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A B S T R A C T  Message sequence charts (MSCs) are used in the design 
phase of a distributed system to record intended system behaviors. They 
serve as informal documentation of design requirements that  are referred 
to throughout the design process and even in the final system integration 
and acceptance testing. We show that  message sequence charts are open to 
a variety of semantic interpretations. The meaning of an MSC can depend 
on, for instance, whether one allows or denies the possibility of message 
loss or message overtaking, and on the particulars of the message queuing 
pohcy to be adopted. 
We describe an analysis tool that  can perform automatic checks on message 
sequence charts and can alert the user to the existence of subtle design 
errors, for any predefined or user-specified semantic interpretation of the 
chart. The tool can also be used to specify time constraints on message 
delays, and can then return useful additional timing information, such as 
the minimum and the maximum possible delays between pairs of events. 

1 Introduction 

Message sequence char ts  ( M S C s ) - - a l s o  known as t ime  sequence d iag rams ,  
message  flow d i ag rams ,  or ob jec t  in te rac t ion  d i a g r a m s - - a r e  a p o p u l a r  vi- 
sua l  f o r m a l i s m  for documen t ing  design requi rements  for concurrent  sys- 
t ems .  MSCs  are often used in the  first a t t e m p t s  to  formal ize  design re- 
qu i remen t s  for a new sys t em and  the  pro tocols  i t  suppor t s .  MSCs  repre-  
sent  t yp i ca l  execut ion  scenarios,  p rovid ing  examples  of e i ther  n o r m a l  or 
excep t iona l  execut ions  of  the  p roposed  sys tem.  

Like any o the r  aspec t  of  the  design process,  MSCs are amenab le  to  errors,  
the  mos t  c o m m o n  of  which are race condit ions.  A race condi t ion  exists  when 
two events  a p p e a r  in one (visual)  order  in the  MSC,  bu t  can be shown 
to occur  in the  oppos i t e  order  dur ing  an ac tua l  sy s t em execut ion.  These  
conflicts can resul t  f rom incorrec t  or incomple te  a s sumpt ions  a b o u t  chains 
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of dependencies in the design, or from conflicting semantic assumptions 
about the underlying communication system. The ambiguities may lead to 
unspecified reception errors, deadlocks, loss of messages, and other types 
of incorrect behavior in the final system. Some semantic interpretations of 
the MSC may permit  the occurrence of race conditions, while others may 
circumvent them. The specific version of the semantics used is influenced 
by the underlying communication architecture that  will be chosen for the 
final design. The semantics are different, for instance, when processes have 
a single input queue or multiple queues, and it can depend on whether or 
not the messages are stored in FIFO order. 

We describe some generic algorithms for analyzing message sequence 
charts, and a tool that  implements them. The tool allows the user to con- 
struct and edit message sequence charts interactively, in graphical form, 
and to store these charts in either Z.120 textual form [5], or in graphical 
form as PostScript files. The tool provides the user with a menu of possible 
semantic interpretations of a given MSC, and can detect conflicts such as 
causality cycles and race conditions. 

When the user specifies additional information, the tool can also per- 
form timing analysis. The additional information consists of user-defined 
bounds on message delays, and bounds on delays between successive send 
operations. The analyzer can check whether the t iming constraints are con- 
sistent, and can derive additional information such as the minimum and 
the maximum expiration times for timers. 

The analyzer can serve as a convenient means to integrate formal verifi- 
cation techniques into the design process, in a way that  is almost invisible 
to the users. The MSC analyzer, for instance, can be extended to produce 
formal models in  the input language of standard model checkers, such as 
SPIN [4], to permit  more detailed analyses of a design. 

There have been several at tempts to define an appropriate formal seman- 
tics for MSCs, e.g., [6], [7]. These approaches provide semantics definitions 
that  correspond to, what we will define to be, the visual order of events. 
Our approach allows the user to formalize more specifically the assumptions 
that  the user can make about the underlying (or target) architecture of the 
system, and compare the resulting semantics against the visuM order. 

