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ABSTRACT 
The traditional software development cycle relies mostly on informal meth- 
ods to capture design errors in its initial phases, and on more rigorous test- 
ing methods during the later phases. It is well understood, though, that 
those bugs that slip through the early design phases tend to cause the 
most damage to a design. The anomaly of traditional design is therefore 
that it excels at catching bugs at the worst possible point in a design cycle: 
at the end. 
In this paper we consider what it would take to develop a suite of tools 
that has the opposite characteristic: excelling at catching bugs at the start, 
rather than the end of the design cycle. Such early fault detection tools 
differ from standard formal verification techniques in the sense that they 
must be able to deal with incomplete, informal design specifications, with 
possibly ill-defined requirements. They do not aim to replace either testing 
or formal verification techniques, but to complement their strengths. 

1 Introduction 

The goal of this paper  is to consider the possibility of developing a suite of 
tools tha t  can help to improve the reliability of a software design process, 
specifically for distributed systems, from the very early beginnings of tha t  
process. Tradit ional testing techniques come too late to be of much help 
in this phase. Formal verification techniques, on the other hand, have the 
disadvantage tha t  they require a fairly solid insight into the design itself, 
before they can prove to be of value. Users of formal verification tools 
typically have trouble with two things: (1) to produce a completely defined 
model of the design, when only partial  information or insights are available, 
and (2) to formalize an adequate set of correctness requirements. 

Before formal  verification and traditional testing techniques become ap- 
plicable, there is currently a void of tools. Our aim is to consider if this 
void could be filled. We propose the te rm early fauh  detection for a tool or 
technique tha t  can successfully be applied in the earliest phases of a still 
incomplete and imprecise design, and tha t  can provide the user with some 
guidance about  potential  hazards in the design process as it develops. 
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2 A Paper Problem 

To illustrate the main concepts, we will use a simple, made-up, example 
of a problem to model the interactions in a pseudo-distributed system. We 
call this The Paper Problem. Consider the interactions between authors, 
editors, and referees in handling papers that  are submitted for publication. 
The authors, editors and referees together form a peer group, where each 
person from the group could at various times fulfill any one of the three 
functions mentioned (authoring, editing, refereeing). There is frequently 
also consultation within the peer group about problems of current inter- 
est. The interactions between author, editor, and referees can therefore be 
complex. We will treat the modeling problem here as if it were a true in- 
dustrial design problem, where we have to discover the intricacies of the 
situation through a systematic process of refinement. For inspiration, we 
will consider how design problems of this type, though at a much larger 
scale, may be handled by an industrial design team. 

2.1 Structural View 

The first thing that  must happen is to decide what the main structural 
components of the new system should be. To make this possible, a very 
general set of requirements for the new system, as it would operate under 
ideal circumstances, is drafted. For our paper problem, one such require- 
ment may look as illustrated in Figure 1. 

1. submit ~ 
I Editor 

6. accept 

2. reques~ r.  recommend 

3. consult /~ 4, 
( Refereej 

4. reply 
FIGURE 1. Structural View of The Paper Problem 

Figure 1 represents the main functional entities from our system: the 
author, the editor, a single referee, and a representative of a peer. One set 
of possible interactions of these entities is shown. For the t ime being we 
will ignore that  the functions can actuaUy overlap, as a referee can take on 
the functions of an author or a peer, etc, 

The labels of the arrows between the structural components suggest a 
time ordering of typical events in this system. In this case, the referee 
consults with a peer before returning a recommendation to the editor, and, 



this being an idealized scenario, the editor informs the author that  the 
paper was accepted. 

Many things can throw this simple scenario off course. The referee can 
refuse to handle the paper, or can fail to respond. The author could with- 
draw the paper, revise it, or become impatient and send additional enquiries 
to the editor. More t o  the point, in the case of blind refereeing, the referee 
might accidentally a t tempt  to consult with the author as a peer, without 
mentioning the actual reason for doing so. This act could close a depen- 
dency cycle in the graph, for instance when the author decides to delay the 
peer-response to the referee until the final status of the paper is decided 
by the editor. 

