
Early Fault Detect ion Tools

Gerard J. Holzmann*

ABSTRACT
The traditional software development cycle relies mostly on informal meth-
ods to capture design errors in its initial phases, and on more rigorous test-
ing methods during the later phases. It is well understood, though, that
those bugs that slip through the early design phases tend to cause the
most damage to a design. The anomaly of traditional design is therefore
that it excels at catching bugs at the worst possible point in a design cycle:
at the end.
In this paper we consider what it would take to develop a suite of tools
that has the opposite characteristic: excelling at catching bugs at the start,
rather than the end of the design cycle. Such early fault detection tools
differ from standard formal verification techniques in the sense that they
must be able to deal with incomplete, informal design specifications, with
possibly ill-defined requirements. They do not aim to replace either testing
or formal verification techniques, but to complement their strengths.

1 Introduction

The goal of this paper is to consider the possibility of developing a suite of
tools tha t can help to improve the reliability of a software design process,
specifically for distributed systems, from the very early beginnings of tha t
process. Tradit ional testing techniques come too late to be of much help
in this phase. Formal verification techniques, on the other hand, have the
disadvantage tha t they require a fairly solid insight into the design itself,
before they can prove to be of value. Users of formal verification tools
typically have trouble with two things: (1) to produce a completely defined
model of the design, when only partial information or insights are available,
and (2) to formalize an adequate set of correctness requirements.

Before formal verification and traditional testing techniques become ap-
plicable, there is currently a void of tools. Our aim is to consider if this
void could be filled. We propose the te rm early fauh detection for a tool or
technique tha t can successfully be applied in the earliest phases of a still
incomplete and imprecise design, and tha t can provide the user with some
guidance about potential hazards in the design process as it develops.

*AT~T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.
h t tp : / / netlib.at t.com /netlib / at t / cs /home /holzmann.htmt

2 A Paper Problem

To illustrate the main concepts, we will use a simple, made-up, example
of a problem to model the interactions in a pseudo-distributed system. We
call this The Paper Problem. Consider the interactions between authors,
editors, and referees in handling papers that are submitted for publication.
The authors, editors and referees together form a peer group, where each
person from the group could at various times fulfill any one of the three
functions mentioned (authoring, editing, refereeing). There is frequently
also consultation within the peer group about problems of current inter-
est. The interactions between author, editor, and referees can therefore be
complex. We will treat the modeling problem here as if it were a true in-
dustrial design problem, where we have to discover the intricacies of the
situation through a systematic process of refinement. For inspiration, we
will consider how design problems of this type, though at a much larger
scale, may be handled by an industrial design team.

2.1 Structural View

The first thing that must happen is to decide what the main structural
components of the new system should be. To make this possible, a very
general set of requirements for the new system, as it would operate under
ideal circumstances, is drafted. For our paper problem, one such require-
ment may look as illustrated in Figure 1.

1. submit ~
I Editor

6. accept

2. reques~ r. recommend

3. consult /~ 4,
(Refereej

4. reply
FIGURE 1. Structural View of The Paper Problem

Figure 1 represents the main functional entities from our system: the
author, the editor, a single referee, and a representative of a peer. One set
of possible interactions of these entities is shown. For the t ime being we
will ignore that the functions can actuaUy overlap, as a referee can take on
the functions of an author or a peer, etc,

The labels of the arrows between the structural components suggest a
time ordering of typical events in this system. In this case, the referee
consults with a peer before returning a recommendation to the editor, and,

this being an idealized scenario, the editor informs the author that the
paper was accepted.

Many things can throw this simple scenario off course. The referee can
refuse to handle the paper, or can fail to respond. The author could with-
draw the paper, revise it, or become impatient and send additional enquiries
to the editor. More t o the point, in the case of blind refereeing, the referee
might accidentally a t tempt to consult with the author as a peer, without
mentioning the actual reason for doing so. This act could close a depen-
dency cycle in the graph, for instance when the author decides to delay the
peer-response to the referee until the final status of the paper is decided
by the editor.