2 Message Sequence Charts and their Semantics 

A sample MSC is shown in Figure 1. For illustrative purposes, it reflects 
only a small number of the possible features. For a more complete descrip- 
tion of MSCs, refer to the ITU recommendation Z. 120 [5]. The tool we will 
describe supports all the features of basic message sequence charts. As yet, 
it does not include additional features such as creation or destruction of 
processes, co-regions (to be discussed below), and sub-MSCs. 
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FIGURE 1. A message sequence chart 

Vertical lines in the chart correspond to asynchronous processes or au- 
tonomous agents. Messages exchanged between these processes are repre- 
sented by arrows. The tail of each arrow corresponds to the event of sending 
a message, while the head corresponds to its receipt. Arrows can be drawn 
either horizontally or sloping downwards, but not upwards. 

2 .1  F o r m a l i z a t i o n  

To formalize MSCs and allow their anMysis, consider the MSC of Figure 2. 
It contains 3 processes, numbered from left to right pl, p2, p3. For each 
process p in the system there is a vertical line which defines a local visual 
order, denoted <p, on all the events belonging to p. Each event is either a 
send or a receive event, and belongs to one specific process. The events of 
sending and receiving messages are labeled by sl, s2, s3, rl, r2, and r3. For 
each send event, there exists a matching receive event, and vice versa. This 
means that, in the charts that  we will use here, there are no anonymous 
environment  processes. If  an environment process is used, it is represented 
by a vertical line in the MSC. As we will see in the sequel, the actual order 
of occurrence of any two events in the MSC may or may not correspond 
to the visual order in the chart, depending on the semantic interpretation 
that  is used. 

A message sequence chart M defines a labeled directed acyclic graph 
with the following components: 

�9 Processes: A finite set P of processes. 

�9 Events: A finite set S of send events and a finite set R of receive 
events such that  S N R is empty. The set S U R is denoted by E. 
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FIGURE 2. A simple MSC 

�9 Process Labels: A labeling function L : E ~ P that  maps  each event 
e to a process L(e) G P. The set of events belonging to a process p is 
denoted by Ep. 

�9 Send-receive Edges: A compatibility bijection c : S ~-* R such tha t  
each send event s is mapped  to a unique receive event c(s) and each 
receive event r is mapped  to a unique send event c- l (r) .  

�9 Visual Order: For every process p there is a local total  order <p over 
the events Ep which corresponds to the order in which the events are 
displayed. The relation 

A 
< = (up <p) u {(s,c(s))lseS} 

contains the local total  orders and all the edges, and is called the 
visual order. 

The visual order defines an acyclic graph over the events since send-receive 
edges cannot go upwards in the chart. The visual order does not necessarily 
reflect the semantics of the MSC. Although some event e may appear before 
an event f in the visual order, this may  be only due to the two dimension- 
ality of the diagram; it may be tha t  e and f can in practice occur in either 
order. An au tomated  scenario analyzer can, then, warn the designer that  
events may  occur in an order that  differs from the visual one. 

2.2 Ambiguities 
To illustrate the potential  ambiguities of MSC specifications, two questions 
need to be addressed in assigning semantics to MSCs: 

1. Which causal precedences are enforced by the underlying architec- 
ture? 

2. Which causal precedences are likely to be inferred by the user? 
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FIGURE 3. Another simple MSC 

Any discrepancy between the answers to the above two questions could 
lead to design errors and requires the user's attention. 