The main purpose of the first design phase, however, is to identify the 
main building blocks for the system, and for now, we merely need to es- 
tablish that  this goal has probably been reached. In practice, requirements 
engineers may come up with dozens of sketches of the general flavor of 
Figure 1, showing different scenarios that  illustrate the main lines of the 
intended operation of a new system. The word sketch is to be taken liter- 
ally: these figures often exist only as pencil sketches on paper, or as rough 
outlines on a white board. They ultimately can reach the status of a figure 
for reference in a general document for the design rationale, but rarely do 
they become an integral part  of the design process as such. 

Our purpose here is to emphasize the very early stages of a design. Our 
intent is therefore to look very carefully at even the earliest design sketches, 
to see if they could be amenable to direct tool based support. 

2.2 Unfolding 

A familiar saying is: "You do not fully understand something until you 
understand it in more than one way." An early fault detection tool, then, 
can derive one of its strengths from offering a variety of different views of a 
design, while it is under development and still growing. A natural alternate 
view of the structural view of Figure 1 is obtained by its temporal unfolding, 
as illustrated in Figure 2. 

The structural unfolding view, which is reminiscent of the CRC card 
technique [11], represents the design as a tree, with each path from the 
root of the tree to a leaf represents a possible scenario. The structural el- 
ements are replicated at each node in the tree where they contribute to 
one of the processing steps. In Figure 2 we have added the possibility of 
a rejection, as the final outcome of the paper submission process. Where 
Figure 2 differs from the structural unfolding of Figure 1 is indicated in 
bold. The purely structural view is superior when architectural questions 
about  the system have to be settled. The view obtained by the structural 
unfolding is better when good insight needs to be obtained about the inter- 
dependencies between different, possibly overlapping, scenarios. Since t ime 
sequence information is carried in the labels, one way to preserve the infor- 
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FIGURE 2. Structural Unfolding of an Extension of Figure 1 

mation about branching from Figure 2 also in the view of Figure 1 would 
be to replace the label 6. accept with 6.1. accept and to add an arrow from 
editor to author with label 6.~. reject. The two views now represent the 
same design decisions, while emphasizing entirely different aspects of the 
system. 

2.3 Temporal View 

Yet another view of the design can be obtained by switching from the 
representation to a purely temporal view, using basic message sequence 
charts (MSCs) [12], as illustrated in Figure 3. 
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FIGURE 3. Temporal View of an(other) Extension of Figure 1 

We have again extended the view from Figure 1 slightly to illustrate the 
differences in strength of the various views. In this case, we have added 
(with dashed lines) the possibility of the author interrogating the  editor 
about the status of the paper. The disadvantage of the MSC view is that it 



does not offer a natural  support for branching scenarios. To represent the 
view from Figure 2, therefore, would normally call for two different MSC 
representations. Such scenarios are often referred to as sunny day and rainy 
day scenarios. Figure 3, then, represents a sunny day scenario. 

The  representation from Figure 3 directly lends itself to some forms of 
analysis, as illustrated in more detail in a related paper, [2] and briefly 
summarized below. 

3 Building EFD Tools 

3.1 A First EFD Tool: MSC 

The three views we have illustrated so far all represent basically the same 
information about  a design, though in different forms, emphasizing different 
aspects. A single design tool could easily offer all three views, allowing the 
user to switch between them at will, and revise or add to the growing 
design from whichever view is most convenient. This (so far) hypothetical 
tool is the first example of an early fault detection, or EFD, tool. Work is 
currently underway to extend our Msc tool[2] into this type of tool. 

At the t ime of writing, the Msc  tool can represent only the temporal  
view, as in Figure 3. For designers, the Msc tool, when used in this mode, 
competes with, and is compared with, pencil on paper sketching, despite 
the additional advantages that  the tool may offer for analysis and easy of 
maintenance. Even on this minimal score, the tool is easily found to be of 
great value to a designer pressed for time: it takes just twelve mouse actions 
for the user to define the complete scenario shown in Figure 3 (four mouse 
actions to define the processes, eight more to add the eight messages), and 
optionally some typing to override default names assigned to the compo- 
nents. Skilled or unskilled users alike can enter the scenario in under one 
minute of user time. Pencil and paper will fare no better, especially for 
larger charts; many word-processing tools will do substantially worse. 

