
Efficient Local Model-Checking
for Fragments of the Modal
p-Calculus
Girish Bhat* Rance Cleaveland*

ABSTRACT This paper develops efficient local model-checking algorithms
for expressive fragments of the modal/z-calculus. The time complexity of
our procedures matches that of the best existing global algorithms; however,
in contrast to those routines, ours explore a system's state space in a need-
driven fashion and do not require its a priori construction. Consequently,
our algorithms should perform better in practice. Our approach relies on
a novel reformulation of the model-checking problem for the modal mu-
calculus in terms of checking whether certain linear-time temporal formulas
are satisfied by generalized Kripke structures that we call and-or Kripke
structures.

1 Introduction

Over the last decade model checking has emerged as a useful technique
for automat ical ly verifying concurrent systems. [1, 4, 8, 15, 19]. In this
approach, one a t tempts to determine whether or not a system satisfies a
formula tha t typically comes from a temporal logic. A variety of different
t empora l logics have been proposed for this purpose [4, 10, 18]; one par-
ticularly expressive one is the modal p-calculus [13], which is capable of
encoding numerous existing temporal logics [12].

When systems are finite-state, mu-calculus model checking becomes de-
cidable; for such systems, a variety of model-checking algorithms have
been developed. Two major approaches may be identified. Global rou-
tines [6, 12, 14] require the a pr ior i construction of the entire state space
of the system being analyzed; a subsequent pass over the state space then
determines the t ruth or falsity of the formula. Such algorithms typically
exhibit good worst-case behavior; however, in practice, the overhead of
computing the whole state space is often unnecessary, as the t ruth or fal-
sity of the property can be deduced from an investigation of a small part

*Research supportedby NSF/DARPA grant CCR-9014775, NSF grant CCR-9120995,
ONR Young Investigator Award N00014-92-J-1582, NSF Young Investigator Award
CCR-9257963, NSF grant CCR-9402807, and AFOSR grant F49620-95-1-0508.

108

of it. Local, or on-the-fly, algorithms [1, 5, 16, 20] attempt to remedy this
shortcoming by exploring the state space in demand-driven fashion. The
procedures that have been proposed for the full mu-calculus, however, have
uniformly had very poor worst-case behavior in comparison to the global
approaches. An efficient algorithm for the alternation-free fragment has
been given in [1], but this fragment is incapable of expressing certain fair-
ness constraints that are often needed in practice.

In this paper we present efficient local model-checking algorithms for
fragments of the mu-calculus introduced by Emerson et al. in [11]. One of
these fragments contains more expressive power than CTL* [10] and hence
is capable of encoding properties involving subtle fairness constraints. Our
algorithms also have worst-case behavior that matches that of the best
existing global model-checking algorithms for these logics [11]. However,
since our routines explore state spaces in a need-driven fashion, we expect
them to perform much better in practice than the global approaches.

The remainder of this paper is organized as follows. The next section
presents the syntax and semantics of/J-calculus and defines the fragments
L1 and L2 that we consider. In Section 3 we define a variant of traditional
Kripke structures that we call and-or Kripke structures and give the se-
mantics of a linear-time temporal logic with respect to them. The section
following then shows how the model-checking problem for the modal mu-
calculus may be reduced to one of model-checking and-or Kripke structures
against temporal formulas of a restricted form. Section 5 presents our algo-
rithms; in particular, we explain how the restricted form of L1 and L2 may
be exploited to give very efficient on-the-fly procedures, and we briefly dis-
cuss some implementation issues. The last section contains our conclusions
and directions for future research.

2 The Modal p-calculus

This section presents the syntax and semantics of the modal p-calculus
and defines the sublogics L1 and Ls. Throughout this section we fix a set
(A, B G)A of atomic propositions.

2.1 Syntaz
The syntax of p-calculus formulas is parameterized with respect to a set
(X, Y E)V of propositional variables and a set (a, b E)Act of actions. For-
mulas are given by the following grammar.

Formulas must also obey the following syntactic restriction: in pX.r or
vX.r all free occurrences of X in r must fall within the scope of an even

109

number of negations. We use r r 7 to range over formulas. We refer to [a]
and (a) operators as modalities and to p and v as the least and greatest
fixpoint operators, respectively, and we call a formula of the form A or -~A
a literal and use (L E)s to stand for the set of all literals. If a formula has
form p X . r then we sometimes call it a #-formula, while if it has form vX. r
we refer to it as a v-formula. In what follows we also assume the usual
definitions for (proper, maximal) subformula, for free and bound variable,
and for closed formulas, and we write r to represent the capture-free
simultaneous substi tut ion of 7 for all free occurrences of X in r We also
introduce the following syntactic normal forms.

Defini t ion 2.1 Let r be a closed p-calculus formula.

1. r is in positive normal form (PNF) if the only negated subformulas
it has are literals.

2. r is L2 normal form (LNF) if every variable is bound at most once
and the only negated subformulas it has are closed.

It is trivial to show that for any closed formula there are semantically
equivalent PNF and LNF formulas.

A l t e r n a t i o n Leve l s a n d the F i s c h e r - L a d n e r Closure .

We now introduce the notions of alternation level and Fischer-Ladner clo-
sure for LNF formulas. The former notion is defined for the fixpoint sub-
formulas of a given formula; intuitively, it records the number of "alterna-
tions" in interdependent fixpoint constructors encountered in the pa th in
the parse tree from the root of the formula to the root of the subformula.
To define it precisely, we introduce the following. For formulas r and r
let r _-< r iff r is a subformula of r We also write r -<M r iff r is a
maximal proper subformula of r We use cr to range over {#, v} and ~ to
represent the dual of ~.

