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Abstract .  We present some of the more significant shortcomings of 
LCL, a Larch/C specification language used to document the interfaces 
of modules written in ISO C. We illustrate inadequacies in the definition 
and insufficiencies in the expressiveness of LCL by means of examples 
that cover dependencies between objects, the trashing of objects, and im- 
plicit parameter constraints in function specifications. A violation of the 
principle of referential transparency is also shown. We describe changes 
to the LCL language that overcome the identified shortcomings. Since 
most of the shortcomings are not particular to LCL, this paper will be 
of interest to language designers and users of other module interface 
specification languages. 

1 I n t r o d u c t i o n  

The Larch approach to specification promotes the modular development of pro- 
grams and encourages the use of data  abstraction. In Larch there are two spec- 
ification tiers or levels. The shared tier contains specifications (called traits) 
written in the Larch Shared s (LSL) [8]. A trait defines a multisorted 
first-order theory. The in~erface fief contains interface specifications written in a 
Larch interface language. There are several Larch interface languages. The most 
widely used are LCL, LCPP (an interface language for C + + )  and LM3 (an in- 
terface language for Modula-3). Each 1 interface language is specialized for use 
with a particular programming language. Using constructs and concepts from 
the programming language, an interface specification describes what resources 
are being provided by a module. 

Specification languages can be used during the entire software development 
process to document requirements, designs and the interface specifications for 
modules and program components. One must be careful in choosing an appro- 
priate specification language for the task at hand [9, 1]. The specialization of 
a specification language to a particular programming language is an important 

1 With the exception of the two generic interface languages GIL [3] and GCIL [14]. 
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characteristic of module interface specification languages (MISL's). Most speci- 
fication languages are general purpose languages. Among the most popular are 
VDM-SL [13] and Z [18]. These languages are best suited for design specification. 

Much less attention has been given to MISL's by the research community 
than to design or wide-spectrum specification languages. To our knowledge, the 
only MISL's are the Larch interface languages and an adaptation of the lan- 
guage used with the Trace Assertion Method (TAM) [16]. Of the Larch interface 
languages, LCL would seem to be the most developed and used. Development 
of the TAM-based language is at a preliminary stage and a new release is in 
preparation [10]. 

MISL's are an excellent way of introducing formal methods into industrial 
settings [12]. It is particularly important to industry that start-up costs be min- 
imized and that benefits be apparent even with small investments; we believe 
that MISL's can offer this. Some of the advantages of the use of MISL's are 
enumerated next 2. 

MISL's can be immediately and 'unintrusively' integrated into current in- 
dustrial development processes [21]. A company that has invested considerable 
resources in the creation and installation of their development processes (e.g. 
training of personnel and construction of tools) is more likely to welcome formal 
methods that can be used in conjunction with inhouse development standards. 

One of the greatest challenges faced by industry is the maintenance of legacy 
code. Not only can MISL's be applied to new developments, they can also be 
integrated into the maintenance cycle of existing software systems. This is of 
great value since it means that formal methods can be retroactively brought 
into projects that were developed without formal methods. 

MISL's can be gradually integrated into a project: 

- they can be applied to isolated portions of a system (such as those aspects 
for which reliability is most critical), 

- MISL's can be used with varying degrees of rigor: from merely documenting 
function signatures to providing complete behavioral descriptions for func- 
tions. In all cases one can reap benefits. 

Tool support for most other classes of specification language is limited to 
type checking. More automated checks can be performed for MISL's. For ex- 
ample, LCLint, a tool for checking LCL specifications and C code, can be used 
to detect abstraction boundary violations, illicit access to global variables, and 
undocumented modification of client-visible objects [6]. As another example, 
Vandevoorde has developed a prototype program optimizer that makes use of 
the information derived from module interface specifications to perform opti- 
mizations that cannot be accomplished by the inspection of code alone [20]. 

This paper contributes to the evolution of LCL by documenting some of 
the more significant shortcomings of LCL 2.43and by proposing solutions to the 

2 These advantages are not necessarily exclusive to MISL's--they may be shared by 
other classes of specification language. 

3 Version 2.4 is the latest public release of LCL. 
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identified shortcomings. The authoritative references for LCL 2.4 are the Larch 
book [8] and Tan's  PhD thesis [19]. A basic understanding of LCL is assumed. 

2 D e p e n d e n c i e s  B e t w e e n  O b j e c t s  

In this section we introduce the concept of object dependency and describe how 
dependencies can arise. We argue that  programmers rely on certain "desirable" 
kinds of dependency and that  they tend to overlook other "less desirable" forms. 
Our examples will serve to illustrate that  LCL lacks operations that  would allow 
specifiers to document and reason about  dependency relationships in interface 
specifications. 

2.1 D e f i n i t i o n s  

In C, an object is a region of data  storage consisting of a contiguous sequence 
of storage units [11, p. 2]. In LCL, the term is used in a more abstract sense (in 
particular because of the need to model objects that  are instances of abstract 
types): an object is a container for values of a particular type [8, p. 59]. 