Consider Figures 2 and 3. In Figure 2, it is reasonable to infer that  receive 
event ra occurs after send event Sl. The intuition is that  P2'S send event s2 
is delayed until the arrival of r l ,  and ps 's  send event s3 is delayed until the 
arrival of r2. Since a message cannot be received before it is sent, we have 

sl < < r l < < s 2 < < r 2 < < s s < < r 3  

where the symbol << represents causal precedence. 
However, it is not clear if the receive event rl  precedes the receive event 

rz in Figure 3. I t  is possible that  the message sent from P2 to Pl takes longer 
than the total  t ime it takes for the messages from P2 to P3 and then from 
ps to pl .  Although the user may  be persuaded to assume, based on the 
visual order, that  r3 must  always follow rl ,  this is not necessarily the case. 
An implementat ion of the protocol that  is based on this assumption may  
encounter unspecified reception errors, it may  deadlock, or, if it cannot 
distinguish between the two messages and merely assumes that  one will 
always precede the other, it may  end up deriving information from the 
wrong message. 

The ITU Z.120 recommendat ion contains a mechanism for defining that  
the order of occurrence of events is either unknown or immaterial ,  using 
co-regions. For the user, however, it can be hard to assess correctly where 
precisely co-regions are required, where they are redundant,  or even invalid. 
The analysis tool can identify the regions accurately in all cases. 

The semantics of the enforced order can also depend on the underlying 
architecture of the system. Consider, for instance, two subsequent messages, 
sent one after the other from one process to the other. The arrival of the 
messages in the same order in which they were sent is guaranteed only if 
the architecture guarantees a FIFO queuing discipline. When this is not 
guaranteed, an alternative semantics in which messages can overtake each 
other is called for. 
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2.3 Interpreted MSCs 

As discussed above, the correct semantic interpretation may  depend on 
many  things that  cannot be standardized, such as the particulars of the 
underlying architecture or the communication medium and queueing dis- 
ciplines that  are used. We therefore adopt a user-definable semantics, and 
predefine only a small number of reasonable semantic interpretations. 

There are three types of causal precedences that  we will distinguish in 
this paper:  

The visual order <.  As explained in Section 2.1, the visual order corre- 
sponds to the scenario as drawn. 

The enforced order <<. This order contains all the event pairs that  the un- 
derlying architecture can guarantee to occur only in the order spec- 
ified. For example,  if a send event s follows a receive event r in the 
enforced order, then the implementat ion can force the process to wait 
for the receive event r before allowing the send event s to take place. 
The message sent may, for instance, need to carry information tha t  
is acquired from the received message r. 

The inferred order C. Events that  are ordered according to the inferred 
order are likely to be assumed by the user to occur in that  order. 
A tool can check tha t  the inferred order is valid by computing the 
transitive closure of the enforced order. 

The enforced and the inferred orders can both be defined as subsets of 
the visual order, i.e., (<< U r-) C_<. Different semantic interpretations cor- 
respond to different rules for extracting the enforced and inferred order 
f rom the visual order. For example, a pair (s, c(s)) of a send and a corre- 
sponding receive event is always in the enforced order. On the other hand, 
a pair (r l ,  r2) of receive events in the visual order may  appear  in either the 
enforced order or in the inferred order, but it need not appear in either. 

Formally, an interpreted message sequence chart M consists of the fol- 
lowing components: 

�9 An MSC (P, S, R, L, c, {<v [p 6 P}), 

�9 For every process p, a binary relation <<p over Ep: e <<v f means 
that  event e is known to precede event f .  It  is required that  <<v is a 
subset of the visual order <v. The enforced order << is 

(up <<p) u {(s, c(s))l, ~ s}. 

�9 For every process p, a binary relation r- v over Ep: e [S v f means tha t  
event e is assumed to precede event f .  It  is required that  r-v is a 
subset of the visual order <v. The inferred order C is Up r-v. 
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Since the enforced order << corresponds to the causality in the system, 
one can compute the order <<* among the set of events, i.e., its transitive 
closure. I t  can then be checked whether [- is a subset of <<*. If  this is not 
the case, there is a conflict between the enforced and the inferred orders, 
and the user is likely to make an invalid inference about the behavior of 
the system. For example, the race conflict in Figure 3 corresponds to the 
interpretat ion tha t  << is {(sl,  r l) ,  (rl ,  s~), (s2, r2), (r2, 83), (s3, r3)}, while 
(sl ,  r3) is in E. 