Defini t ion 2.2 Let r be a mu-calculus formula in L2 normal form, with
r ~ ~ X . r -< r Then alr162 is defined as follows.

�9 I f r is closed then alr162 = 1.

�9 I f r is not closed then let 7 =- ~'Y.7 ~ ~ r be such that r -<M 7.
I f ~' = ~ and there exists a ~ =_ a ' .~ ~ with ~" = ~, 7 -< ~ and Z
appearing free in "y', then alr162 = 1 + alr Otherwise alr162 =
alr

The notion of alternation level can be used to define the more usual one of
al ternation depth as follows.

110

D e f i n i t i o n 2.3 Let r be a formula. Then the alternation depth, ad(r of
is given as follows, l f ~ contains fizpoint subformulas ~bl,.. . , ~bn(n > 1)

then ad(~) = max{ali,(~bl), . . . , alr If fb contains no fizpoint sub/or-
mulas, then ad(r = O.

We refer to a formula r as alternation-free when ad(r < 1. It should be
noted tha t our definition is a slight variant of the usual one given in [12]
tha t corrects a minor anomaly in the t reatment of open formulas. The
above definition of alternation depth always returns a value less than or
equal to the one produced by [12].

We now present the Fisher-Ladner closure [13] for a p-calculus formula
and extend the notion of alternation level to the elements of the closure.

D e f i n i t i o n 2.4 Let $ be an p-calculus formula. Then the Fisher-Ladner
closure of q~, denoted by Cl((~), is the smallest set for which the following
hold.

�9 ~ ~ cl(!,).

�9 f f - ~ ~ Cl(r ~hen ~ ~ Cl(r

�9 ff r v r ~ Cl(r or ~ ^ ~2 ~ Cl(~) then r r ~ Cl(r

�9 I f [a]~b E Cl(~b) or (a)!b E Cl(r then ~b E C1(r

�9 I1~x . r ~ c l (r then r ~ Ci(r

The next l emma establishes that there is a one-to-one correspondence
between the subformulas of a LNF formula r and Cl(r

L e m i n a 2.5 Let ~b be in LNF, with ~b -<_ r and 7 E C1(r There there is
a unique ~b' E CI(~) and substitution p such that ~b' =_ 1hip], and there is a
unique 7' ~_ ~b and subsitution pt such that 7 - 7'[P'].

P r o o f . Follows by induction on the definitions of _ and Cl and the fact
that variables are bound at most once in LNF formulas.
If 3' E Cl(r then we use s(r to denote the subformula of ~ whose existence
is guaranteed by the lemma. We may now define a1r as follows.

Definit ion 2.6 Let ~ be in LNF, and let 7 E C1(r Then ale(T) =
ale(s(7)).

2.2 S e m a n t i c s

Labeled transitions systems are used to interpret p-calculus formulas.

Definit ion 2.7 A labeled transition system is a quadruple (8, Act , -*, I},
where

111

[A]~-e = 13(A)

[X l r e = e(x)

[r V r : ir O i(~2~Te
[r 1 6 2 = ~ r [r

[[{a}r = { s 13s'. s ~ s' ^ s' e [r }

[[a l e] I re = { s I vs'. s ~ s' ~ s' e [Cite }

[~x.r = U { s c s I s c [r -~ Sl }

[.x .r = n { s c s i M r e [X ~ s] c_ s }

FIGURE 1. Semantics of formulas for T = (S, Act,--*, I).

�9 S is a set o f states;

�9 Ac t is a set of actions;

�9 ---~C S • Act • S is the transition relation; and

�9 I E A ~ 2 a is the interpretation.

I f q- = {S, Act , ---*, 1} is a labeled transition system and s E S , then we refer
to the pair (T , s} as a labeled transition structure; in this case, we call s
the start state.

Intuitively, a labeled transition system encodes the operational behavior of
a system, with S containing the possible system states, Act the actions the
system may engage in, ---* the transitions between states that occurs as a
result of execution of actions, and I indicating which states a given a tomic
proposit ion is true in. A labeled transition system additionally contains a
designated s tar t state. Following traditional usage we write s a_. s~ in lieu of
(s, a, s'} E---~ and call s ' an a-derivative of s. When ISI < c~ and IAct I <
we call labeled transition system {S, Act, -% I) finite-state.

The semantics of/~-calculus formulas shown in Figure 2.2 is given with
respect to a labeled transition system T = (S, Act,--% 1) and an environ-
ment e : l) --* 2 s . The environment e[X ~-* 5"] is the environment obtained
f rom e by updat ing X to S. Intuitively, the semantics maps a formula to
a set of states for which the formula holds. Accordingly, the meaning of
an atomic proposition is given by 1, and the meaning of a propositional
variable is the set of states bound to it by the environment e. The boolean
constructs are interpreted in the usual fashion. The meaning of [a]r con-
tains the set of states all of whose the a-derivatives satisfy r Similarly, (a)r
represents the set of states for which there is some a-derivative satisfying
r

112

The semantics of pX.r and vX.r are taken to be the least and greatest
fixpoints of the function Ce(S) = [r ~-* S] repectively. The existence
of these fixpoints is guaranteed by the monotonicity of Ce over the lattice
of sets of states and the Tarski Fixpoint Theorem [17].

We now define what it means for a labeled transition structure to satisfy
a formula.