We say that  an object zl depends on an object x2 if changing the value 
contained in z2 may affect the value contained in zl. It is possible for zl to 
depend on z2 without z2 depending on zl 4. If zl depends on z2 or z2 depends 
on zl, then we say that  a dependency exists between zl and x2. If zl is not 
dependent on z2, then we say that  zl is independent of z2. The objects in a 
given collection are independent, if each object from the collection is independent 
of every other object in the collection. Given an expression e that  refers to an 
ob jec t - -e  is called an Ivalue in C--we shall often lighten our prose by speaking 
of "the object e" instead of the more verbose but  precise "the object referred to 
by e". Thus, for example, we may state that  el and e2 are independent by which 
we mean that  the objects that  are denoted by the expressions are independent. 
As a consequence, we note that  if el and e2 are independent then the expressions 
cannot be aliases. 

Turning to the low-level model of C for an example, we understand that  
two objects with overlapping regions of storage are dependent on each other. 
Thus, objects of array, structure and union types depend on the objects that  
correspond to their members and vice versa. For example, given the following 
declarations 

s t r u c t  { i n t  i ;  } s ;  
i n t  a [ l O ]  ; 

s .  i and s depend on each other since these expressions refer to the same re- 
gion of memory. Also, by definition, s and s.  i are dependent on each other 
since changing the value of one will affect the value of the other. Similarly, a 

4 This kind of asymmetry may exist between instances of an abstract type. 
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depends on its members--e.g, a[93. On the other hand, a[0],  a [ i ] ,  ..., a[93, 
and s. i are independent. The dependency relationship that holds between an 
aggregate or union object and its members is one of the kinds of dependency 
that programmers rely on and actually take for granted. 

When dealing with abstract types we can no longer appeal to the low-level 
concept of overlapping storage for an intuitive model of dependency. Whether a 
dependency exists between two instances of an abstract type will depend on the 
implementation of the abstract type [4]. 

2.2 Mot iva t ing  Example:  Er ro r  in t h e  Larch  Book 

The purpose of this example is twofold: we wish to illustrate that there are 
legitimate uses of dependencies (beyond those mentioned in Section 2.1) and 
that there are certain kinds of dependency that are often overlooked by specifiers 
and implementors. 

typedef struct {... char name[maxEmployeeName] ; ...} employee; 

bool employee_setName(employee *e, char na[]) { 
requires nullTerminated(na ̂ ) ; 
modifies e-->name; 
ensures result = lenStr(na ̂ ) < maxEmployeeName 

A (if resul t  
t h e n  sameStr(e-->name', na n) 

A nullTerminated(s->name') 
e l s e  e->name' = e->name^); 

} 

Fig. 1. An Excerpt from employee.lcl 

Our example (see Figure 1) is an excerpt from the Larch book employee 
specification [8, p. 65]. This specification is part of a small database program 
used to store and perform simple queries on employee records. Employee records 
are represented by the exposed type employee which is defined as a C structure. 
Of the functions provided for manipulating employee records we show only the 
function employee_setName. It can be used to assign a string to the name field 
of an employee record. Before calling employee_setName, a client must make 
sure that the parameter na is a null terminated string. The expressions e ̂  and 
e' denote the values contained in the object referred to by the subexpression e in 
the pre-state (the program state before function entry) and post-state (the state 
after function return) respectively. After the call, the name field of the given 
employee record will be set to the string contained in na if the string length 
is less than maxEmployesName. Otherwise, the name field of the record is left 
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unchanged. The function result is true if and only if the length of the string 
contained in na is less than maxEmployeeName. 

Suppose that all of the employee records in a given database begin with either 
of the titles "Mr." or "Ms." and that the database maintainer wishes to remove 
the titles. He or she decides to write a program that will accomplish this task 
by accessing each employee record, say, as the variable e, and then performing 
the call 

employee_setName(ke,e.name + 3) 

Unfortunately the program crashes s and inspection of the implementation of 
employee._set:Na~e reveals the cause: 

bool employee_setName(employee *e, char na []) { 
int i ;  

for (i  = O; na[i] != '0'; i++) 

if (i == maxEmployeeName) return FALSE; 
strcpy(e--+name, na); 
return TRUE; 

} 

The particular way in which employee..setSame is being invoked causes the 
standard library function s t r c p y  to be called with overlapping arguments (since 
e->name and na are part of the same array). The behavior of s t r c p y  is undefined 
when it is called under such circumstances [11, w The specification of 
employee_setName does not prohibit calls for which its arguments are depen- 
dent. It is possible that the specification inaccurately reflects the intent of its 
authors or that the source of error is the implementation: in either case the 
implementation is incorrect with respect to its specification. With appropriate 
(but small) changes, the implementation can be corrected by making use of the 
standard library function memmove instead of s t r c p y  (since memmove may be 
called with overlapping arguments). The reader may wonder whether memmove 
can be specified in LCL; we address this question in Section 2.4. 