Observe tha t  since the visual order is acyclic, so is the relation <<* due 
to the requirement tha t  each <<p is a subset of <p. Also note that  the two 
orders << and C cannot conflict since both  are consistent with the visual 
order. 

There is more than  one reasonable semantic interpretation of an MSC. 
We consider four sample choices, each tied to a different choice for the 
underlying architecture. Consider two events of the same process p. Each 
event is either a send or a receive event, with a matching receive or send 
event in some other process. Figure 4 illustrates the corresponding five 
cases tha t  are relevant to our default set of interpretations. 

Four default choices for the relations << and U are indicated, as enu- 
merated  below. Cases A, B, and C, share the same interpretations in all 
four defaults. Cases A and C formalize the notion that  a send event is a 
controlled event, tha t  is only issued when the preceding events in the visual 
order have occurred. The order is therefore enforced in both cases, under 
all semantic interpretations. In case B, the inference is made that  the re- 
ceive event r can happen only after the send event s to account for the case 
where s is meant  to provoke the reception r. Cases D and E distinguish 
between the the case when the two matching send events for two receive 
events that  arrive to the same process p belong to the same proce~ q or to 
two different processes q and r, and are interpreted differently in different 
defaults: 

1. Single FIFO-queue per process: Each process p has a single FIFO 
queue to store all the messages received by p. Messages received by 
p from the same source arrive in the order in which they are sent 
(case E),  but messages received by p from different sources (case 
D) need not arrive in the order sent. The inferred order of receive 
events corresponds to the visual order. In this semantics, if a process 
is waiting to receive a message r l ,  and if r~ arrives before r l ,  then r2 
may  be lost, or a deadlock may  occur. 

2. One FIFO queue per source: Each process p has one FIFO queue 
for every process q to store all the messages received by p f rom q. 
Since messages received from different sources are stored in different 
buffers, no order is inferred for the two receives in case D. This is 
because with multiple queues, a process has direct access to the first 
message arriving from each process, and the relative order of two 
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FIGURE 4. Defaults for interpreted MSCs 

messages arriving from difference processes is unimportant .  If the 
wrong message arrives first, the receiving process would still be able 
to wait for the arrival of the other message, and after processing the 
second one, the first one would still be in its own message input queue. 

. Single Non-FIFO queue per process: The order in which messages are 
received is not necessarily the same as the order in which the messages 
are sent. Thus, for case E, no order between rl and r2 is known, The 
inferred order between receive events corresponds to the visual order. 

. One Non-FIFO per source: Each process p has one FIFO queue for 
every process q to store all the messages received by p from q. Due 
to non-FIFO nature, for case E, the order among receives is only 
inferred, and not necessarily enforced. Due to multiple queues, for 
case D no order is inferred for receives from different sources. 

Alternative interpretations may be provided for different choices of the 
underlying queuing model. The user can also be given an explicit override 
capability, to make different semantic choices for specific, user-selected, 
event pairs. 

3 The Analysis of MSCs 

Consider an interpreted MSC with visual order <, enforced order <<, and 
inferred order C. To find inconsistencies the transitive closure <<* of the 
enforced order is computed and compared against the inferred order. 

Race Condition: Events e and f from the same process p are 
said to be in a race if (e U f )  but  (not e <<* f ) .  

The  MSC analysis problem is to compute all the races of a given interpreted 
MSC. 
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The  causality relations << and <<* define partial  orders over the set E of 
all events in M.  Once the transitive closure is computed, conflicts can be 
identified by examining each event pair in the inferred order. 

Due to the special structure of our problem, we can use the following al- 
gor i thm to compute the transitive closure, at a lower cost than the s tandard 
Floyd-Warshall  algorithm. 