Definit ion 2.8 Let (T, s I be a labeled ~ransition strudure and e an envi-
ronment. Then s ~ - r i~ s �9 [r

If r is closed then the environment e does not influence [r In this case
we write s ~T r when s ~ - r holds for some (hence any) e.

2.3 The L1 and L2 Sublogics

We now present the syntax of two fragments of p-calculus. The first, LI, is
the set of formulas formed by the following rules.

1. All atomic propositions and variables are elements of L1.

2. If r162 are in L1 then

(a) r V r (a)r pX.r and vX.r are in L1.

(b) --r is in L1 provided that r is atomic.

(c) r r is in L1 provided r is a literal.

(d) [a]r is in L1 provided r is a literal.

It should be noted that this definitions differs slightly from the one given
in [11]; the difference, however, is insignificant for the purposes of this
paper.

To obtain L2 we modify rules 2(b), 2(c) and 2(d) by replacing "atomic"
and "literal" with "closed formula". Note that L1 is a sublogic of L2. It
is also straightforward to establish that for any formula in L2, there is an
equivalent LNF formula that is also in L2 (hence the motivation for LNF).
The same does not hold for PNF; in general, L2 formulas do not have PNF
equivalents that are also in L2.

The expressiveness of L2 has been studied by Emerson et al. [11]; in par-
ticular they have shown that it has the same expressive power as Wolper's
ECTL* [18] and hence is strictly more expressive than CTL* [10].

3 And-Or Kripke Structures and Temporal Logic

In this paper we wish to present algorithms for solving the model-checking
problem for closed formulas in L1 and L2 interpreted over finite-state la-
beled transition structures. This problem may be phrased as follows.

113

Given L t / L 2 formula r and labeled transition structure (T, s),
does s ~ T r

Our approach uses this general strategy.

1. From (T, s) and r generate an intermediate structure representing
the possible "at tempted proofs" that s ~7- r

2. Check whether one of the at tempted proofs is valid.

It turns out that the construction of the intermediate structure can be com-
bined with the check for validity, thereby yielding an on-the-fly algorithm.

In this section, we introduce the intermediate structures used in our
methodology. They resemble the traditional Kripke structures used in defin-
ing the semantics of temporal logics; the main difference is that the under-
lying graph structure is an and-or graph. Hence we call these structures
and-or Kripke structures. We also show how a linear-time temporal logic
may be interpreted over these structures; we use this logic to define the
"validity check" referred to above.

3.1 A n d - O r K r i p k e S t r u c t u r e s

And-or Kripke structures may be defined formally as follows.

D e f i n i t i o n 3.1 An and-or Kripke structure is a tuple (Q,.4, R, L, P, qo)
where

�9 Q is a set of states;

�9 .4 is a set of atomic propositions;

�9 R C_ Q x Q is the transition relation, which is total: for every q E Q
there must exist a q' E Q with (q, q'} E R;

�9 L : Q --+ 2 .4 is the propositional labeling;

�9 P : Q --+ {V, A} is the and-or labeling; and

�9 qo 6 Q is the start state.

If P(s) -- V then we sometimes refer to s as a V-state, and similarly for A.
And-or Kripke structures differ from traditional Kripke structures in the

inclusion of the and-or labeling P. In a traditional Kripke structure, an
execution, or run, of the system is typically defined as a maximal sequence
of states qoql . . . where (qi, qi+l) E R. In an and-or Kripke structure, a run
will instead be a tree of states, with A-states having multiple successors, in
general. This intuition is captured by the following definition.

D e f i n i t i o n 3.2 Let IC =- (Q,.4, R, L, P, qo} be an and-or Kripke structure.
Then a run of]C is a maximal (hence infinite) tree with nodes labeled by
elements of Q that satisfies the following properties.

114

�9 The root o f the tree is labeled by qo.

�9 Let a be a node labeled by q.

- I f P (q) = A and {q' I (q,q') E R} = {ql,.--qra} then a has
exactly m successors a l , . . . , am, with ai labeled by qi.

- I f P(q) = V then a has exactly one successor, a' , and a ~ is
labeled by some q~ such that (q, q~) E R.

We use R(IC) to represent the set o f all runs of IC.

Note that if an and-or Kripke structure contains only V-states, then its
runs are sequences; in this ease, the notion of run coincides exactly with
the one found for traditional Kripke structures.

We also use the following notions in the rest of the paper.

Definition 3.3 Let IC =_ (Q, ,4, R, L, P, qo) be an and-or Kripke structure.

�9 A path through IC is a maximal sequence i ~ ~ qoql . . . such that (qi, qi+l) E
R.

�9 Let r E R(IC). Then r(r) , the paths through r, contains all sequences
of the f o r m ' ' qoqx �9 �9 ., where q~o labels the root o f r and qi+x' labels a
successor ai+x of a in r i f q~ labels node al in r.

And-or Kripke structures may also be viewed as variations on amor-
phous alternating tree automata [2], the main difference being that tree
automata have an explicit acceptance condition used for defining runs and
have propositional labelings on their transitions rather than states.

3 . 2 A L i n e a r T e m p o r a l L o g i c

We now introduce a simple linear-time temporal logic and show how for-
mulas may be interpreted with respect to and-or Kripke structures. The
semantics of the logic, which we call LTL, is given as follows, where (A E),4
is assumed to be a set of atomic propositions.

r ::= A I r 1 6 2 I r 1 6 2 I F r I Gr

The boolean operations are interpreted in the usual manner, while F and
G represent the standard "eventually" and "henceforth" operators.

