
An Analyzer for Message
Sequence Charts
Rajeev Alur*
Gerard J. Holzmann*
Doron Peled*

A B S T R A C T Message sequence charts (MSCs) are used in the design
phase of a distributed system to record intended system behaviors. They
serve as informal documentation of design requirements that are referred
to throughout the design process and even in the final system integration
and acceptance testing. We show that message sequence charts are open to
a variety of semantic interpretations. The meaning of an MSC can depend
on, for instance, whether one allows or denies the possibility of message
loss or message overtaking, and on the particulars of the message queuing
pohcy to be adopted.
We describe an analysis tool that can perform automatic checks on message
sequence charts and can alert the user to the existence of subtle design
errors, for any predefined or user-specified semantic interpretation of the
chart. The tool can also be used to specify time constraints on message
delays, and can then return useful additional timing information, such as
the minimum and the maximum possible delays between pairs of events.

1 Introduction

Message sequence char ts (M S C s) - - a l s o known as t ime sequence d iag rams ,
message flow d i ag rams , or ob jec t in te rac t ion d i a g r a m s - - a r e a p o p u l a r vi-
sua l f o r m a l i s m for documen t ing design requi rements for concurrent sys-
t ems . MSCs are often used in the first a t t e m p t s to formal ize design re-
qu i remen t s for a new sys t em and the pro tocols i t suppor t s . MSCs repre-
sent t yp i ca l execut ion scenarios, p rovid ing examples of e i ther n o r m a l or
excep t iona l execut ions of the p roposed sys tem.

Like any o the r aspec t of the design process, MSCs are amenab le to errors,
the mos t c o m m o n of which are race condit ions. A race condi t ion exists when
two events a p p e a r in one (visual) order in the MSC, bu t can be shown
to occur in the oppos i t e order dur ing an ac tua l sy s t em execut ion. These
conflicts can resul t f rom incorrec t or incomple te a s sumpt ions a b o u t chains

*AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
Email: {alur,gerard,doron} @research.at t.com

36

of dependencies in the design, or from conflicting semantic assumptions
about the underlying communication system. The ambiguities may lead to
unspecified reception errors, deadlocks, loss of messages, and other types
of incorrect behavior in the final system. Some semantic interpretations of
the MSC may permit the occurrence of race conditions, while others may
circumvent them. The specific version of the semantics used is influenced
by the underlying communication architecture that will be chosen for the
final design. The semantics are different, for instance, when processes have
a single input queue or multiple queues, and it can depend on whether or
not the messages are stored in FIFO order.

We describe some generic algorithms for analyzing message sequence
charts, and a tool that implements them. The tool allows the user to con-
struct and edit message sequence charts interactively, in graphical form,
and to store these charts in either Z.120 textual form [5], or in graphical
form as PostScript files. The tool provides the user with a menu of possible
semantic interpretations of a given MSC, and can detect conflicts such as
causality cycles and race conditions.

When the user specifies additional information, the tool can also per-
form timing analysis. The additional information consists of user-defined
bounds on message delays, and bounds on delays between successive send
operations. The analyzer can check whether the t iming constraints are con-
sistent, and can derive additional information such as the minimum and
the maximum expiration times for timers.

The analyzer can serve as a convenient means to integrate formal verifi-
cation techniques into the design process, in a way that is almost invisible
to the users. The MSC analyzer, for instance, can be extended to produce
formal models in the input language of standard model checkers, such as
SPIN [4], to permit more detailed analyses of a design.

There have been several at tempts to define an appropriate formal seman-
tics for MSCs, e.g., [6], [7]. These approaches provide semantics definitions
that correspond to, what we will define to be, the visual order of events.
Our approach allows the user to formalize more specifically the assumptions
that the user can make about the underlying (or target) architecture of the
system, and compare the resulting semantics against the visuM order.

2 Message Sequence Charts and their Semantics

A sample MSC is shown in Figure 1. For illustrative purposes, it reflects
only a small number of the possible features. For a more complete descrip-
tion of MSCs, refer to the ITU recommendation Z. 120 [5]. The tool we will
describe supports all the features of basic message sequence charts. As yet,
it does not include additional features such as creation or destruction of
processes, co-regions (to be discussed below), and sub-MSCs.