Assume the MSC has n events. Since there are no cycles, we can number  
the events 1 . . . n ,  such that  the numbering defines a total order that  is 
consistent with visual order <. The numbering can be done in t ime (9(n), 
using a s tandard topological sort algorithm (see e.g., [10]). A boolean two- 
dimensional mat r ix  C is used to store the pairs in <<*. All entries of C are 
initially false. 

A l g o r i t h m  1: 
f o r  e := l t o  n do  

fo r  f := e -  1 d o w n t o  1 do  
i f  not C[f][e] and f << e t h e n  

c[/][e] := true; 
f o r  g :----- 1 t o  f -  1 do  

i f  C[g][f] t h e n  C[g][e] := true 

In this algorithm, the value of each of the n 2 entries in C can change from 
false to true at most  once. Call event f an immediate predecessor of event 
e if f << e and there is no event g such that  f << g << e. Observe that  
the innermost  loop of the algorithm is executed for a pair (e, f )  only if the 
event f is an immediate  predecessor of the event e. 

T h e o r e m  3.1 Given an interpreted MSC with n events. If relation << con- 
tains l pairs (f ,  e) such that event f is an immediate predecessor of event 
e, then the computational complexity of Algorithm 1 is n 2 + gn. 

For the default choices of Figure 4, e is bounded by 2n, which means tha t  
for these choices the computat ional  complexity of Algorithm 1 is O(n~). 

4 MSCs  with  T iming  Constraints 

In this section, we describe an extension of MSCs to specify t iming con- 
straints on a message flow. As an example, consider the MSC in Figure 5. 
The label [1, 2] on the edge from sl to rl  specifies the lower and upper 
bounds on the delay of message delivery. The label [5, 6] on the vertical 
line from rl  to s2 specifies bounds on the delay between rl  to s2, and 
models an assumption about the speed of process P2- The event set_timer 
corresponds to setting a t imer which expires after 4 t ime units. The t im- 
ing information,  in this case, is consistent with the visual order of the two 
receive events expire and r2. In fact, we can deduce that  the t imer will 
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FIGURE 5. An MSC with timing constraints 

always expire before the receive event r2. Thus, the timing information can 
be used to deduce additional causal information, or to rule out possible race 
conflicts. It can also be used to compute maximum and minimum delays 
between pairs of events. For instance, the separation between the events 
expire and r2 is at least 1 and at most 5. 

Let R + be the set of nonnegative real numbers, and let us consider in- 
tervals of R + with integer endpoints. IntervMs may be open, closed or 
half-closed, and may extend to infinity on the right. Examples of intervals 
are (0, oo), [2, 5], (3, 7], where the round brace indicates an open interval, 
and the square brace a closed one. The set of intervals is denoted by I. 

A timed MSC M consists of 

�9 An interpreted MSC with enforced order << and inferred order I-. 

�9 A timing function Ta: :<<~-~ I that  maps each pair (e, f )  in the en- 
forced order << to an interval T~(e ,  f ) .  This function models the 
known timing relationships: the event f is known to occur within the 
interval T~(e ,  f )  after the event e. 

�9 A timing function Tr- :t-~-* I that  maps each pair (e, f )  in the inferred 
order f- to an interval Tr-(e, f ) .  This function models the timing 
constraints tha t  the user wants to check for consistency. 

A ~iming assignment for a timed MSC M is a function T : E ~-* R + 
that  assigns, to each event e, a t ime-stamp T(e) such that  for every pair 
(e, f )  in the enforced relation << the t ime difference T( f )  - T(e) belongs to 
the interval T<(e, f) .  Thus, a timing assignment gives the possible times 
at which events may occur. A sample timing assignment for the MSC of 
Figure 5 is 

T(sl)  = O, T(set_timer) = 1.5, T(rl)  = 2 
T(expire) = 5.5, T(s2) = 7, T(r2) = 8. 
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As before, the user may choose the defaults for the relations << and ~.  
The default t iming function T<< maps each pair (e, f )  in << to the interval 
(0, 

Timed MSCs can also contain three types of design problems: 

1. Timing Inconsistency: There exists no timing assignment for the 
MSC. 

. Visual Conflicts: A pair (e, f )  of events belonging to the same process 
p is said to be a visual conflict of the timed MSC if f appears before 
e in the visual order ( f  <p e) but  in every timing assignment T, e 
happens before f according to T. 