Traditionally, LTL formulas are interpreted with respect to paths in
Kripke structures. We recall the definition here.

Definition 3.4 Let If. - (Q, ,4, R, L, P, qol be an and-or Kripke structure,
! !

let x ---- qoql . . . be a path in IC, and let r be an LTL formula. Then x ~lc r
is defined inductively as follows.

115

�9 z ~pc A i f fA e L(q~o).

�9 x ~/r r A r i f f x ~lc r and x ~t: r

�9 ;T ~/C r V r i/~x ~/C r or X ~/C r

�9 z ~1c F r ifftheve is a suffix z i = q~q~+l.., o f x such that x i ~Ic r

�9 x ~t: Gr i f f for every suj~z x i = q~q~+l.., of z, x i ~t: r

We m a y now extend the notion of ~ t : to runs of/C as follows.

D e f i n i t i o n 3.5 Let IC be an and-or Kripke structure with r E R(1C), and
let r be an LTE formula. Then r ~t: r iff for every x E zc(r), x ~pc r

Finally, we may identify two different ways in which an and-or Kripke
structure satisfies an LTL formula.

D e f i n i t i o n 3.6 Let IC be an and-or Kripke structure, and let r be an LTL
formula. Then:

�9 IC ~ r iffthere is an r E R(IC) such that r ~t: r

�9 Jc r i g f o r every ," e n(Jc) , r r

4 #-Calculus Model Checking via And-Or Kripke
Structures

We now show how model-checking for the general p-calculus can be reduced
to the model-checking problem for LTL interpreted over and-or Kripke
structures. The reduction proceeds as follows.

1. We give a set of "proof rules" for establishing that a labeled transition
structure satisfies a/z-calculus formula in PNF.

2. We then show how one may use the rules to generate an and-or Kripke
structure from a labeled transition structure and/z-calculus formula.

. Finally, we describe how to build a formula in LTL tha t is satisfied
by the and-or Kripke structure if and only if the labeled transit ion
structure satisfies the original p-calculus formula.

The proof rules for inferring if a labeled transition structure satisfies a
PNF formula are given in Figure 5. They work on assertions of form s bz" r
intuitively, s t-T r represents the s ta tement that transition structure (:T, s)
satistifies r In what follows we use (~r, ~ E)~ to refer to the set of all
assertions. The proof rules are also goal-directed, meaning that given an
assertion to be proved, an application of a proof rule yields subassertions
to be proved. The following l emma establishes the soundness of the rules.

116

sFr L (sDr L)
V true

S ~-r r 1 6 2 S ~-T r 1 6 2
A V

8 ~T r S [-7" r a }-2- r s ~-T r

A

V

V,

s I-r [.1r
Sl I-r r .., s ~ I-r r

s I-r (a)r
sl I - r r .., s= k r r

{ , 1 , . . . , s ~ } = {s'ls ~ s'}

{ s l , . . . , s=} = {s'l* -~ *'}

s t-T I~X.r V s F-r uX.r
s ~r r 1 6 2 ,, ~r r162

FIGURE 2. Proof rules for the #-calculus, where T = (S, Act, --*, I}.

Lemma 4.1 L e t ~ - s t -T r be an a s s e r t i o n .

1. I f the subgoals resulting from applying a rule to ~ have the form Sl FT
~1 , . . . , sra }-7" r then s ~7" r iff si ~ T r for each i.

2. I f the subgoal resulting from applying a rule to a is true then s ~ T r

3. I f no rule can be applied to or then s ~=T r

P r o o f . Follows f rom the semantics of p-calculus formulas.
We now introduce the notion of proof structure.

Def in i t i on 4.2 Let V C E U {true}, E C_C_ V • V and ~ E E. Then {V, E I
is a proof structure for r if ~r E V and V and E are maximal sets satisfying
the following for every ~' E V: a' is reachable from ~ using edges in E,
and the set {~"1{~', ~"} E E} is the result of applying a rule from Figure 5
to (r t .

Note tha t a proof structure for a given a is unique, since at most one rule is
applicable to any assertion. Intuitively, a proof structure for a in intended
to encode all possible ways of "proving" that e holds. A "candidate p r o o f '
may be obtained f rom a proof structure by removing all but one outgoing
edge f rom all assertions to which a rule labeled by V has been applied.
I t is also the case tha t proof structures may contain cycles, owing to the
presence of the fixpoint operators in the logic; this fact complicates a de-
terminat ion of when a proof structure for a contains a "valid proof" of a.
In tradit ional proof theory, circular reasoning is always deemed incorrect;
in such a setting, a proof for a tha t contains a cycle could not be used as
evidence of the t ru th of a. However, in the p-calculus, while one may not

117

use such "circular reasoning" to establish that s ~-T #X. r holds, one may
use it in order to prove s F:r uX.r Consequently, in order to determine if
a proof structure contains a valid proof, one should permit cycles in which
the "top-level" formula in a u-formula. More specifically, a cycle is allowed
in a proof if the formulas with the lowest alternation level on the cycle are
u-formulas. Our approach to checking this condition is as follows.

1. Represent the proof structure for an assertion r as an and-or Kripke
structure whose runs are a t tempted proofs of tr; and

2. devise an LTL formula that holds of runs whose paths satisfy the
"good cycles" condition.

In order to determine if a proof structure contains a proof for or, one would
then check whether the resultant and-or Kripke structure satisfies the LTL
formula.