37

pl I I
Id

Req

Disconn

p2 I
Id

Ackl

Inf

Interr

Disconn

I p3 I I p4 I

Check

FIGURE 1. A message sequence chart

Vertical lines in the chart correspond to asynchronous processes or au-
tonomous agents. Messages exchanged between these processes are repre-
sented by arrows. The tail of each arrow corresponds to the event of sending
a message, while the head corresponds to its receipt. Arrows can be drawn
either horizontally or sloping downwards, but not upwards.

2 .1 F o r m a l i z a t i o n

To formalize MSCs and allow their anMysis, consider the MSC of Figure 2.
It contains 3 processes, numbered from left to right pl, p2, p3. For each
process p in the system there is a vertical line which defines a local visual
order, denoted <p, on all the events belonging to p. Each event is either a
send or a receive event, and belongs to one specific process. The events of
sending and receiving messages are labeled by sl, s2, s3, rl, r2, and r3. For
each send event, there exists a matching receive event, and vice versa. This
means that, in the charts that we will use here, there are no anonymous
environment processes. If an environment process is used, it is represented
by a vertical line in the MSC. As we will see in the sequel, the actual order
of occurrence of any two events in the MSC may or may not correspond
to the visual order in the chart, depending on the semantic interpretation
that is used.

A message sequence chart M defines a labeled directed acyclic graph
with the following components:

�9 Processes: A finite set P of processes.

�9 Events: A finite set S of send events and a finite set R of receive
events such that S N R is empty. The set S U R is denoted by E.

38

I pl I I p2 I I p3 I
81 ~ r l

82

r 3

FIGURE 2. A simple MSC

�9 Process Labels: A labeling function L : E ~ P that maps each event
e to a process L(e) G P. The set of events belonging to a process p is
denoted by Ep.

�9 Send-receive Edges: A compatibility bijection c : S ~-* R such tha t
each send event s is mapped to a unique receive event c(s) and each
receive event r is mapped to a unique send event c- l (r) .

�9 Visual Order: For every process p there is a local total order <p over
the events Ep which corresponds to the order in which the events are
displayed. The relation

A
< = (up <p) u {(s,c(s))lseS}

contains the local total orders and all the edges, and is called the
visual order.

The visual order defines an acyclic graph over the events since send-receive
edges cannot go upwards in the chart. The visual order does not necessarily
reflect the semantics of the MSC. Although some event e may appear before
an event f in the visual order, this may be only due to the two dimension-
ality of the diagram; it may be tha t e and f can in practice occur in either
order. An au tomated scenario analyzer can, then, warn the designer that
events may occur in an order that differs from the visual one.

2.2 Ambiguities
To illustrate the potential ambiguities of MSC specifications, two questions
need to be addressed in assigning semantics to MSCs:

1. Which causal precedences are enforced by the underlying architec-
ture?

2. Which causal precedences are likely to be inferred by the user?

39

I �84 I I p2 I I p3 I
81

82

Pl

r l .~

r3

r2

83

FIGURE 3. Another simple MSC

Any discrepancy between the answers to the above two questions could
lead to design errors and requires the user's attention.

Consider Figures 2 and 3. In Figure 2, it is reasonable to infer that receive
event ra occurs after send event Sl. The intuition is that P2'S send event s2
is delayed until the arrival of r l , and ps 's send event s3 is delayed until the
arrival of r2. Since a message cannot be received before it is sent, we have

sl < < r l < < s 2 < < r 2 < < s s < < r 3

where the symbol << represents causal precedence.
However, it is not clear if the receive event rl precedes the receive event

rz in Figure 3. I t is possible that the message sent from P2 to Pl takes longer
than the total t ime it takes for the messages from P2 to P3 and then from
ps to pl . Although the user may be persuaded to assume, based on the
visual order, that r3 must always follow rl , this is not necessarily the case.
An implementat ion of the protocol that is based on this assumption may
encounter unspecified reception errors, it may deadlock, or, if it cannot
distinguish between the two messages and merely assumes that one will
always precede the other, it may end up deriving information from the
wrong message.