We can trace the publication of the database program to the original techni- 
cal report on LCL 1.0 [7]. The program was subsequently revised and published 
as part of the Larch book [8, w To determine the effectiveness of LCLint 
at detecting certain classes of errors in LCL specifications and their implemen- 
tations, David Evans applied LCLint to (among others) the database program. 
Evans writes: 

"The specifications [of the database program] had been checked by the 
LCL checker [a predecessor of the LCLint tool] . . . ,  and the source code 
had been compiled and tested extensively. Since the code and specifica- 
tions were written by experts, and checked copiously by hand prior to 

5 A sample program compiled with gcc version 2.6.3 and run under SunOS release 
4.1.3 generates a segmentation fault. 
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publication, it was expected that  not many bugs would be found." [5, 
p.41] 

The case study "did uncover two abstraction violations, and one legitimate 
modification error" [5, p. 50]. We have demonstrated an additional error in the 
database program which has also escaped the scrutiny of the original designers 
and subsequent reviewers. 

This example illustrates that  there are legitimate uses of dependencies (such 
as the dependency permitted between *e and na in employee_setName) be- 
yond those mentioned in Section 2.1. It also illustrates that  errors resulting from 
unexpected dependencies between arguments can easily be overlooked. We be- 
lieve that  this is true because developers have not been encouraged to think 
about dependencies that  may exist among parameters or between parameters 
and global variables. A specification language that  permits dependencies must 
have constructs that  allow the description of dependency relationships as well as 
a semantic model that  supports reasoning about dependencies: LCL is deficient 
in both these respects. 

2.3 E x a m p l e :  lookup 

The specification given in Figure 2 defines a global s t r u c t  variable as consisting 
of an array of elements, e l t s ,  and the size of the prefix of e l t s  that  is in use. It 
also defines the function lookup which can be used to search for an occurrence 
of the given value v in as 6. If v is present in as, then *i  is set to the index of 
an element of as containing v and as is left unchanged; otherwise, v is added 
to as  and *i  is set to the index of the newly added value. The function result 
is true precisely when the value v occurs in as (before lookup is invoked). The 
predicate that  follows the e l s e  in the ensures clause of lookup is not shown 
since it is not relevant to our discussion. 

After a careful review, the reader may feel that  the specification of lookup is 
accurate. It is actually inconsistent--there is no implementation that  can satisfy 
it--since there are situations for which the postcondition cannot be satisfied. 
For example, suppose that  v occurs in as and that  *i  is an alias for as .  s i z e  or 
any of the elements of as .  e l t s  that  are in use. Then the ensures clause states 
that  the value of *• may change while requiring that  the value of as remain 
unchanged; this constraint, in general, will be unsatisfiable in the presence of 
the described aliasing. 

We can at tempt  to remedy the situation by strengthening the precondition of 
lookup so that  * i  is prohibited from being an alias for any of the subcomponents 
of as (see Figure 3). The resulting specification is less clear and more complex 
(this augments the risk of introducing errors into the specification) and less 
maintainable since the specification is now more sensitive to changes in the AS 
structure. 

e We will at times use the term "as" to refer to the prefix of a s .  e l t s  that is in use. 
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constant int  N; 
s t ruct  AS {int size; int  sits[N];} a s ;  

bool lookup(int v, int  *i) s t ruct  AS as; 
r e q u i r e s  a s . s i z e  ^ < N; 
modifies *i, as; 

ensures result = v q prefix(as.elts^,as.size ^) 

A if result 
then 0 < (*i)' A (*i)' < as.size ̂  

A as.elts ̂  [(*i)'] = v 
A as I ~ as ^ 

else /* v is inserted into as.elts */ ...; 

Fig. 2. Specification of lookup 

bool lookup(int v, int  *i) s t ruct  AS as; { 
r e q u i r e s  a s . s i z e  ^ < N A * i  ~ a s . s i z e  

A (V j : i n t  ((0 < j A j < a s . s i z e  ^ ) 
=~ *i ~ a s . e l t s [ j ] ) ) ;  

} 

Fig. 3. Strengthened Precondition for lookup 

More importantly, the specification is still inconsistent since it is possible 
for *i and a s  to satisfy the requires clause without being independent. In for- 
mulating the strengthened precondition we have relied on the following false 
assumption: if two distinct objects are instances of base types (char, • etc.), 
then they must be independent. In C, as in some other imperative programming 
languages, this assumption can be invalidated by the use of union types. Type 
casting can also invalidate the assumption. 

This example illustrates the need for new LCL language constructs which 
would allow specifiers to accurately and succinctly express the independence of 
objects. 

2.4 Example:  ISO C St r ing  L ib ra ry  Funct ions  

It would be reasonable to expect LCL to be expressive enough to allow one to 
document the behavior of most ISO C standard library functions. Consider the 
task of writing specifications for the standard string copying functions memcpy 
and memove [11, w 

void *memcpy(void *sl,  const void *s2, size_t n); 



392 

void *memmove(void *sl, const void *s2, size_t n); 

Both functions can be used to copy n characters from the object pointed to by 
s2 into the object pointed to by s l .  There is an extra requirement for memcpy: 
the objects *s l  and *s2 must not overlap [11, w It is impossible to write 
an LCL specification for memcpy since we cannot express the requirement that 
its arguments are independent of each other. 