The main purpose of the first design phase, however, is to identify the
main building blocks for the system, and for now, we merely need to es-
tablish that this goal has probably been reached. In practice, requirements
engineers may come up with dozens of sketches of the general flavor of
Figure 1, showing different scenarios that illustrate the main lines of the
intended operation of a new system. The word sketch is to be taken liter-
ally: these figures often exist only as pencil sketches on paper, or as rough
outlines on a white board. They ultimately can reach the status of a figure
for reference in a general document for the design rationale, but rarely do
they become an integral part of the design process as such.

Our purpose here is to emphasize the very early stages of a design. Our
intent is therefore to look very carefully at even the earliest design sketches,
to see if they could be amenable to direct tool based support.

2.2 Unfolding

A familiar saying is: "You do not fully understand something until you
understand it in more than one way." An early fault detection tool, then,
can derive one of its strengths from offering a variety of different views of a
design, while it is under development and still growing. A natural alternate
view of the structural view of Figure 1 is obtained by its temporal unfolding,
as illustrated in Figure 2.

The structural unfolding view, which is reminiscent of the CRC card
technique [11], represents the design as a tree, with each path from the
root of the tree to a leaf represents a possible scenario. The structural el-
ements are replicated at each node in the tree where they contribute to
one of the processing steps. In Figure 2 we have added the possibility of
a rejection, as the final outcome of the paper submission process. Where
Figure 2 differs from the structural unfolding of Figure 1 is indicated in
bold. The purely structural view is superior when architectural questions
about the system have to be settled. The view obtained by the structural
unfolding is better when good insight needs to be obtained about the inter-
dependencies between different, possibly overlapping, scenarios. Since t ime
sequence information is carried in the labels, one way to preserve the infor-

~request/~ -~
Edlt~) ~ e f e r e e ~ 1 t

Peer)
~ ~ _ Edztor ~Referee yrep, ~rec" men~L'~"

FIGURE 2. Structural Unfolding of an Extension of Figure 1

mation about branching from Figure 2 also in the view of Figure 1 would
be to replace the label 6. accept with 6.1. accept and to add an arrow from
editor to author with label 6.~. reject. The two views now represent the
same design decisions, while emphasizing entirely different aspects of the
system.

2.3 Temporal View

Yet another view of the design can be obtained by switching from the
representation to a purely temporal view, using basic message sequence
charts (MSCs) [12], as illustrated in Figure 3.

Au,hor I I d',or
submit b

.~q.~.!.~.~?~ , .

, , [. . . o t . . v . ~ . t ! 2

9 accept

I IRe"re'l I pe'r
req uest =]

- l. consult = I

I- recommend reply i
FIGURE 3. Temporal View of an(other) Extension of Figure 1

We have again extended the view from Figure 1 slightly to illustrate the
differences in strength of the various views. In this case, we have added
(with dashed lines) the possibility of the author interrogating the editor
about the status of the paper. The disadvantage of the MSC view is that it

does not offer a natural support for branching scenarios. To represent the
view from Figure 2, therefore, would normally call for two different MSC
representations. Such scenarios are often referred to as sunny day and rainy
day scenarios. Figure 3, then, represents a sunny day scenario.

The representation from Figure 3 directly lends itself to some forms of
analysis, as illustrated in more detail in a related paper, [2] and briefly
summarized below.

3 Building EFD Tools

3.1 A First EFD Tool: MSC

The three views we have illustrated so far all represent basically the same
information about a design, though in different forms, emphasizing different
aspects. A single design tool could easily offer all three views, allowing the
user to switch between them at will, and revise or add to the growing
design from whichever view is most convenient. This (so far) hypothetical
tool is the first example of an early fault detection, or EFD, tool. Work is
currently underway to extend our Msc tool[2] into this type of tool.