The ITU Z.120 recommendat ion contains a mechanism for defining that
the order of occurrence of events is either unknown or immaterial , using
co-regions. For the user, however, it can be hard to assess correctly where
precisely co-regions are required, where they are redundant, or even invalid.
The analysis tool can identify the regions accurately in all cases.

The semantics of the enforced order can also depend on the underlying
architecture of the system. Consider, for instance, two subsequent messages,
sent one after the other from one process to the other. The arrival of the
messages in the same order in which they were sent is guaranteed only if
the architecture guarantees a FIFO queuing discipline. When this is not
guaranteed, an alternative semantics in which messages can overtake each
other is called for.

40

2.3 Interpreted MSCs

As discussed above, the correct semantic interpretation may depend on
many things that cannot be standardized, such as the particulars of the
underlying architecture or the communication medium and queueing dis-
ciplines that are used. We therefore adopt a user-definable semantics, and
predefine only a small number of reasonable semantic interpretations.

There are three types of causal precedences that we will distinguish in
this paper:

The visual order <. As explained in Section 2.1, the visual order corre-
sponds to the scenario as drawn.

The enforced order <<. This order contains all the event pairs that the un-
derlying architecture can guarantee to occur only in the order spec-
ified. For example, if a send event s follows a receive event r in the
enforced order, then the implementat ion can force the process to wait
for the receive event r before allowing the send event s to take place.
The message sent may, for instance, need to carry information tha t
is acquired from the received message r.

The inferred order C. Events that are ordered according to the inferred
order are likely to be assumed by the user to occur in that order.
A tool can check tha t the inferred order is valid by computing the
transitive closure of the enforced order.

The enforced and the inferred orders can both be defined as subsets of
the visual order, i.e., (<< U r-) C_<. Different semantic interpretations cor-
respond to different rules for extracting the enforced and inferred order
f rom the visual order. For example, a pair (s, c(s)) of a send and a corre-
sponding receive event is always in the enforced order. On the other hand,
a pair (r l , r2) of receive events in the visual order may appear in either the
enforced order or in the inferred order, but it need not appear in either.

Formally, an interpreted message sequence chart M consists of the fol-
lowing components:

�9 An MSC (P, S, R, L, c, {<v [p 6 P}),

�9 For every process p, a binary relation <<p over Ep: e <<v f means
that event e is known to precede event f . It is required that <<v is a
subset of the visual order <v. The enforced order << is

(up <<p) u {(s, c(s))l, ~ s}.

�9 For every process p, a binary relation r- v over Ep: e [S v f means tha t
event e is assumed to precede event f . It is required that r-v is a
subset of the visual order <v. The inferred order C is Up r-v.

41

Since the enforced order << corresponds to the causality in the system,
one can compute the order <<* among the set of events, i.e., its transitive
closure. I t can then be checked whether [- is a subset of <<*. If this is not
the case, there is a conflict between the enforced and the inferred orders,
and the user is likely to make an invalid inference about the behavior of
the system. For example, the race conflict in Figure 3 corresponds to the
interpretat ion tha t << is {(sl, r l) , (rl , s~), (s2, r2), (r2, 83), (s3, r3)}, while
(sl , r3) is in E.

Observe tha t since the visual order is acyclic, so is the relation <<* due
to the requirement tha t each <<p is a subset of <p. Also note that the two
orders << and C cannot conflict since both are consistent with the visual
order.

There is more than one reasonable semantic interpretation of an MSC.
We consider four sample choices, each tied to a different choice for the
underlying architecture. Consider two events of the same process p. Each
event is either a send or a receive event, with a matching receive or send
event in some other process. Figure 4 illustrates the corresponding five
cases tha t are relevant to our default set of interpretations.