To convert a proof structure (V, E / for assertion cr ~ s I-7- r into an and-
or Kripke structure, we must specify the set of states Q, the set of a tomic
propositions .A, the transition relation R, the propositional labeling L, the
and-or labeling P, and the s tar t s tate q0. Most of these are straightforward.

�9 For the s tate set, take Q = V.

�9 For the transition relation R it is tempt ing to take E. However, R is
required to be total, while E may not be (there may be "leaves" in
the proof structure). To handle this, we extend E to a total relation
by adding self loops to every leaf. Formally,

R = E U { (~ ' ,~ ') I W " ~ V.(~', ~") r R}

�9 As remarked above, for any given assertion at most one rule is ap-
plicable. So we define P (a) to be the label of the rule in Figure 5
applicable to a, if such a rule exists; if no such rule exists, we take
P(tr) to be V.

�9 For the s tar t state, we take q0 = or.

In order to complete our definition, we need to specify ,4 and L. Our
intention is to use the atomic propositions in order to record the alternation
level off ixpoint formulas contained in assertions; accordingly, we the atomic
propositions to be of form ui and/J>~, where i < ad(r (recall that r is
the formula in the "root assertion" in the proof structure). Formally, if r
is the p-calculus formula being checked then the set of atomic propositions
.,4 = { t rue} U { ul I i <_ ad(r } U {#>i I i < ad(r }. The function L can
now be defined as follows, where ~1 ~ s ~ &M r u~ E L(~ ~) iff r is a y-
formula and a/r162 = i . /z>i E L(r iff either r is a non-/~-formula or r
is a / J - formula and a/r162 > i. If er' is of form true, then L(~) = { t rue) .

118

s eT r A r (s ~ r
V s F-~r r

V
s t-T [a]r

true (Vs" �9 { s' I s ~ s' }.s" PT r

FIGURE 3. Modified proof rules for L1.

The following theorem states that the p-calculus model-checking prob-
lem may be reduced to checking specific LTL formulas on and-or Kripke
structures.

T h e o r e m 4.3 Let K.o be the and-or Kripke structure corresponding to ~ =
sPT 0. Then s ~M r il~ lCo ~ r(true) Y V~.d=~r A FGp>,).

The proof of this theorem appears in an appendix, but the intuition is as
follows. Suppose that /Ca, where ~ = s t-T r contains a run r satisfying
GFv~ A FGp>~ for some i < ad(r Suppose further that the run contains a
cycle. It then follows that the run contains a path that traverses this cycle
an infinite number of times. In order for this path to satisfy this formula,
it must follow that some v-formula of level i appears infinitely often while
p-formulas of level < i can only appear finitely often. This implies that the
cyclic reasoning implicit in the cycle is being used in support a v-formula
and hence that the cycle is allowable. Similarly, if all cycles in a run satisfy
the "good cycle" condition then given LTL formula must hold the infinite
paths in the run.

5 M o d e l C h e c k i n g for L1 and L2

The previous characterization of p-calculus model checking in terms of
and-or Kripke structures does not by itself suggest efficient algorithms for
determining whether states satisfy formulas in the full calculus. However,
when the formulas are in L1 or L2, it turns out that the and-or Kripke
structures have a special structure that permits them to be manipulated
efficiently. In the remainder of this section we use these facts to develop
local model-checking algorithms for these logics.

5.1 Ej~icient L1 Model Checking

Recall tha t the syntactic restrictions on the L1 sublogic stipulate that in
formulas of the form r A r and [a]r r and r must be literals. These
facts imply that proof structures involving formulas of these types have a
restricted form. In particular, in a structure built for assertion s t-~- r Ar
the left child of the root (s t-T r where r is atomic) is either a leaf if

119

s ~ T Cz or has the leaf true as its only child otherwise. A similar property
holds for all children of s F-T [a]r when r is atomic; by only looking at the
a-derivatives of s and no other states, one may determine if a successful
proof structure may be constructed for this assertion.

Using these observations, we may alter the proof rules for the full it-
calculus to obtain the ones given in Figure 3. What is noteworthy about
these is the absence of rules labeled by A; instead, side conditions are used
to handle the left conjuncts in conjunctions and formulas using the [a]
modality.

From the definition of the procedure for constructing and-or Kripke
structures from models and /z-calculus formulas, it immediately follows
that if r is in L1 then the and-or Kripke structure for assertion s ST r
contains no A-states. This implies that all the runs of this structure degen-
erate to sequences of states, as branching in a run arises only from A-states.
Therefore, checking if there exists a run which satisfies an LTL formula is
equivalent to checking if there exists a path satisfying the formula. As we
observed before, this is the LTL model-checking problem for traditional
Kripke structures, for which an efficient on-the-fly algorithm has been de-
veloped [3]. As the proof rules permit us to construct the Kripke structure
on-the-fly, we therefore obtain an on-the-fly model-checking routine for L1.

T i m e Complex i t y

In order to quantify the time complexity of this algorithm we first character-
ize the size of the proof structure yielded by applying the rules in Figure 3.
First, note that in any assertion s ~ F-T r found in a proof structure for
s F-T r r E Cl(r This leads the following result.

T h e o r e m 5.1 Let (7-, s) be a labeled transition structure, let r a Lz for-
mula, and let (V,E) be a proof structure for s ST r Then JV I + IEI <
Ir ITJ.