. Timing Conflicts: A pair (e, f )  of events is said to be a timing conflict 
of the t imed MSC ife  is assumed to occur before f (e [- f ) ,  but there 
is a timing assignment T such that  the time difference T(f) - T(e) 
does not belong to the interval Tr(e, f). 

Timing inconsistency corresponds to an unsatisfiable set of timing con- 
straints. The visual conflict corresponds to the case when the timing con- 
straints imply that  the event e always precedes f ,  in an order opposite to 
their visual order. Timing conflict corresponds to the case that  the inferred 
bounds are not necessarily satisfied by the timing assignments. The MSC of 
Figure 5 has no conflicts. Observe that  timing imposes additional ordering, 
and hence, it may be the case that the underlying interpreted MSC has 
races, but  the t imed MSC has no conflicts. 

The  analysis problem for t imed MSCs is defined as follows. The input 
to the t imed MSC analysis problem consists of a timed MSC M. If M has 
timing inconsistency then the output reports inconsistent specification. If 
M is consistent then the answer to the MSC analysis problem is the set of 
all visual and timing conflicts. 

The t iming constraints imposed by the timing function T<< are linear 
constraints, where each constraint puts a bound on the difference of two 
variables. Solving such constraints can be reduced to computing negative- 
cost cycles and shortest distances in weighted digraphs [9]. 

The analysis can include both strict and nonstrict inequalities. In order 
to deal with different types of bounds uniformly, the cost domain D can be 
defined to be Z • {0, 1}, where Z is the set of all integers (such analysis is 
typical of algorithms for timing verification, see, for instance, [1, 2]). The  
costs of the edges of the graph is from the domain D. To compute shortest 
paths, we need to add costs and compare costs. The ordering -~ over D is 
the lexicographic ordering: (a, b / -~ (a', b' / iff (1) a < a', or (2) a = a' and 
b < b'. The addition is defined by (a, b) + (a', b') = (a+a', b+b') (note that  
+ over the boolean component is disjunction). A strict inequality x - y < a 
is now written as x - y < (a, 1) and a nonstrict inequality x - y ~_ a is now 
written as x - y _~ (a, 0) 



46 

Given a timed MSC M, define a weighted digraph GM as follows. The 
set of vertices of GM is the set E of events. The cost of the edge from an 
event e to an event f gives an upper bound on the difference T ( e ) - T ( J )  for 
a timing assignment for M. Consider a pair (e, f )  in the enforced order. If 
T~ (e, f )  = [a, b], the graph GM has an edge from e to f with cost ( - a ,  0~, 
and from f to e with cost (b, 0~. If T~(e, f )  = (a, b], the graph GM has 
an edge from e to f with cost {-a,  1), and from f to e with cost {b, 0). If 
T~ (e, f )  = [a, co) then the graph GM has an edge from e to f with cost 
( - a ,  0}, and there no edge from f to e. The cases [a, b), (a, b), and (a, oo) 
are handled similarly. 

Le mma 4.1 The timed MSC M is timing inconsistent iff the graph GM 
has a negative cost cycle. 

Suppose M is timing consistent. Let del be the length of the shortest path 
from e to s t in the graph GM (let del be c~ if no such path exists). The 
paths in GM, then, represent all the timing assignments for M: 

L e m m a  4.2 Let M be a consistent timed MSC. A function T : E ~ R + 
is a timing assignment for M iff T(e) - T ( f )  -~ de / for  all events e, f . 