Four default choices for the relations << and U are indicated, as enu-
merated below. Cases A, B, and C, share the same interpretations in all
four defaults. Cases A and C formalize the notion that a send event is a
controlled event, tha t is only issued when the preceding events in the visual
order have occurred. The order is therefore enforced in both cases, under
all semantic interpretations. In case B, the inference is made that the re-
ceive event r can happen only after the send event s to account for the case
where s is meant to provoke the reception r. Cases D and E distinguish
between the the case when the two matching send events for two receive
events that arrive to the same process p belong to the same proce~ q or to
two different processes q and r, and are interpreted differently in different
defaults:

1. Single FIFO-queue per process: Each process p has a single FIFO
queue to store all the messages received by p. Messages received by
p from the same source arrive in the order in which they are sent
(case E), but messages received by p from different sources (case
D) need not arrive in the order sent. The inferred order of receive
events corresponds to the visual order. In this semantics, if a process
is waiting to receive a message r l , and if r~ arrives before r l , then r2
may be lost, or a deadlock may occur.

2. One FIFO queue per source: Each process p has one FIFO queue
for every process q to store all the messages received by p f rom q.
Since messages received from different sources are stored in different
buffers, no order is inferred for the two receives in case D. This is
because with multiple queues, a process has direct access to the first
message arriving from each process, and the relative order of two

42

, d

A
S i n g l e F i f o r ~ s

Fifo/source r ~ s

N o n F i f o r q~ s

lqonFifo/source r ~ s

B C
s F ' r s l ~ s 2

s f ' r s l ~ , s 2

$ F ' F S 1 ~ S 2

s t - r s l 'K s~

%
F N
D E

r l E r~ r l ~ r 2

n o n e r l ~ : r 2

r I E r 2 r I ~ r $

n o n e r l ~ ~2

FIGURE 4. Defaults for interpreted MSCs

messages arriving from difference processes is unimportant . If the
wrong message arrives first, the receiving process would still be able
to wait for the arrival of the other message, and after processing the
second one, the first one would still be in its own message input queue.

. Single Non-FIFO queue per process: The order in which messages are
received is not necessarily the same as the order in which the messages
are sent. Thus, for case E, no order between rl and r2 is known, The
inferred order between receive events corresponds to the visual order.

. One Non-FIFO per source: Each process p has one FIFO queue for
every process q to store all the messages received by p from q. Due
to non-FIFO nature, for case E, the order among receives is only
inferred, and not necessarily enforced. Due to multiple queues, for
case D no order is inferred for receives from different sources.

Alternative interpretations may be provided for different choices of the
underlying queuing model. The user can also be given an explicit override
capability, to make different semantic choices for specific, user-selected,
event pairs.

3 The Analysis of MSCs

Consider an interpreted MSC with visual order <, enforced order <<, and
inferred order C. To find inconsistencies the transitive closure <<* of the
enforced order is computed and compared against the inferred order.

Race Condition: Events e and f from the same process p are
said to be in a race if (e U f) but (not e <<* f) .

The MSC analysis problem is to compute all the races of a given interpreted
MSC.

43

The causality relations << and <<* define partial orders over the set E of
all events in M. Once the transitive closure is computed, conflicts can be
identified by examining each event pair in the inferred order.

Due to the special structure of our problem, we can use the following al-
gor i thm to compute the transitive closure, at a lower cost than the s tandard
Floyd-Warshall algorithm.

Assume the MSC has n events. Since there are no cycles, we can number
the events 1 . . . n , such that the numbering defines a total order that is
consistent with visual order <. The numbering can be done in t ime (9(n),
using a s tandard topological sort algorithm (see e.g., [10]). A boolean two-
dimensional mat r ix C is used to store the pairs in <<*. All entries of C are
initially false.

A l g o r i t h m 1:
f o r e := l t o n do

fo r f := e - 1 d o w n t o 1 do
i f not C[f][e] and f << e t h e n

c[/][e] := true;
f o r g :----- 1 t o f - 1 do

i f C[g][f] t h e n C[g][e] := true

In this algorithm, the value of each of the n 2 entries in C can change from
false to true at most once. Call event f an immediate predecessor of event
e if f << e and there is no event g such that f << g << e. Observe that
the innermost loop of the algorithm is executed for a pair (e, f) only if the
event f is an immediate predecessor of the event e.