Also observe that the formula we give in Theorem 4.3 is O(ad(r in size.
Consequently, as the LTL model-checking algorithm in [3] has complexity
2~ * J/C I for a Kripke structure]~ and LTL formula r one would expect
the complexity of our algorithm for L1 formula r and labeled transition
structure (:T, s) to be 2 ~162 �9 [01 * JT-J. However, recall that formula

under consideration has the form Ftrue V v~.d=~r A FG#>i), where
true and the vi and tt>i are atomic propositions. It can be shown that for
formulas in this form the algorithm in [3] takes time in O(ad(r c) where c
is constant. Intuitively, this is due to the observation that to check whether
a there is a path in a Kripke structure satisfying (Vi~=t(GFp A FGq)), it
suffices to check each disjunct in isolation. As a result our model-checking
algorithm for the logic L1 has time complexity O(ad(r * Ir * J~rJ) �9

120

s 1-7- (s V:7- r
V true

FIGURE 4. Additional rule for L2.

5.2 Efficient L2 Model Checking

The model checker for Lg~ uses the same essential observations as the one
given above for L1. Indeed, the same proof rules are used (with one rule,
given in Figure 4, to handle negation). However, the side Conditions in the
rules for propositions of the form -~r r A r and [ale are nontrivial to
handle because r and r are no longer assumed to be atomic; in L2 they
are only required to be closed. We may nevertheless exploit the following
observations. Suppose we wish to build a proof structure for an assertion
a using the proof rules for the full/~-calculus, and suppose further g t-7-
Cz A r is an assertion in the proof structure and that r is closed. It then
follows that the substructure computed for s I 1-7- r will have no edges
leading to any other part of the proof structure; in other words, g 1-7" r
may be checked independently. Our L2 model checker thus handles the
side conditions for the negation rule and for the former A-rules by invoking
itself recursively on them. The resulting algorithm may be shown also to
have time complexity O(ad(r �9 [r * 17"[) using a simple induction on the
structure of formulas.

5.3 Implementation Concerns

We have implemented our algorithm in the NCSU Concurrency Workbench,
which is a re-implementation of the tool for analyzing concurrent systems
described in [7], and have experimented with the implementation using
several small and medium-sized (up to 5,000 states) examples, including a
train signalling scheme. In its current prototype form, and running on a
Sun SparcStation 20 with 512 MB of memory, the implementation seems
to be capable of processing roughly 1,000 states per minute.

However, a number of tricks can be used to improve the performance
of the algorithm. Firstly, we are explicitly calling an implementation of
the LTL model checker of [3] in our /J-calculus model checker. However,
since the LTL formulas we use have an extremely restricted form, partially
evaluating the LTL model checker with respect to these formulas would
yield a substantial time and space savings: Secondly, the LTL formulas
being checked can be "optimized" to yield formulas for which the (partially
evaluated) model checker exhibits better behavior. For example, the LTL
formula FGp A GFq, where p and q are atomic, is logically equivalent to
FG(p A Fq); the latter, however, is much more efficient to process in the
scheme of [3] than the former.

121

6 Conclusion

In this paper we have presented efficient on-the-fly model-checking algo-
rithms for fragments of the modal p-calculus. In contrast with existing al-
gorithms for these logics [11] our routines construct the system state space
in a demand-driven manner; the fragments are also capable of express-
ing fairness constraints that are beyond the expressive power of fragments
of the ~-calculus for which efficient on-the-fly algorithms have been devel-
oped [1]: Our approach relies on a reduction of the model-checking problem
for the full p-calculus to the model checking problem for LTL interpreted
over novel structures that we call and-or Kripke structures. We have also
implemented our algorithms in the Concurrency Workbench [7], a tool for
analyzing concurrent systems.

7 REFERENCES

[1] H.R. Andersen. Model checking and boolean graphs. In Proceedings
of the European Symposium on Programming, volume 582 of Lecture
Notes in Computer Science, pages 1-19, Rennes, France, March 1992.
Springer-Verlag.

[2] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. In Dill [9], pages 142-
155.

[3] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model
checking for CTL*. In Tenth Annual Symposium on Logic in Com-
puter Science (LICS '95), pages 388-397, San Diego, July 1995. IEEE
Computer Society Press.

[4] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifi-
cations. A CM Transactions on Programming Languages and Systems,
8(2):244-263, April 1986.

[5] R. Cleaveland. Tableau-based model checking in the propositional
mu-calculus. Acta Informatica, 27(8):725-747, September 1990.

[6] R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for
the modal mu-calculus. In G.v. Bochmann and D.K. Probst, edi-
tors, Computer Aided Verification (CA V '92), volume 663 of Lecture
Notes in Computer Science, pages 410-422, Montreal, June/July 1992.
Springer-Verlag.

[7] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Work-
bench: A semantics-based tool for the verification of finite-state sys-
tems. ACM Transactions on Programming Languages and Systems,
15(1):36-72, January 1993.

122

[8] R. Cleaveland and B. Steffen. A linear-time model,checking algorithm
for the alternation-free modal mu-calculus. Formal Methods in System
Design, 2:121-147, 1993,

[9] D.L. Dill, editor. Computer Aided Verification (CAV '9~), volume 818
of Lecture Notes in Computer Science, Stanford, California, June 1994.
Springer-Verlag.

[10] E.A. Emerson and J.Y. Halpern. 'Sometime' and 'not never' revis-
ited: On branching versus linear time temporal logic. Journal of the
Association for Computing Machinery, 33(1):151-178, 1986.

[11] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for frag-
ments of/J-calculus. In C. Courcoubetis, editor, Computer Aided Veri-
fication (CA V '93), volume 697 of Lecture Notes in Computer Science,
pages 385-396, Elounda, Greece, June/July 1993. Springer-Verlag.