2.5 Dependencies  and Abstract  T y p e s  

The fresh operator is the only LCL operator, other than equality over objects, 
that allows specifiers to document dependency relationships between objects. 
An occurrence of the expression f r e s h ( e )  in the ensures clause of a function 
specification asserts that the object referred to by e is not aliased to any object 
that was visible to the client before function entry [8, p. 77]. By means of the 
next example, we highlight the need for LCL primitives that would allow for a 
more precise description of the dependency relationships that may exist between 
objects. 

Most abstract type constructors yield instances of the abstract type that are 
independent of other client-visible objects. It is not uncommon, though, to find 
"quick" or "destructive" versions of some constructors that fail to guarantee the 
independence of the resulting abstract type instance; independence is sacrificed 
for sake of efficiency. 

mutable type List; 

uses List (int, List) ; 

List mkList(void) { 
ensures result' ---- empty A fresh(result); 

} 
List concat(List xl, List x2) { 

ensures result' ----Xl ̂ II x2^ A fresh(result); 
} 
List fastConcat(List xl, List x2) { 

ensures result' = xl ̂ II x2^; 
} 

Fig. 4. List specification. 

For example, a list module might provide two versions of the concatenation 
operation--see Figure 4. Notice that the specification of fas tConca t  does not 
ensure f r e s h ( r e s u l t ) .  It would be more useful, for example, if we could assert 
that the only dependency created by fas tConca t  is between r e s u l t  and x2. 
This extra information would allow us to make better use of fastConca% for 
example, in the optimization of a series of successive concatenations. 
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3 Implicit  Constraints on Parameters  

In LCL, the specifications of functions with parameters have implicit constraints, 
derived from the parameter declarations, that affect the meaning of the speci- 
fications. Unfortunately, most of these implicit constraints are either not docu- 
mented or inadequately defined. The purpose of this section is to expose some 
of these implicit parameter constraints and to discuss the consequences of their 
inclusion in LCL. 

3.1 Constraint for All P a r a m e t e r s  

There is an implicit constraint that applies to all parameters in a function spec- 
ification. It requires that the parameters be defined. This implicit constraint on 
parameters is not documented in the Larch book [8] nor in Tan's semantics [19]. 
We have only been able to find an explicit statement of the constraint in Evans's 
thesis: 

"LCL specifications denote if the values associated with parameters are 
defined . . . .  All other parameters [i.e. other than out-qualified pointer 
parameters] are assumed to be defined when the function is entered." [5, 
p.36] 

(The out parameter qualifier is discussed in Section 3.3.) For example, consider 
the function empset_cleax from the Larch book empset specification [8, p. 73]: 

void empset_clear(empset s) { 
modifies s; 

ensures s' = ~ }; 

By the absence of a requires clause, no explicit requirements are placed on clients 
of empset_clear.  Implicitly, though, it is assumed that on function entry, s 
is bound to a defined empset (as can be concluded from the informM descrip- 
tion of empset_clear): "empset_clear,  is provided for reinitializing an existing 
empset" [8, p. 76]. 

3.2 P a r a m e t e r s  of  Po in t e r  Types  

There is an additional constraint for parameters of pointer types. The implicit 
property requires that a pointer parameter reference an allocated object and that 
this object be defined. This constraint is not documented in the Larch book nor 
in Tan's semantics 7. Evans writes: 

r Tan documents the effect of the out parameter qu~difier as applied to parameters of 
pointer types, but he fails to describe the implicit constraints derived from pointer 
parameters that are not qualified with out. 
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"Normally, if a parameter to a function is a pointer, it is assumed that 
the value it points to is defined and may be used in the body of the 
function." [5, p. 36] 

We discuss some of the shortcomings associated with this implicit constraint. 

Cons t r a in t  is Over ly  Res t r i c t i ve  The implicit constraint for pointer param- 
eters is overly restrictive since it prevents us from using certain useful imple- 
mentation techniques. Consider the specification fragment 

typedef struct node { ... } *List; 
constant List emptyList = O; 
List mkList(int info, List tail) { .... } 

in which the empty list is represented by a null pointer. The function mkList 
is meant to allow clients to construct a new list from a given integer and list. 
The implicit constraint for pointer parameters effectively prohibits us from rep- 
resenting the empty list by means of a null pointer, since,for example, we cannot 
call mkList with emptyList as an argument for tail. This is because all pointer 
parameters must refer to allocated objects and a null pointer "is guaranteed to 
compare unequal to a pointer to any object or function" [11, w a 
null pointer can never refer to an allocated object. 

Constraint is Ambiguous and Problematic From a given pointer parame- 
ter p we can access all of the objects p+i for i in the index set 

I ---- { i I minIndex(p) < i < maxIndex(p) } 

[8, p. 60]. With this in mind, there would seem to be two reasonable interpreta- 
tions for the implicit constraint. Firstly, we can interpret the implicit constraint 
as applying to all of the objects that can be accessed via p: i.e. all objects p+i 
(for i 6 I)  would have to be allocated and defined. Such an interpretation ren- 
ders the constraint too restrictive. For example, this would require that every 
member of a string (represented by a pointer into an array of char) be initialized 
before the string is passed as an argument, even if the string does not occupy the 
entire array. There is no reason to require that the string be initialized beyond 
the null character that terminates the string. 