FEEDBA CK 

After reading the scenario, the Msc  tool issues warnings for three poten- 
tial race conditions. The first is a race between the sending of the request 
message, and the arrival of the status query from the author. In this case it 
is harmless, but  note that  the author could also decide to send a message 
to withdraw or to revise his contribution. The editor may have to take dif- 
ferent actions, depending on the outcome of the race. There is also a race 
between the arrival of the status query from the author and the arrival 
of the recommend message from the referee, and, finally, a race between 
the arrival of recommend and the sending of not yet, at the editor process. 
Presumably, also a different response from the edi tor  would be called for, 
depending on the outcome of that  race. 



If we merge the peer process and the author process into one, to empha- 
size that  the author may be the peer chosen for consultation by the referee, 
in blind refereeing, the diagram from Figure 4 results. 

submit 
=' request 

,i . . . . . .  ~ 1 ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

reply 4 
4, recommend 

accept 

FIGURE 4. Vaziation on the Scenario in Figure 3 

If, further, we would want to define a behavior for the author where the 
response to the referee's consultation is delayed until after the reception of 
an accept or reject message from the editor, we immediately find that  this 
variation cannot be specified without at least one of the message arrows 
flowing upward in the diagram - against the direction of time. This scenario 
would create a causal wait cycle that,  if it can be specified at all (the Msc  
tool forbids the creation of message arrows that  tilt upwards), can easily 
be detected and reported as a potential error. 

DESIGN PRO CESS 

Once the design grows, it can be expected that  the architectural view, 
illustrated in Figure 1 will stabilize first. The main structural components 
of the system are identified and can be refined. Some components may 
be decomposed, and further detailed, leading to related changes in the 
structural unfoldings and in the temporal view of the MSCs. It can also 
be expected that,  as the design matures, the temporal  view will grow both 
in importance and in complexity. Large libraries of related scenarios are 
likely to be built, and keeping track of the inter-dependencies between 
them becomes an overriding concern. 

The inter-dependencies between (perhaps only fragments of) scenarios 
can be shown graphically in a natural way. Figure 5 shows such a graph, 
which is based on similar graph from a real design. 

The view is similar to the unfolded structural view from Figure 2, but  
there are important  differences. First, the nodes in the graph from Figure 2 
represented structural elements, e.g. designated logical or physical processes 
in the distributed system to be. In Figure 5 the nodes represent scenarios: 
interaction sequences in which all structural components of the system 
can in principle participate. The first node in Figure 5, labeled mscI, for 
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FIGURE 5. Interdependencies of Scenario Fragments 

instance, can represent the first series of steps in a call setup procedure 
for a telephone call. A subsequent processing step, msc2, representing say 
call routing, could have four different outcomes. The call might have to be 
rejected (msc3.3) ,  or it could proceed in various ways, depending on the 
specific call features that have been invoked. 

As indicated, the meta view need not be, and in general will not be, 
acyclic. 

Also indicated in Figure 5, with bold lines, is a possible traversal  of the 
graph, from the root to one of the two possible termination points. The 
graph traversal identifies one possible complete MSC scenario that can be 
constructed from the fragments m s c l  . . .  rasc5. 

3.2 A Second EFD Tool: P O G A  

The graph shown in Figure 5 has a well defined meaning and structure. 
There is a host of algorithms that can be applied to a directed graph to 
provide feedback to the user about its properties. Many graphical tools 
already exist, or are in preparation, for working with generic graphs of this 
type, e.g., [3]. As part of the investigation of early fault detection tools, we 
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have built a similar tool, which ties in directly with several others, as will 
be discussed below. 

The tool, called POGA (Pictures of Graph Algorithms), consists of a 
generic graphical interface, written in about 1200 lines of Tcl/Tk [8], a 
background processor called EULER, written in about 850 lines of ANSI 
C, and links to a number of existing tools, such as DOT for doing graph 
layout [4], and Msc [2], which has its own background processors for finding 
race conditions and causal conflicts in sample scenarios. 

The background tool EULER provides access to a collection of generic 
graph algorithms, such as the computation of shortest paths, strongly con- 
nected components, or the roots and leaves of a graph. The EULER tool 
can also drive a visualization of generic search algorithms, such as depth- 
first and breadth-first searches starting at a user-selected initial node in 
the graph. As the name suggests, it is likely to be extended further with 
algorithms for computing covering paths, e.g. Euler tours, to facilitate the 
construction of test suites. 

