. Cliff B. Jones. Systematic Software Development using VDM. Computer Science

Series. Prentice Hall International, second edition, 1990.
14. Richard Allen Lerner. Specifying Objects of Concurrent Systems. PhD thesis,

Carngie Mellon University, May 1991. TR CMU-CS-91-131.
15. Carroll Morgasa. Programming from Specifications. Computer Science Series. Pren-

tice Hall International, 1990.
16. David Lorge Pumas and Yabo Wang. The trace assertion method of module inter-

face specification. TR 89-261, Queen's University at Kingston (Dept. of Computing
and Information Science), 1989.

17. S. Prehn and W.J. Toetenel, editors. VDM'91: Formal Software Development
Methods, volume 551 of Lecture Notes in Computer Science. VDM Europe,
Springer-Verlag, 1991. Volume 1: Conference Contributions.

18. J.M. Spivey. The Z Notation: A Reference Manual. Computer Science Series.
Prentice Hall International, second edition, 1992.

19. Yang Meng Tan. Formal specification techniques for promoting software modular-
ity, enhancing documentation, and testing specifications. TR 619, MIT LCS, June
1994. Ph.D. Thesis.

20. Mark T. Vandevoorde. Exploiting specifications to improve program performance.
TR 598, MIT LCS, February 1994. Ph.D. Thesis.

21. Jeannette M. Wing and Amy Moormann Zaremski. Unintrusive ways to integrate
formal specifications in practice. In [17], pages 545-569, 1991.