Consequently, a pair (e, f )  of events belonging to a process p with e <p f 
is a visual conflict iff there is a path from f to e with negative cost (i.e. 
dy, < 0). Let (e, f )  be a pair of events in t'-. The pair (e, f )  is a t iming 
conflict iff the interval TE(e, f )  is included in the interval [-dey, dy~]. It is 
clear that  the timed MSC analysis problem can be solved by computing 
the shortest paths in GM. To compute shortest paths, we use the classical 
dynamic programming algorithm [3, 11]. This immediately leads to the 
following theorem: 

T h e o r e m  4.3 Given a timed MSC M with n events the timed MSC anal- 
ysis problem is solvable in time O(nZ). 

5 An MSC Analysis Tool 

In this section, we briefly describe the features of the message sequence 
chart analyzer that we have implemented to illustrate these ideas. The 
graphical interface to the MSC analyzer was written in Tcl /Tk [8]. The 
analyzer itself was written in ANSI standard C. 

The most important features of the tool can be summarized as follows. 

* The tool allows the user to construct, edit, and analyze MSCs inter- 
actively. The charts may be stored in the ITU standard form (Z.120), 
in textual form as conventional annotated scenarios, or in graphical 
form, as PostScript files. Annotations to the MSC can be entered in 
comment boxes that  become part of the scenario as displayed. 
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�9 For the online analysis of interpreted MSCs, the tool supports the 
four pre-defined semantics choices listed in Figure 4 through menu  
choices. Other user-defined semantics can easily be incorporated. 

�9 The analysis for race conditions is invoked by clicking on a but ton 
labeled 'Check.. ' .  A menu is then created listing all conflicts tha t  can 
occur for the chosen semantic interpretation of the chart. By selecting 
a conflict f rom a menu-list, the corresponding event pair is highlighted 
in the chart. The user can also set preferences so that  only certain 
types of conflicts (eg. between two receives, or between a send and a 
receive) are entered into the conflict menus. 

�9 The  user can also select an event e, with a mouse click, and ask the 
tool to identify all related (or optionally all unrelated) events. Related 
are all those events that  necessarily precede or follow e in the part ial  
order <<*. The two types of events (i.e., following or preceding the 
selected event) are marked in different colors. 

�9 For t iming analysis, the user can annotate the chart with intervals, 
both  on message transmissions and on local process states (see Fig- 
ure 5). Timing conflicts, for the chosen semantic interpretation, are 
requested as before, with a mouse click. 

�9 The  user can also select an event e, again with a mouse click, and ask 
the tool to identify for every related event f the interval in which f 
may  happen relative to e. This capability can be used, for instance, to 
identify the required upper and lower bounds for t imer expirations. 

The runt ime requirements to perform an exhaustive analysis of a scenario 
are negligible for even large MSCs (in the order of 103 events, spanning ten 
to twenty pages when printed). The analysis tool therefore runs comfortably 
on even small laptop computers.  The tool has been applied successfully to 
detect race conditions in several routine industrial MSC applications. 

The  tool can be used to analyze cyclic scenarios by unfolding the MSCs 
a finite number  of times before the analysis begins. If  there is a simple 
cycle, i.e., the complete scenario can repeat, then it is sufficient to analyze 
only two subsequent copies of the MSC. Thus, in this case there is no need 
for special machinery: the user can check for race conditions by import ing 
the same MSC twice, one after the other. This will create two subsequent 
copies, with events of the second copy in process p ordered to appear later 
than  events of the first copy in p in the new local order <p. 

6 Conclusions 

We have shown tha t  message sequence charts are sensitive to various se- 
mant ic  interpretations. Under different semantics, different race conditions 
m a y  occur. 
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We have proposed and implemented a tool which can be used to ana- 
lyze message sequence charts to locate and visualize design errors as early 
as possible in a design cycle. The tool conforms to ITU recommendation 
Z.120. We have noted that extensions of the tool, to gently integrate for- 
mat verification techniques further into the design process, are possible. It 
is our intention to use the formal representation of MSCs described here as 
a vehicle for exploring such extensions. 
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