Another possible interpretation for the implicit constraint would require that 
all objects p+i ( i  6 I)  be allocated but that only the object at p need be defined. 
Assuming 1 6 I, how would a specifier express the additional requirement that 
p+l be defined? There are no LCL language constructs available to the specifier 
that would allow the expression of this property. 
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3.3 The  out Parameter  Qualifier 

It is common in C for a function to return values to its caller by means of objects 
that  are referenced by the function's pointer parameters; the out  parameter 
qualifier serves to indicate which parameters are being used for this purpose 
[19, w The specification of add given in Figure 5 illustrates the use of out.  
The out  qualifier has the effect of partly "relaxing" the extra constraint that  

void add(int  m, in t  n, out in t  *sum) { 
modifies *sum; 
ensures (*sum)' = m + n; 

} 

Fig. 5. Use of out in a function specification. 

is usually applied to pointer parameters. An out  qualified pointer parameter is 
still implicitly required to refer to an allocated object, but that  object need not 
be defined [19, w 

As a final remark, we highlight a contradiction in [19]: although Tan states 
that  the out  qualifier is applicable only to parameters of pointer types [19, 
w he also applies it to array parameters [19, w Of course, this more 
liberal use of out  is reasonable (and is accepted by LCLint), but it has not been 
documented. Array parameters are discussed in Section 3.4. 

3.4 P a r a m e t e r s  o f  Array Types  

Although we have found no explicit description of it, there is an implicit con- 
straint on array parameters that  is similar to the one for pointer parameters. 
This would seem reasonable, due to the close relationship between pointers and 
arrays in C. In fact, someone familiar with C might think that  it would be un- 
necessary to reformulate the implicit constraint for pointer parameters in terms 
of array parameters because the type of an array parameter is "adjusted to" 
a pointer type [11, w In LCL, parameters of array types have a different 
semantics from those of pointer types [8, p. 60], [19, w particular, array 
parameters are not treated as pointer parameters. 

The specification of d a t e _ p a r s e  [19, w given in Figure 6 provides evi- 
dence of the implicit assumption that  array parameters refer to objects that  have 
been allocated and whose contents are defined. In the specification, c s t r i n g ' s  
are null-terminated arrays of char.  If i n d a t e  is a well-formatted date, then this 
date is parsed and returned in *d. The function d a t e _ p a r s e  makes use of the 
content of i a d a t e ,  hence i n d a t e  must refer to allocated storage and its contents 
must be defined. 

The implicit constraint over array parameters suffers from the same am- 
biguities and drawbacks as the constraint for pointer parameters discussed in 
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bool date_parse (cstring indate,..., out date *d)... { 
modifies . . . ;  
ensures result = okDateFormat(getString(indate^)) 

h if result 

then (*d)' = string2date(getString(indate^)) 
~ 

} 

Fig. 6. Tan's date_parse Function 

Section 3.2; i.e., it is not clear whether the implicit constraint requires that all 
or only some of the array elements be defined--either interpretation leads to 
difficulties. 

3.5 Parameters  o f  Other  Types  

Consider a function specification with the header 

void f ( i n t  **i) 

The implicit constraints require that i be defined and that *• be allocated and 
defined. Suppose that we further wished to constrain the parameter by requiring 
that **i be allocated and defined. We cannot document this extra property 
for lack of language primitives in LCL. Similar remarks can be made about 
parameters of other types (e.g. array of pointer, struct containing a pointer 
member). 

3.6 P a r a m e t e r s  v s .  Global  Variables 

In designing a module one must decide on the mechanisms by which information 
will be communicated between the module and its clients. In particular, one 
must choose between information exchange by means of function parameters or 
global variables. A designer's freedom of choice is impeded (in favor of the use 
of function parameters) by the lack of expressiveness of LCL. 

For example, given 

int *gv ; 

void f(int *pv) { ... } 
void g(void) int  *gv; { . . .  } 

one could not express, in the specification of g, a constraint on gv that would 
be equivalent to the implicit parameter constraint on pv in f.  This is because, 
unlike for function parameters, implicit constraints are not imposed on variables 
(like gv) that are part of the global variable list of a function specification. It is 
also because there are no language constructs in LCL that express the property 
that a given object is allocated, or that it is both allocated and defined. 
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4 T r a s h i n g  o f  O b j e c t s  

The trashed operator can be used in the ensures clause of a function specifica- 
tion to indicate that a given object cannot be reliably accessed after the function 
returns. The t r a shed  operator is typically used in the specifications of functions 
that deallocate memory or that dispose of instances of mutable abstract types. 
For example, after a call to the function t r a s h I n t 0 b j  

void t r a s h I n t O b j ( i n t  *i)  { 
modifies *i; 
ensures trashed(*i); 

} 

a client must not attempt to access the contents of *• "because referencing a 
trashed object can even cause the client program to crash" [8, p. 76]. Notice 
the presence of *i  in the modifies clause: an object can be trashed only if it 
is listed in the modifies clause--although specifications in the LCL literature 
consistently mention trashed objects in the modifies clause, there is no explicit 
statement of this requirement. Hence, the modifies clause plays a dual role: it 
serves to identify those objects that may be trashed as well as those objects that 
may be preserved but whose values may be modified. 