At the t ime of writing, the Msc tool can represent only the temporal
view, as in Figure 3. For designers, the Msc tool, when used in this mode,
competes with, and is compared with, pencil on paper sketching, despite
the additional advantages that the tool may offer for analysis and easy of
maintenance. Even on this minimal score, the tool is easily found to be of
great value to a designer pressed for time: it takes just twelve mouse actions
for the user to define the complete scenario shown in Figure 3 (four mouse
actions to define the processes, eight more to add the eight messages), and
optionally some typing to override default names assigned to the compo-
nents. Skilled or unskilled users alike can enter the scenario in under one
minute of user time. Pencil and paper will fare no better, especially for
larger charts; many word-processing tools will do substantially worse.

FEEDBA CK

After reading the scenario, the Msc tool issues warnings for three poten-
tial race conditions. The first is a race between the sending of the request
message, and the arrival of the status query from the author. In this case it
is harmless, but note that the author could also decide to send a message
to withdraw or to revise his contribution. The editor may have to take dif-
ferent actions, depending on the outcome of the race. There is also a race
between the arrival of the status query from the author and the arrival
of the recommend message from the referee, and, finally, a race between
the arrival of recommend and the sending of not yet, at the editor process.
Presumably, also a different response from the edi tor would be called for,
depending on the outcome of that race.

If we merge the peer process and the author process into one, to empha-
size that the author may be the peer chosen for consultation by the referee,
in blind refereeing, the diagram from Figure 4 results.

submit
=' request

,i ~ 1 ~ .

reply 4
4, recommend

accept

FIGURE 4. Vaziation on the Scenario in Figure 3

If, further, we would want to define a behavior for the author where the
response to the referee's consultation is delayed until after the reception of
an accept or reject message from the editor, we immediately find that this
variation cannot be specified without at least one of the message arrows
flowing upward in the diagram - against the direction of time. This scenario
would create a causal wait cycle that, if it can be specified at all (the Msc
tool forbids the creation of message arrows that tilt upwards), can easily
be detected and reported as a potential error.

DESIGN PRO CESS

Once the design grows, it can be expected that the architectural view,
illustrated in Figure 1 will stabilize first. The main structural components
of the system are identified and can be refined. Some components may
be decomposed, and further detailed, leading to related changes in the
structural unfoldings and in the temporal view of the MSCs. It can also
be expected that, as the design matures, the temporal view will grow both
in importance and in complexity. Large libraries of related scenarios are
likely to be built, and keeping track of the inter-dependencies between
them becomes an overriding concern.

The inter-dependencies between (perhaps only fragments of) scenarios
can be shown graphically in a natural way. Figure 5 shows such a graph,
which is based on similar graph from a real design.

The view is similar to the unfolded structural view from Figure 2, but
there are important differences. First, the nodes in the graph from Figure 2
represented structural elements, e.g. designated logical or physical processes
in the distributed system to be. In Figure 5 the nodes represent scenarios:
interaction sequences in which all structural components of the system
can in principle participate. The first node in Figure 5, labeled mscI, for

~ J

FIGURE 5. Interdependencies of Scenario Fragments

instance, can represent the first series of steps in a call setup procedure
for a telephone call. A subsequent processing step, msc2, representing say
call routing, could have four different outcomes. The call might have to be
rejected (msc3.3) , or it could proceed in various ways, depending on the
specific call features that have been invoked.

As indicated, the meta view need not be, and in general will not be,
acyclic.

Also indicated in Figure 5, with bold lines, is a possible traversal of the
graph, from the root to one of the two possible termination points. The
graph traversal identifies one possible complete MSC scenario that can be
constructed from the fragments m s c l . . . rasc5.