[12] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of
the propositional mu-caleulus. In Symposium on Logic in Computer
Science (LICS '86), pages 267-278, Cambridge, Massachusetts, June
1986. IEEE Computer Society Press.

[13] D. Kozen. Results on the propositional/~-calculus. Theoretical Com-
puter Science, 27:333-354, 1983.

[14] D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An
improved algorithm for the evaluation of fixpoint expressions. In Dill
[9], pages 338-350.

[15] O. Sokolsky and S. Smolka. Incremental model-checking in the modal
mu-calculus. In Dill [9], pages 352-363.

[16] C. Stirling and D. Walker. Local model checking in the modal mu-
calculus. In TAPSOFT, volume 352 of Lecture Notes in Computer
Science, pages 369-383, Barcelona, March 1989. Springer-Verlag.

[17] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 25(2):285-309, 1955.

[18] M. Vardi and P. Wolper. Yet another process logic. In E.M. Clarke
and D. Kozen, editors, Workshop on Logics of Programs, volume 164 of
Lecture Notes in Computer Science, pages 501-512, Pittsburgh, June
1983. SV.

[19] M. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program verification. In Symposium on Logic in Computer
Science (LICS '86), pages 332-344, Cambridge, Massachusetts, June
1986. IEEE Computer Society Press.

123

[20] G. Winskel. A note on model checking the moda l u-calculus. In
G. Ausiello, M. Dezani-Ciancaglini , and S. l~onchi Della Kocca, ed-
itors, Automata, Languages and Programming (ICALP '89), volume
372 of Lecture Notes in Computer Science, pages 761-772, Stresa, Italy,
Ju ly 1989. Springer-Verlag.

8 Appendix �9 Proof of Theorem 4.3

We use the result in [5] to prove our theorem. First, we say tha t an and-or
Kripke s t ructure is successful if satisfies the tempora l formula in Theo-
r em 4.3. Our goal is to show tha t an assertion s ~M r is t rue iff the
corresponding and-or Kripke s t ructure is successful. In [5], necessary and
sufficient condit ion for the t ru th of s F-7- r is given. Therefore, our goal now
can be reduced to showing tha t the and-or Kripke Structure corresponding
an assertion a - s ~-T r is successful iff a satisfies this condition.

We first give a brief description of the technique in [5]. The model
checking technique in [5] is also a goal oriented approach based on the
use of proof rules. But the assertions they use are of a slightly different
form. Their assertions are of form H : s ~-:r r where H is referred to as
the hypothesis set whose elements are of form s / ~-=r r Intuitively, the
hypothesis set records informat ion about the assertions seen on the pa th
f rom the root. The proof rules in [5] with some minor modificat ions is
shown in Fig 5.

A leaf ~ is successful iff

�9 ~ is of form true.

�9 a is of form H : s ~-~- [a]r and s does not have any a transit ions.

�9 ~r is of form H : s F-=r uX.r

A tableau for an assertion is successful iff all the leaves in the tableau are
successful.

T h e o r e m 8.1 For an assertion a =_ {} : s ~-T r s ~ : r r i f f a has a
successful tableau.

Before we present our proof, we introduce what we refer to as proof trees.
We use these structures as means to connect the notions of and-or Kripke
s tructures and tableaus.

Let E --- (Q, .4, R, L, P, q0) be the and-or Kripke s tructure corresponding
to the assertion s ~-~- r Let c~ E {it, p}. Also let ~ = p iff a = u and vice
versa.

D e f i n i t i o n 8 .2 A proof tree for an assertion er is a finite tree satisfying
the following.

124

1. Every node in the tree is labelled with an element of Q.

2. The root of the tree is labelled with ~.

3. Let n be a node labeled by ~.

�9 I f P (a) = h and { a ' I (a,a'> E R} = {aa , . . . am} then n has
exactly rn successors n l , . . . , nm, with ni labeled by ~i.

�9 I f P (~) = V then n has exactly one successor, n', and n' is
labeled by some ~' such that (a, a') E R.

4. Every leaf a in the tree is of the form

�9 true or

�9 s t-7" L where s ~=T L or

�9 s 1-7" a X . r and there exists an internal no de ~' such that a' =
~,~l is an ancestor of ~ and for every assertion ~,t of form
s' 1-7" 6~Y.r on the path from ~' to r al(6tY.r > a l (~X.r

A leaf n labelled with a is successful iff o" = s t-7- uX . r or ~ -= true. A
proof tree is successful iff all the leaves in the tree are successful.

Our proof now follows from the following two theorems.

T h e o r e m 8.3 An assertion a =_ s 1-7- r has a successful proof tree iff the
and-or Kripke structure corresponding to the assertion is successful.

P r o o f . '=~' Assume a has a successful proof tree. Now if we unwind the
proof tree into an infinite tree, we get a run of the and-or Kripke structure
corresponding to a. From the definition of a successful proof tree, it is clear
that this run satisfies the temporal formula in Theorem 4.3.