On the other hand, after the invocation of changeVal 

void changeVal(int  *i)  { 
modif ies  *i ;  
e n s u r e s  t rue ;  

} 

a client may still make use of *i  (though no constraint is placed on the value con- 
tained in *i) [8, p. 76]. Thus, an object that is not explicitly trashed is implicitly 
preserved--i.e, not trashed. We will illustrate next that this aspect of the seman- 
tics of LCL can lead to contradictory interpretations for function specifications 
that should have the same meaning. 

4.1 Referential  Opacity 

Consider the following specification of trash0rChange, which may nondetermin- 
istically choose between trashing and not trashing *s 

void t rash0rChange(J~t  *i)  { 
modif ies  *i ;  
e n s u r e s  t r a shed (* i )  V ~ t r a s h e d ( , i ) ;  

} 

The predicate in the ensures clause is an instance of the law of excluded middle 
and hence, it is logically equivalent to t rue .  One would expect to be able to 
simplify the ensures clause while preserving the meaning of the specification. 
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void trashOrChange(int *i) { 
modifies *i; 
ensures true;  

} 

The resulting specification of trash0rChange cannot trash *i  because of the 
implicit constraint that *i be preserved. 

We have illustrated a violation of the principle of referential transparency 
which states, in essence, that the only important property of an expression is 
its value and that we can, consequently, substitute equals for equals. Referential 
transparency is a fundamental principle of mathematical formalisms. 

Not only do formal specification languages permit precise documentation, 
but they also provide the grounds for the formal analysis and transformation 
of specifications. Formal arguments are most often conducted within a proof 
system (rather than by direct application of a model theory). For example, in 
the Refinement Calculus [15], one can make use of "refinement laws" (which can 
be used as proof rules) to establish the correctness of an implementation with 
respect to its specification. As a consequence of the identified referential opacity, 
we note that laws, such as the strengthen postcondition law, do not hold for 
LCL [2]. 

5 S h o r t c o m i n g s  R e s o l v e d  

5.1 D e p e n d e n c i e s  B e t w e e n  O b j e c t s  

The history of programming languages has been marked by a tendency to make 
languages more abstract. Increasingly, languages are based on programming con- 
cepts (i.e. semantic objects) that allow designers to think at a level of abstraction 
that is closer to the problem domain and further from the computer architectures 
on which the programs are being executed. In the programming language com- 
munity, object dependencies tend to be frowned upon. High-level languages tend 
to severely restrict the kinds of dependency that can be created and low-level 
languages are characterized by the opposite. In the extreme, object dependencies 
are prohibited from high-level languages--as in logic or functional programming 
languages in which computation is based on values rather than objects (by defi- 
nition, object dependencies cannot exist between values, only between objects). 
It is important to note that object dependencies cannot be eliminated from im- 
perative programming languages that support abstract and indexable s types. 

By suggesting the systematic adherence to certain programming conventions 
(e.g. with respect to mechanisms for the implementation and use of abstract 
types), LCL attempts to raise the level of abstraction at which C programmers 
think. In providing a semantics for LCL, there would seem to be a tension: 
although use of LCL promotes C programming at a higher level of abstraction, 
it is also necessary that the semantic model of LCL subsume that of C since 

s E.g. array or dynamic types. 
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LCL is an interface specification language/or C. The LCL semantic model must 
capture the behavior of as large a class of C programs as is possible. Hence arises 
the question: to what degree should dependencies be supported in LCL? 

Usually, a model that supports descriptions from two levels of abstraction 
must be defined in terms of concepts that are from the lowest level. Hence, the 
semantic model for LCL must accurately capture the kinds of object dependency 
that can be created in C programs. Our approach to modeling dependencies is 
formally described in [2]. Of course, it is also necessary that the LCL language 
have an expressively complete set of constructs for describing dependency rela- 
tionships. These constructs are introduced next. 

In its full generality, the object dependency relation is a dynamic property. 
For example, dependencies between instances of abstract types implemented by 
shared realizations may change at run-time [4]. Modeling the object dependency 
relation as a dynamic property would complicate the semantics and would have 
important repercussions at the language level. It is not clear, at this point in 
our research, what language constructs would be best suited to supporting a 
dynamic dependency relation. The extent to which the dynamic quality of the 
dependency relation would be actually needed in documenting interface specifi- 
cations is also unclear. Consequently, in this version of the semantic model the 
object dependency relation is represented by a static relation, that is, a relation 
whose value is independent of the program state. 

We propose the introduction, in LCL, of two predicates: 

- dep0n(e, e') holds when the object referred to by e depends on 9 the object 
referred to by e'. 

- indep(el ,  e2, . . . ,  e , )  holds when the expressions el, e2, . . . ,  e, denote ob- 
jects that are independent. 