3.2 A Second EFD Tool: P O G A

The graph shown in Figure 5 has a well defined meaning and structure.
There is a host of algorithms that can be applied to a directed graph to
provide feedback to the user about its properties. Many graphical tools
already exist, or are in preparation, for working with generic graphs of this
type, e.g., [3]. As part of the investigation of early fault detection tools, we

8

have built a similar tool, which ties in directly with several others, as will
be discussed below.

The tool, called POGA (Pictures of Graph Algorithms), consists of a
generic graphical interface, written in about 1200 lines of Tcl/Tk [8], a
background processor called EULER, written in about 850 lines of ANSI
C, and links to a number of existing tools, such as DOT for doing graph
layout [4], and Msc [2], which has its own background processors for finding
race conditions and causal conflicts in sample scenarios.

The background tool EULER provides access to a collection of generic
graph algorithms, such as the computation of shortest paths, strongly con-
nected components, or the roots and leaves of a graph. The EULER tool
can also drive a visualization of generic search algorithms, such as depth-
first and breadth-first searches starting at a user-selected initial node in
the graph. As the name suggests, it is likely to be extended further with
algorithms for computing covering paths, e.g. Euler tours, to facilitate the
construction of test suites.

The view presented by POQA matches what is shown in Figure 5. The
user can interactively select a path through the graph, to indicate scenarios
that require inspection. The user iteratively selects nodes from the graph
along the desired path. Whenever two nodes are not directly adjacent, the
background process, which encapsulates knowledge of graph algorithms,
will compute the shortest path between them. The path itself is highlighted
on the screen, in much the same fashion as shown in Figure 5 (on color-
displays, the path is colored red).

POGA derives much of its utility from the links with other tools that
it exploits, such as DOT for graph layout and EULER for generic graph
algorithms.

We will consider three other important links in the next section.

3.3 Tool Integration

LINKING POGA WITH MSC

At the request of the user, a path through a graph that is selected in POGA
can be expanded into a message sequence scenario, using the reference
links stored with the nodes. POGA can then call Msc as an independent
background process to allow the user to inspect the specific scenario in
more detail. POGA allows the user to provide scenario information in two
ways:

�9 In the nodes, as symbolic references to files that contain scenario
fragments in ITU standard form, or

�9 On the edges, in a comment field that contains an event description,
such as an input or an output action, again in ITU standard form.

At the request of the user, the tool can build a scenario from the fragments
tha t are specified through the nodes and edges along the selected path, and
start up the Msc tool in the background for independent processing of the
scenario thus created.

The Msc tool can be used to modify the scenario, to repair faults, and
update the scenario files, without disturbing or modifying the view of the
interdependencies offered by POGA.

The view offered by POGA can readily be extended to support also hier-
archical views of a still larger structured collection of scenarios. Each node
can then represent either a scenario fragment, or a subgraph. By double
clicking a node, the user brings up either Msc for a closer view of the
scenario fragment stored at the node, or a second copy of POGA for those
nodes that point to subgraphs of scenarios. Scenarios can be nested arbi-
trarily deeply in this fashion, and the design space can be navigated with
relative ease.

LINKING WITH SPIN

Early fault detection tools, by their very nature, do not allow for a very
thorough verification of a design. Once the early design phases have been
completed, and both the basic structure and the correctness requirements
for the design have been settled, it becomes possible to build precise verifi-
cation models. Critical design requirements can then be proven rigorously
with specialized tools, such as the model checker SPIN [6]. It is of course
attractive if the early fault detection tools can somehow be integrated with
the formal verification methods.

To explore this integration, we have built an experimental interface be-
tween POGA and the verifiers that are generated by SPIN. With this in-
terface, POGA can be used to visualize the reachable state space of small
verification problems, and can offer visual feedback on the precise effect
of various types of search algorithms, for instance, SPIN's partial order
reduction techniques [7].

Information on actions, input, and output events can be made available
on the edges of the graph, by postprocessing the information generated by
SPIN with the help of a small AWK filter [1].