'~=' Assume that the and-or Kripke structure corresponding to a is suc-
cessful. Then there exists a run of the Kripke structure that satisfies the
LTL formula in Theorem 4.3. We now show how a successful proof tree
can be constructed from this run. Since the run satisfies the LTL formula
in Theorem 4.3, we know that on every path starting from the root in the
run either (i) eventually there is a node labelled with true or (it) an as-
sertion a' - s' 1-7- uX . r occurs infinitely often and no assertion of form
s" 1-7- p Y . r such that al(#Y.r < al(uX.r occurs infinitely often
on the path. In the first case, we terminate the path when we hit node
labelled with true. In the second case we know there exists an node nl
on the path labelled with a ' and there exists an ancestor n2 of nx such
that for every node labelled with s" 1-7" pY .r on the path from nl to n2,
a l (pY . r > al(uX.r We terminate the path at such a node. It clear that
all the leaves the leaves the resulting tree are successful. It remains to be
shown that the tree resulting from this construction is finite. Assume that
the constructed proof tree is not finite. By KSnig's Lemma, there exists an

125

inf ini te p a t h in the tree. Th i s is con t rad ic t ion since this p a t h is successful
and would be t e r m i n a t e d by our cons t ruc t ion .

T h e o r e m 8 .4 A n assertion a has a successful proof tree i f f it has a suc-
cessful tableau.

P r o o f . ' ~ ' Assume cr has a successful t ab leau . Replace every asser t ion
H : s h7- r by the asser t ion s ~-7- r Our c la im is t h a t the resul t ing t ree is a
successful p r o o f tree. I t clear t h a t th is t ree satisfies all r equ i rements except
4. So we need to prove t h a t every leaf n in the cons t ruc ted tree satisfies the
r equ i r emen t s for the leaves in a p roo f tree. I f the leaf is l abe l led wi th t rue i t
obv ious ly does. I f the leaf is l abe l led wi th s }-T v X . r then we know t h a t th is
co r responds to a t a b l e a u leaf l abe l led wi th H : s }-7" v X . r where v X . r E H .
Now, f rom the t a b l e a u cons t ruc t ion i t follows t h a t the leaf has an ances tor
l abe l l ed wi th H ~ : s }-7- v X . r and for every node on the p a t h f rom th is
ances to r to the leaf there exists no asser t ion of form H " : # }-7"/zY.r ~ such
t h a t al(l~Y.r < v X . r I t follows f rom the above observa t ion t h a t the leaf
n in the cons t ruc ted p roo f t ree satisfies the necessary requi rement .

':=~' In th is case we consider the smallest successful p roof t ree and m a p
i t to a successful t ab leau . Basically, an asser t ion ~ = s }-7" r in the p r o o f
t ree is r ep laced by the asser t ion H : s }-7- r in the t a b l e a u where H =
{ ~" I ~" - ~ X . b ' i s an ances tor of ~, and for every asser t ion of fo rm
6~Y.r al(6~Y.r > a l (a X . r To show t h a t the resul t ing s t ruc tu re is
indeed a successful t ab leau , we need to show tha t (i) t a b l e a u rules can
be app l i ed at each in te rna l node n, and the successors of n cor respond to
asser t ions o b t a i n e d as a resul t of an app l i ca t ion of a rule in F igure 5. (ii)
the leaves are indeed leaves and are successful (Recal l t h a t a successful leaf
in a t a b l e a u is l abe l led wi th t rue or of l abe l led wi th H : s }-7" v X . r where
s b-7" u X . r E H) .

T h e l a t t e r case is s t r a igh t fo rward . The first case requires an analys is of
the s t ruc tu re of the fo rmu la appea r ing in the the asser t ion labe l l ing node
n. Mos t of the cases are s t r a igh t fo rward . The in teres t ing cases are when
the asser t ion has fo rm H : s }-7" v X . r or H : s }-7" p X . r For the first
case, a s sume no t a b l e a u rule can be app l ied at node n. Th is impl ies t h a t
s FT" v X . r E H . From our cons t ruc t ion i t follows t h a t node n ~ which is
the p r e - image of n in the or ig ina l p roo f t ree has an ances tor n" l abe l led
wi th s F-7" v X . r and on the p a t h f rom n ' to n" there is no p - f o r m u l a wi th
lower a l t e r n a t i o n level. Therefore, n t can be a leaf in the p roo f tree. Th is
would m e a n there exis ts a smal le r successful p roo f t ree which con t rad ic t s
our a s s u m p t i o n the or ig ina l p roo f t ree was the smal les t successful p r o o f
tree.

For the second case, aga in assume t h a t no t a b l e a u rule can be app l i ed
at node n. Th is impl ies t h a t s }-7" p X . r E H. F r o m our cons t ruc t ion i t
fol lows t h a t node n I which is the p re - image of n in the or ig inal p roof t ree
has an ances tor n" l abe l led wi th s }-7- p X . r Let the subt rees at nodes n t

126

R1 H : S F - T L (s ~ T L)
true

R2 H : s t - r r A r R3
H : s t-=r r H : s b ~ - r

H : s FT r Vr
H : s ~-T r

H : SbT r Vr
R4

H : s FT r

R5
H : s t-7 [a]r

H : sl t-~- r .., H :sm t-T r
{ s l , . . . , , m } = , ' }

R6 H : s F T (a)r (s-*a sl)
H : sl FT r

H : s b~- a X . r (s ~-~ a X . r ~ H)
R7 g ' ~. s ~-TT-r

where c~ E {/J, v} , & = / ~ (v) if c~ = / ~ (v)
and H' = H - {s' bT" &X'.C'lal(&X'.r > a l (aX.r

FIGURE 5. Proof rules for the/z-calculus, where T = (,.g, Act, --% I).

and n" be T~ and T~ ~ respectively. Now, in the original proof tree, if we
replace the subtree T~' at node n ~ by the T~, the resulting tree is a smaller
successful proof tree. This again is a contradiction as we assumed that the
original proof tree was the smallest successful proof tree.