T h e o r e m 3.1 Given an interpreted MSC with n events. If relation << con-
tains l pairs (f , e) such that event f is an immediate predecessor of event
e, then the computational complexity of Algorithm 1 is n 2 + gn.

For the default choices of Figure 4, e is bounded by 2n, which means tha t
for these choices the computat ional complexity of Algorithm 1 is O(n~).

4 MSCs with T iming Constraints

In this section, we describe an extension of MSCs to specify t iming con-
straints on a message flow. As an example, consider the MSC in Figure 5.
The label [1, 2] on the edge from sl to rl specifies the lower and upper
bounds on the delay of message delivery. The label [5, 6] on the vertical
line from rl to s2 specifies bounds on the delay between rl to s2, and
models an assumption about the speed of process P2- The event set_timer
corresponds to setting a t imer which expires after 4 t ime units. The t im-
ing information, in this case, is consistent with the visual order of the two
receive events expire and r2. In fact, we can deduce that the t imer will

44

t pl I

[1,2]
s e t _ t i m e r

e x p i r e ~ 4

r 2 ~

[1,2]

[12]

t P2

~- r l

82

FIGURE 5. An MSC with timing constraints

always expire before the receive event r2. Thus, the timing information can
be used to deduce additional causal information, or to rule out possible race
conflicts. It can also be used to compute maximum and minimum delays
between pairs of events. For instance, the separation between the events
expire and r2 is at least 1 and at most 5.

Let R + be the set of nonnegative real numbers, and let us consider in-
tervals of R + with integer endpoints. IntervMs may be open, closed or
half-closed, and may extend to infinity on the right. Examples of intervals
are (0, oo), [2, 5], (3, 7], where the round brace indicates an open interval,
and the square brace a closed one. The set of intervals is denoted by I.

A timed MSC M consists of

�9 An interpreted MSC with enforced order << and inferred order I-.

�9 A timing function Ta: :<<~-~ I that maps each pair (e, f) in the en-
forced order << to an interval T~(e , f) . This function models the
known timing relationships: the event f is known to occur within the
interval T~(e , f) after the event e.

�9 A timing function Tr- :t-~-* I that maps each pair (e, f) in the inferred
order f- to an interval Tr-(e, f) . This function models the timing
constraints tha t the user wants to check for consistency.

A ~iming assignment for a timed MSC M is a function T : E ~-* R +
that assigns, to each event e, a t ime-stamp T(e) such that for every pair
(e, f) in the enforced relation << the t ime difference T(f) - T(e) belongs to
the interval T<(e, f) . Thus, a timing assignment gives the possible times
at which events may occur. A sample timing assignment for the MSC of
Figure 5 is

T(sl) = O, T(set_timer) = 1.5, T(rl) = 2
T(expire) = 5.5, T(s2) = 7, T(r2) = 8.

45

As before, the user may choose the defaults for the relations << and ~.
The default t iming function T<< maps each pair (e, f) in << to the interval
(0,

Timed MSCs can also contain three types of design problems:

1. Timing Inconsistency: There exists no timing assignment for the
MSC.

. Visual Conflicts: A pair (e, f) of events belonging to the same process
p is said to be a visual conflict of the timed MSC if f appears before
e in the visual order (f <p e) but in every timing assignment T, e
happens before f according to T.

. Timing Conflicts: A pair (e, f) of events is said to be a timing conflict
of the t imed MSC ife is assumed to occur before f (e [- f) , but there
is a timing assignment T such that the time difference T(f) - T(e)
does not belong to the interval Tr(e, f).

Timing inconsistency corresponds to an unsatisfiable set of timing con-
straints. The visual conflict corresponds to the case when the timing con-
straints imply that the event e always precedes f , in an order opposite to
their visual order. Timing conflict corresponds to the case that the inferred
bounds are not necessarily satisfied by the timing assignments. The MSC of
Figure 5 has no conflicts. Observe that timing imposes additional ordering,
and hence, it may be the case that the underlying interpreted MSC has
races, but the t imed MSC has no conflicts.