The example shown in Figure 6, is part of the reachable state space for
a SPIN verification model of our Paper Problem, for simplicity restricted
to the sunny day scenario in which the author will not query the status of
the submitted paper, and the referee will not consult with a peer before
returning a recommendation to the editor. The state numbers assigned
by SPIN indicate the depth-first search order, in which the state space is
explored.

Provided with this graph, POGA again offers the user the choice of se-
lecting an arbitrary path, which can then be converted into a message se-
quence chart in ITU standard form [12], and handed off to Msc as before.

10

C
C
C

C
C

s0. .s4: C h o o s e Bdl tor

s23..s25: C h o o s e Releree

�9 .. ~ (~)

~ s 3 2 : Iteqnes$,..,Lceept
sT . . s l l : C h o o s e Releree

FIGURE 6. POGA View of a State Space Generated by SPIN (partial)

The reachability graph can also be inspected for the presence of strongly
connected components, and the like.

The verification model that generated the graph from Figure 6 is 45
lines of PROMELA [6]. A slightly more sophisticated version, of 59 lines,
allows for random peer consultation by referees, and allows the author to
defer responding to peer consultations until after receiving final word on
the status of a paper. We can now attempt to prove the benign liveness
property, expressed in the syntax of Linear Temporal Logic [9], that each
paper submitted is eventually either accepted or rejected:

(submitted --~ r (accepted V rejected)).

In SPIN we can attempt to verify this desirable property by claiming
that its negation (a decidedly undesirable property) cannot occur. This
negated property is formalized as the language accepted by a two-state
Biichi automaton shown in Figure 7.

s u b m i t t e d ^ (~r162 A ~rejected)

T r u e ~ c c e p t e d A "~rejected

FIGURE 7. SPIN's never claim for Verifying the Paper Problem

A Biichi automaton is an automaton over infinite words, known as a
n e v e r claim in PROMELA parlance. (The automaton is generated automat-
ically by SPIN from the LTL formula, using the algorithm described in [5].)
The initial state of the automaton is S1. The transitions of the automaton
axe labeled with the state properties that must be true for the transition to

]]

be enabled. The automaton, then, can remain in state Si for an arbitrary
length of time. Whenever the property

(s bmittea ^ accepted ^ rejected)

becomes true, the automaton can non-deterministically choose to switch
to the accepting state S2, where it can remain infinitely long only if the
property

(-, accepted A ~ rejected)

remains true infinitely long. For the extended verification model, SPIN will
report a match of this undesirable property within a fraction of a second,
and thus prove that the original liveness requirement can be violated.

Despite the ease with which the potential flaw in the interactions of
authors, editors, and referees can be found with a formal verification model,
the visual formalism of the message sequence charts can be considered
superior in this case. In the Msc tool, it is simply impossible to specify
a scenario that could include a causal wait cycle, and hence the system
designer may be alerted at an early stage to the possible side-effects of some
design decisions. More subtle correctness properties, however, can easily
escape attention, and will require more general error checking capabilities.

LINKING W I T H CASE TOOLS

The tools described so far can, in principle, span the early phases of the
design process. There already exist several competitive design tools that
target the later phases of design, for instance, CASE tools such as OB-
31~CTIME [10]. Just like it is desirable to establish links between formal
verification tools and the early fault detection tools Msc and POGA, it can
be beneficial to establish a smooth connection with existing C A S E tools.

Links can be established in several ways.

�9 We can convert a SPIN verification model into, for instance, an ini-
tim OBJECTIME model, to provide a sound starting point for the
development of the final code.

�9 It is also possible to derive verification models from OBJECTIME mod-
els, at various stages of the development, to make sure that essential
design properties are correctly preserved throughout the design.

�9 It can also be attractive to use a library of scenarios (in I T U stan-
dard form) and synthesize state machine models, one for each process
in the system, that captures all the behavior specified. The synthe-
sis procedure would then have to rely on a judicious use of state
names (part of the ITU recommendation) to indicate common points
of reference in the various scenarios. Note that each separate scenario
defines a path through the state machine of each process that is part

12

of the system. The state machines generated in this way can be used
either as an initial verification model, to be fed into SPIN, or as an
initial OBJECTIME model, to serve as the starting point of the further
development.