The view presented by POQA matches what is shown in Figure 5. The 
user can interactively select a path through the graph, to indicate scenarios 
that require inspection. The user iteratively selects nodes from the graph 
along the desired path. Whenever two nodes are not directly adjacent, the 
background process, which encapsulates knowledge of graph algorithms, 
will compute the shortest path between them. The path itself is highlighted 
on the screen, in much the same fashion as shown in Figure 5 (on color- 
displays, the path is colored red). 

POGA derives much of its utility from the links with other tools that 
it exploits, such as DOT for graph layout and EULER for generic graph 
algorithms. 

We will consider three other important links in the next section. 

3.3 Tool Integration 

LINKING POGA WITH MSC 

At the request of the user, a path through a graph that is selected in POGA 
can be expanded into a message sequence scenario, using the reference 
links stored with the nodes. POGA can then call Msc as an independent 
background process to allow the user to inspect the specific scenario in 
more detail. POGA allows the user to provide scenario information in two 
ways: 

�9 In the nodes, as symbolic references to files that contain scenario 
fragments in ITU standard form, or 

�9 On the edges, in a comment field that contains an event description, 
such as an input or an output action, again in ITU standard form. 



At the request of the user, the tool can build a scenario from the fragments 
tha t  are specified through the nodes and edges along the selected path, and 
start  up the Msc  tool in the background for independent processing of the 
scenario thus created. 

The Msc  tool can be used to modify the scenario, to repair faults, and 
update  the scenario files, without disturbing or modifying the view of the 
interdependencies offered by POGA. 

The view offered by POGA can readily be extended to support also hier- 
archical views of a still larger structured collection of scenarios. Each node 
can then represent either a scenario fragment, or a subgraph. By double 
clicking a node, the user brings up either Msc for a closer view of the 
scenario fragment stored at the node, or a second copy of POGA for those 
nodes that  point to subgraphs of scenarios. Scenarios can be nested arbi- 
trarily deeply in this fashion, and the design space can be navigated with 
relative ease. 

LINKING WITH SPIN 

Early fault detection tools, by their very nature, do not allow for a very 
thorough verification of a design. Once the early design phases have been 
completed, and both the basic structure and the correctness requirements 
for the design have been settled, it becomes possible to build precise verifi- 
cation models. Critical design requirements can then be proven rigorously 
with specialized tools, such as the model checker SPIN [6]. It is of course 
attractive if the early fault detection tools can somehow be integrated with 
the formal verification methods. 

To explore this integration, we have built an experimental interface be- 
tween POGA and the verifiers that  are generated by SPIN. With this in- 
terface, POGA can be used to visualize the reachable state space of small 
verification problems, and can offer visual feedback on the precise effect 
of various types of search algorithms, for instance, SPIN's partial order 
reduction techniques [7]. 

Information on actions, input, and output events can be made available 
on the edges of the graph, by postprocessing the information generated by 
SPIN with the help of a small AWK filter [1]. 

The example shown in Figure 6, is part  of the reachable state space for 
a SPIN verification model of our Paper Problem, for simplicity restricted 
to the sunny day scenario in which the author will not query the status of 
the submitted paper, and the referee will not consult with a peer before 
returning a recommendation to the editor. The state numbers assigned 
by SPIN indicate the depth-first search order, in which the state space is 
explored. 

Provided with this graph, POGA again offers the user the choice of se- 
lecting an arbitrary path, which can then be converted into a message se- 
quence chart in ITU standard form [12], and handed off to Msc  as before. 
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FIGURE 6. POGA View of a State Space Generated by SPIN (partial) 

The reachability graph can also be inspected for the presence of strongly 
connected components, and the like. 

The verification model that generated the graph from Figure 6 is 45 
lines of PROMELA [6]. A slightly more sophisticated version, of 59 lines, 
allows for random peer consultation by referees, and allows the author to 
defer responding to peer consultations until after receiving final word on 
the status of a paper. We can now attempt to prove the benign liveness 
property, expressed in the syntax of Linear Temporal Logic [9], that each 
paper submitted is eventually either accepted or rejected: 

(submitted --~ r (accepted V rejected)). 