The analysis problem for t imed MSCs is defined as follows. The input
to the t imed MSC analysis problem consists of a timed MSC M. If M has
timing inconsistency then the output reports inconsistent specification. If
M is consistent then the answer to the MSC analysis problem is the set of
all visual and timing conflicts.

The t iming constraints imposed by the timing function T<< are linear
constraints, where each constraint puts a bound on the difference of two
variables. Solving such constraints can be reduced to computing negative-
cost cycles and shortest distances in weighted digraphs [9].

The analysis can include both strict and nonstrict inequalities. In order
to deal with different types of bounds uniformly, the cost domain D can be
defined to be Z • {0, 1}, where Z is the set of all integers (such analysis is
typical of algorithms for timing verification, see, for instance, [1, 2]). The
costs of the edges of the graph is from the domain D. To compute shortest
paths, we need to add costs and compare costs. The ordering -~ over D is
the lexicographic ordering: (a, b / -~ (a', b' / iff (1) a < a', or (2) a = a' and
b < b'. The addition is defined by (a, b) + (a', b') = (a+a', b+b') (note that
+ over the boolean component is disjunction). A strict inequality x - y < a
is now written as x - y < (a, 1) and a nonstrict inequality x - y ~_ a is now
written as x - y _~ (a, 0)

46

Given a timed MSC M, define a weighted digraph GM as follows. The
set of vertices of GM is the set E of events. The cost of the edge from an
event e to an event f gives an upper bound on the difference T (e) - T (J) for
a timing assignment for M. Consider a pair (e, f) in the enforced order. If
T~ (e, f) = [a, b], the graph GM has an edge from e to f with cost (- a , 0~,
and from f to e with cost (b, 0~. If T~(e, f) = (a, b], the graph GM has
an edge from e to f with cost {-a, 1), and from f to e with cost {b, 0). If
T~ (e, f) = [a, co) then the graph GM has an edge from e to f with cost
(- a , 0}, and there no edge from f to e. The cases [a, b), (a, b), and (a, oo)
are handled similarly.

Le mma 4.1 The timed MSC M is timing inconsistent iff the graph GM
has a negative cost cycle.

Suppose M is timing consistent. Let del be the length of the shortest path
from e to s t in the graph GM (let del be c~ if no such path exists). The
paths in GM, then, represent all the timing assignments for M:

L e m m a 4.2 Let M be a consistent timed MSC. A function T : E ~ R +
is a timing assignment for M iff T(e) - T (f) -~ de / for all events e, f .

Consequently, a pair (e, f) of events belonging to a process p with e <p f
is a visual conflict iff there is a path from f to e with negative cost (i.e.
dy, < 0). Let (e, f) be a pair of events in t'-. The pair (e, f) is a t iming
conflict iff the interval TE(e, f) is included in the interval [-dey, dy~]. It is
clear that the timed MSC analysis problem can be solved by computing
the shortest paths in GM. To compute shortest paths, we use the classical
dynamic programming algorithm [3, 11]. This immediately leads to the
following theorem:

T h e o r e m 4.3 Given a timed MSC M with n events the timed MSC anal-
ysis problem is solvable in time O(nZ).

5 An MSC Analysis Tool

In this section, we briefly describe the features of the message sequence
chart analyzer that we have implemented to illustrate these ideas. The
graphical interface to the MSC analyzer was written in Tcl /Tk [8]. The
analyzer itself was written in ANSI standard C.

The most important features of the tool can be summarized as follows.

* The tool allows the user to construct, edit, and analyze MSCs inter-
actively. The charts may be stored in the ITU standard form (Z.120),
in textual form as conventional annotated scenarios, or in graphical
form, as PostScript files. Annotations to the MSC can be entered in
comment boxes that become part of the scenario as displayed.

47

�9 For the online analysis of interpreted MSCs, the tool supports the
four pre-defined semantics choices listed in Figure 4 through menu
choices. Other user-defined semantics can easily be incorporated.