The depOn predicate allows specifiers to describe any (static) dependency rela- 
tion that can exist between objects. Although indep can be defined in terms 
of dep0n, indep is more likely to be used in practice since we generally wish 
to specify that the objects in a given collection are independent (as opposed to 
characterizing a particular dependency relationship). For example, indep can be 
used to write concise and accurate specifications for the functions lookup and 
memcpy. Concretely, in the case of lookup, we capture the requirement that a s  

and *• be independent by adding i n d e p ( a s , * i )  to the requires clause: 

boo1 lookup(int v, int *i) struct AS as; { 
requires as.size ̂ < N A indep(as,*i); 
. . o  

} 

The last example of Section 2 required that we be able to strengthen the 
specification of fas~Concat by ensuring that the only dependencies created by 
fas tConca t  are between r e s u l t  and x2. More precisely, we wish to ensure that 

9 The definition of dependence is given in Section 2.1. 
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result is independent of any client-visible object that is active in the pre- and 
post-states and that is also independent of x2. One way of rewriting the specifi- 
cation to include this property is as follows 1~ 

List  fastConcat(List xl ,  List  x2) { 
ensures  V void *x ( 

((*x)\activePre A (*x)\activePost 
^ indep(*x,x2)) =~ 

indep(result,*x)) 
A resul t  I = x l  A [1 X2A; 

) 

(The \activePre and \activePost operators are discussed in the next section.) The 
ensures clause is somewhat intimidating. Frequent occurrence, in specifications, 
of properties like these may warrant the introduction of special notation that 
would allow us to say, e.g. "fresh(result) ezcep~ for x2." 

5 . 2  Impl ic i t  Cons t r a in t s  on P a r a m e t e r s  

Cons t r a in t s  for All P a r a m e t e r s  The values contained in objects are in- 
evitably encoded in some medium--e.g, volatile storage. It may be the case 
that for a given object of type T some encodings--e.g, bit patterns--will not 
correspond to values of type T. We say that an object is well-defined with re- 
spect to a type T if it contains an encoding that corresponds to a value of type T; 
that is, if the object contains a valid representation of a value of type T. When 
we say, without qualification, that an object is well-defined, we mean that the 
object is well-defined with respect to its declared type. 

Although the LCL literature is not clear about the logicM foundations of LCL, 
we have chosen LL, the logic underlying LSL to be the logical base for LCL. LL 
is a first-order multisorted logic with equality in which all function symbols are 
interpreted as total functions and sorts do not have distinguished "undefined" 
values [2]. Hence, we cannot model undefined values in LCL--although we do 
model non-well-defined objects. The implicit constrMnt, discussed in Section 3.1, 
that "all parameters must be defined" becomes a fundamental consequence of 
the semantic model of LCL and is therefore no longer an implicit constraint. 

New LCL Opera to rs  In Sections 3.2, 3.5 and 3.6, we noted that it is not 
possible in LCL to express the property that an object is allocated or that it is 
both allocated and well-defined. For this purpose we propose the introduction 
of the following boolean operators 

-- \activePre, __ \wellDefPre, 

__ \activePost, __ \wellDefPost, 

__ \act• __ \wellDefAny : T -+ Bool 

10 The notation that we are using foz the dedaration o f t h e  quantifier variable ~ not 

the notation of LCL 2.4. 
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The expression e \ ac t ivePre  holds when the object e is active (i.e. allocated) in 
the pre-state, e\wellDefPre holds when the object e is active and well-defined 
in the pre-state. The other operations provide similar predicates over the post 
and generic states. Note that the meaning of the trashed operator can be given 
in terms of \activePost 

trashed(gv) ~e~ ~ (gv\activePost) 

Due to the problems discussed in Section 3, the implicit constraints for 
pointer and array parameters are dropped. The new operators can be used to 
express the necessary constraints. For example, the following specification of f 
requires that the object pointed to by i be allocated and that the global vari- 
able gv be well-defined. The function ensures that the post-state value of *i  is 
well-defined and that it is equal to the pre-state value of gv. 

void f(int *i) int gv; 
requires (*i)\activePre A gv\wellDefPre 
modifies *i; 
ensures (*i)\wellDefPost A (*i)' = gvA; 

) 

Although this approach results in function specifications that are more verbose; 
elsewhere [2], we have suggested the use of Ada-like parameter qualifiers (in, 
out, inout)  that would allow us to recover the original terseness. 

5.3 Trash ing  of  Objec ts  

The semantics of function specifications, in LCL 2.4, is defined in such a way that 
under certain circumstances some objects are implicitly preserved. We now ex- 
plain this aspect of the semantics of LCL 2.4 in more detail than in Section 4 and 
we reexamine the resulting violation of the principle of referential transparency. 