In SPIN we can attempt to verify this desirable property by claiming 
that its negation (a decidedly undesirable property) cannot occur. This 
negated property is formalized as the language accepted by a two-state 
Biichi automaton shown in Figure 7. 

s u b m i t t e d  ^ (~r162 A ~rejected) 

T r u e  ~ c c e p t e d  A "~rejected 

FIGURE 7. SPIN's never claim for Verifying the Paper Problem 

A Biichi automaton is an automaton over infinite words, known as a 
n e v e r  claim in PROMELA parlance. (The automaton is generated automat- 
ically by SPIN from the LTL formula, using the algorithm described in [5].) 
The initial state of the automaton is S1. The transitions of the automaton 
axe labeled with the state properties that must be true for the transition to 
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be enabled. The automaton,  then, can remain in state Si  for an arbitrary 
length of time. Whenever the property 

(s bmittea ^ accepted ^ rejected) 

becomes true, the automaton can non-deterministically choose to switch 
to the accepting state S2, where it can remain infinitely long only if the 
property 

(-, accepted A ~ rejected)  

remains true infinitely long. For the extended verification model, SPIN will 
report  a match of this undesirable property within a fraction of a second, 
and thus prove that  the original liveness requirement can be violated. 

Despite the ease with which the potential flaw in the interactions of 
authors, editors, and referees can be found with a formal verification model, 
the visual formalism of the message sequence charts can be considered 
superior in this case. In the Msc  tool, it is simply impossible to specify 
a scenario that  could include a causal wait cycle, and hence the system 
designer may  be alerted at an early stage to the possible side-effects of some 
design decisions. More subtle correctness properties, however, can easily 
escape attention, and will require more general error checking capabilities. 

LINKING W I T H  CASE TOOLS 

The tools described so far can, in principle, span the early phases of the 
design process. There already exist several competitive design tools that  
target the later phases of design, for instance, CASE tools such as OB- 
31~CTIME [10]. Just like it is desirable to establish links between formal 
verification tools and the early fault detection tools Msc and POGA, it can 
be beneficial to establish a smooth connection with existing C A S E  tools. 

Links can be established in several ways. 

�9 We can convert a SPIN verification model into, for instance, an ini- 
tim OBJECTIME model, to provide a sound starting point for the 
development of the final code. 

�9 It is also possible to derive verification models from OBJECTIME mod- 
els, at various stages of the development, to make sure that  essential 
design properties are correctly preserved throughout the design. 

�9 It can also be attractive to use a library of scenarios (in I T U  stan- 
dard form) and synthesize state machine models, one for each process 
in the system, that  captures all the behavior specified. The synthe- 
sis procedure would then have to rely on a judicious use of state 
names (part of the ITU recommendation) to indicate common points 
of reference in the various scenarios. Note that  each separate scenario 
defines a path through the state machine of each process that  is part  
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of the system. The state machines generated in this way can be used 
either as an initial verification model, to be fed into SPIN, or as an 
initial OBJECTIME model, to serve as the starting point of the further 
development. 

Simulation trails produced by OBJECTIME can be converted into ITU 
standard format, and provided to the Msc tool for analysis. If race 
conditions are detected, variations of the scenario can be fed back into 
OBJECTIME to make sure that the original model is not sensitive to 
the ordering of events that could be involved in the race. 

We are actively exploring all the above options. 

4 Conclusions 

The initial interest in the early fault detection tools described in this paper 
has surprised even their authors. We can speculate that the tools derive 
their appeal not only because of the new checking capabilities they offer, 
but also because they provide a means to edit and maintain important 
design documents online, as formal objects. The availability of the new tools 
makes it unnecessary to maintain ofliine representations of scenarios, and 
their dependencies, in a fragile word-processing tool format. Conformance 
to the ITU standards is an attractive bonus, though not considered essential 
by many of the tool users. 

At the time of writing, the Msc tool is in active use, and the POQA tool 
is in a prototyping stage. At least one CASE tool provider is in the process 
of extending their tool so that a direct connection can be made with these 
early fault detection tools. 

Clearly, though, both Msc and POGA are only initial attempts to develop 
early fault detection tools. There can be a suite of similar tools, each offering 
different views of (aspects of) the design process. Perhaps the best result 
we can hope for would be that an improved understanding of the paradigm 
of early fault detection will help us to render the tools discussed in this 
paper obsolete. 
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