�9 The analysis for race conditions is invoked by clicking on a but ton
labeled 'Check.. ' . A menu is then created listing all conflicts tha t can
occur for the chosen semantic interpretation of the chart. By selecting
a conflict f rom a menu-list, the corresponding event pair is highlighted
in the chart. The user can also set preferences so that only certain
types of conflicts (eg. between two receives, or between a send and a
receive) are entered into the conflict menus.

�9 The user can also select an event e, with a mouse click, and ask the
tool to identify all related (or optionally all unrelated) events. Related
are all those events that necessarily precede or follow e in the part ial
order <<*. The two types of events (i.e., following or preceding the
selected event) are marked in different colors.

�9 For t iming analysis, the user can annotate the chart with intervals,
both on message transmissions and on local process states (see Fig-
ure 5). Timing conflicts, for the chosen semantic interpretation, are
requested as before, with a mouse click.

�9 The user can also select an event e, again with a mouse click, and ask
the tool to identify for every related event f the interval in which f
may happen relative to e. This capability can be used, for instance, to
identify the required upper and lower bounds for t imer expirations.

The runt ime requirements to perform an exhaustive analysis of a scenario
are negligible for even large MSCs (in the order of 103 events, spanning ten
to twenty pages when printed). The analysis tool therefore runs comfortably
on even small laptop computers. The tool has been applied successfully to
detect race conditions in several routine industrial MSC applications.

The tool can be used to analyze cyclic scenarios by unfolding the MSCs
a finite number of times before the analysis begins. If there is a simple
cycle, i.e., the complete scenario can repeat, then it is sufficient to analyze
only two subsequent copies of the MSC. Thus, in this case there is no need
for special machinery: the user can check for race conditions by import ing
the same MSC twice, one after the other. This will create two subsequent
copies, with events of the second copy in process p ordered to appear later
than events of the first copy in p in the new local order <p.

6 Conclusions

We have shown tha t message sequence charts are sensitive to various se-
mant ic interpretations. Under different semantics, different race conditions
m a y occur.

48

We have proposed and implemented a tool which can be used to ana-
lyze message sequence charts to locate and visualize design errors as early
as possible in a design cycle. The tool conforms to ITU recommendation
Z.120. We have noted that extensions of the tool, to gently integrate for-
mat verification techniques further into the design process, are possible. It
is our intention to use the formal representation of MSCs described here as
a vehicle for exploring such extensions.

Acknowledgements : We thank Chuck Kalmanek, Bob Kurshan, and Mi-
halis Yannakakis for many fruitful discussions. We are also grateful to Brian
Kernighan, who developed a port of the MSC analyzer for Windows PCs.

7 REFERENCES

[1] R. Alur, A. Itai, R.P. Kurshan, M. Yannakakis. Timing verification
by successive approximation. Information and Computation 118(1),
pp. 142-157, 1995.

[2] D.L. Dill. Timing assumptions and verification of finite-state con-
current systems. In Automatic Verification Methods for Finite State
Systems, LNCS 407, pp. 197-212, 1989.

[3] R.W. Floyd. Algorithm 97 (Shortest Path). Communications of the
ACM 5 (1962), pp. 365.

[4] G.J. Holzmann. Design and Validation of Computer Protocols, Pren-
tice Hall Software Series, 1991.

[5] ITU-T Recommendation Z.120, Message Sequence Chart (MSC),
March 1993. (Includes [7] as Annex S.)

[6] P.B. Ladkin, S. Leue. What do message sequence charts mean. In
Formal Description Techniques, VI 1994 (FORTE'94), Elsevier, pp.
301-315.

[7] S. Mauw, M.A. Reniers. An algebraic semantics of basic message
sequence charts. The Computer Journal, 37(4) (1994).

[8] J. Ousterhout. Tel and the Tk toolkit, Addison-Wesley, 1994.

[9] C.H. Papadimitriou, K. Steiglitz. Combinatorial Optimization-
Algorithms and Complexity, Prentice-Hall, 1982.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algo-
rithms, MIT press, 1990.

[11] S. Warshall. A theorem on boolean matrices. Journal of the ACM,
9 (1962), pp. 11-12.