The modified set of a function specification consists of those objects that are 
referenced by expressions occurring in the modifies clause. The trashed set of a 
function specification consists of those objects that are referenced by expressions 
occurring as arguments to the t r a shed  operator in the ensures clause [19, w 
For example, the modified and trashed sets for the following specification of 
trashSome are {.a, b, .c}, and {.a, b} respectively. 

mutable type M; 

void trashSome(int *a, M b, int  *c) { 
modifies *a,b,*c; 
e n s u r e s  ( * c ) '  = ( * c )  ^ + 1 A t r a s h e d ( b )  

A ( i f  (*a) A != (,c) A then 
then ~trashed( ,a)  A (*a) I 
e l s e  t r a s h e d ( * a ) ) ;  

) 

= ( , c )  A 
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As was indicated in Section 4, an object that  is a member of the modified set 
may be either trashed or modified. An object in the modified set is implicitly 
preserved only if it is not a member of the trashed set. In the trashSome exam- 
ple, *e is implicitly preserved. Thus, the presence or absence of certain argument 
expressions (of the t r a s h e d  operator) affects the meaning of the function speci- 
fication. Since the meaning of a function specification depends on more than the 
t ruth or falsity of the ensures clause predicate, this dearly leads to a violation 
of the principle of referential transparency. To recover referential transparency 
we need only eliminate that  aspect of the semantics that  relies on the presence 
or absence of argument expressions to the t r a s h e d  operator. 

An obvious approach to achieving this would preserve the dual role of the 
modifies clause while eliminating the implicit constraint that  objects in the 
trashed set are implictly preserved. As a consequence of this approach speci- 
fiers would have to explicitly indicate when objects are to be preserved. For 
example, the specification of trashSome would have to be rewritten as 

void trashSome(int *a, M b, in t  *c) { 
modifies *a,b,*c; 
ensures (*c) '  = (*c) ̂  + 1 A trashed(b) 

A ~ trashed(*c) 
^ ( i f  (*a) ̂  I= (*c) ̂  then 

then ~trashed(*a)  A (*a) '  = (*c) ̂  
e l s e  t rashed(*a)) ;  

(Notice the addition to the ensures clause of a predicate asserting that  *c is 
not trashed.) In practice, very few functions trash the objects in their modified 
sets. For example, of the fifty-two functions given in LCL specifications in the 
Larch book, only two of the thirty-two expressions (that occur in the modifies 
clauses) are arguments to the t r a s h e d  operator [8]. Thus, requiring an explicit 
statement of the fact that  objects are preserved would (unnecessarily) lengthen 
specifications; function specifications that  are less concise are more difficult to 
write, understand and maintain. 

Fortunately there is a better solution. We suggest the introduction of a 
trashes clause which is syntactically like the modifies clause except for the lead- 
ing t r a s h e s  keyword. That  is, the trashes clause is optional and when present, 
it may be followed by the n o t h i n g  keyword, or by a list of lvalues (expressions 
denoting objects). A function may trash an object if and only if that  object 
is referenced by an expression that  occurs in the trashes clause11. Thus, the 
modifies clause recovers its intended role: it identifies which objects may have 
their values modified. The roles of the modifies and trashes clauses are indepen- 
dent; an expression may occur in both, in either or neither of the clauses. Under 
this scheme, the specification of t rashSome would be identical to its original 
specification but with the addition of the clause t r a s h e s  *a,b.  Most function 

11 Actually, object dependencies must be taken into account for both the modifies and 
trashes clauses. Details are given in [2]. 
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specifications will be written without a trashes clause, implying that no (client- 
visible) object may be trashed. For those few functions that do trash objects, 
these objects will be explicitly identified by listing them in the trashes clause. 

6 Conclus ion 

The specialization of a specification language to a particular programming lan- 
guage is an important characteristic of module interface specification languages 
(MISL's). The only well-developed MISL's are the Larch interface languages 
and among these LCL would seem to be the most mature. We have argued 
that MISL's are an excellent way of introducing formal methods into industrial 
settings. 

We have identified inadequacies and insufficiencies in the LCL language. In 
particular, by introducing the concept of object dependency we illustrate, by 
means of realistic examples, that there is a need for LCL language constructs 
that would allow suecifiers to describe and reason about object dependencies. 
We argue that the meaning of a function specification is affected by implicit 
parameter constraints that have been poorly documented. These constraints are 
shown to be problematic--in particular, they are ambiguous and potentially 
overly constraining. We show that the current definition of the meaning of a 
function specification relative to trashed and non-trashed objects leads to a 
violation of the principle of referential transparency. 

The version of LCL described in this paper differs from LCL 2.4, principally 
in that: 

- new primitives have been added for describing object dependencies, 
- the implicit constraints over pointer and array parameters have been dropped 

and new language primitives have been added that allow specifiers to assert 
whether or not an object is active or well-defined, 

- a trashes clause has been added to function specification bodies. 

These changes increase the expressiveness of LCL and allow us to overcome the 
identified shortcomings of LCL 2.4. In particular, we eliminate the instance of 
referential opacity. The shortcomings and solutions documented in this paper, as 
well as others that require a deeper understanding of the semantics of LCL, are 
described in detail in [2], which also includes a formal semantics for a core subset 
of LCL. Finally, we note that the identified shortcomings are not particular to 
LCL, they are shared by other module interface specification languages. 
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