Simulation trails produced by OBJECTIME can be converted into ITU
standard format, and provided to the Msc tool for analysis. If race
conditions are detected, variations of the scenario can be fed back into
OBJECTIME to make sure that the original model is not sensitive to
the ordering of events that could be involved in the race.

We are actively exploring all the above options.

4 Conclusions

The initial interest in the early fault detection tools described in this paper
has surprised even their authors. We can speculate that the tools derive
their appeal not only because of the new checking capabilities they offer,
but also because they provide a means to edit and maintain important
design documents online, as formal objects. The availability of the new tools
makes it unnecessary to maintain ofliine representations of scenarios, and
their dependencies, in a fragile word-processing tool format. Conformance
to the ITU standards is an attractive bonus, though not considered essential
by many of the tool users.

At the time of writing, the Msc tool is in active use, and the POQA tool
is in a prototyping stage. At least one CASE tool provider is in the process
of extending their tool so that a direct connection can be made with these
early fault detection tools.

Clearly, though, both Msc and POGA are only initial attempts to develop
early fault detection tools. There can be a suite of similar tools, each offering
different views of (aspects of) the design process. Perhaps the best result
we can hope for would be that an improved understanding of the paradigm
of early fault detection will help us to render the tools discussed in this
paper obsolete.

Acknowledgements: I am grateful to Rajeev Alur, Doron Peled, Brian
Kernighan, and Mihalis Yannakakis for many helpful discussions on the
topic of this paper. The development of the early fault detection tools is a
collaborative effort, to which all the above have made critical contributions.

5 REFERENCES

[1] A.V. Aho, B.W. Kernighan, P.J. Weinberger. The AWK Programming
Language. Addison-Wesley, 1988.

13

[2] R. Alur, G.J. Holzmann, D. Peled. An Analyzer for Message Sequence
Charts. This conference. 1996.

[3] J. Berry, N. Dean, P. Fasel, M. Goldberg, E. Johnson, J. MacCuish,
G. Shannon, S. Sklena. Link: A Combinatorics and Graph theory
workbench for applications and research. DIMACS, Technical Report
95-15, June 1995.

[4] E.R. Gasner, E. Koutsofios, S.C. North, K-P. Vo. A Technique for
drawing directed graphs. IEEE Trans. on Software Eng. Vol 19, No.
3, May 1993, pp. 214-230.

[5] It. Gerth, D. Peled, M.Y. Vardi, P. Wolper. Simple On-the-fly Auto-
matic Verification of Linear Temporal Logic, PSTV95, Protocol Spec-
ification Testing and Verification. Warsaw, Poland. Chapman ~z Hall,
Germany, 1995, 173-184.

[6] G.J. Holzmann. Design and Validation of Computer Protocols. Pren-
tice Hall, Software Series, 1991.

[7] G.J. Holzmann, D. Peled. An Improvement in Formal Verifica-
tion. Proc. 7th Int. Conf. on Formal Description Techniques. Berne,
Switzerland, 1994, 177-194.

[8] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[9] A. Pnueli, The temporal logic of programs, Proc. of the 18th IEEE
Syrup. on Foundation of Computer Science. 1977, 46-57.

[10] B. Selic, G. Gullekson, P.T. Ward. Real-time object-oriented modeling.
Wiley, New York, 1994.

[11] N.M. Wilkinson. Using CRC cards: an informal approach to object-
oriented development. SIGS Books, New York, Advances in Object
Technology, 1995.

[12] ITU-T (previously CCITT). Criteria for the use and applicability of
formal description techniques. Recommendation Z.120, Message Se-
quence Chart (MSC). March 1993, 35 pgs.

