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ABSTRACT This paper develops efficient local model-checking algorithms 
for expressive fragments of the modal/z-calculus. The time complexity of 
our procedures matches that of the best existing global algorithms; however, 
in contrast to those routines, ours explore a system's state space in a need- 
driven fashion and do not require its a priori construction. Consequently, 
our algorithms should perform better in practice. Our approach relies on 
a novel reformulation of the model-checking problem for the modal mu- 
calculus in terms of checking whether certain linear-time temporal formulas 
are satisfied by generalized Kripke structures that we call and-or Kripke 
structures. 

1 Introduction 

Over the last decade model checking has emerged as a useful technique 
for automat ical ly  verifying concurrent systems. [1, 4, 8, 15, 19]. In this 
approach, one a t tempts  to determine whether or not a system satisfies a 
formula tha t  typically comes from a temporal  logic. A variety of different 
t empora l  logics have been proposed for this purpose [4, 10, 18]; one par- 
ticularly expressive one is the modal  p-calculus [13], which is capable of 
encoding numerous existing temporal  logics [12]. 

When systems are finite-state, mu-calculus model checking becomes de- 
cidable; for such systems, a variety of model-checking algorithms have 
been developed. Two major  approaches may be identified. Global rou- 
tines [6, 12, 14] require the a pr ior i  construction of the entire state space 
of the system being analyzed; a subsequent pass over the state space then 
determines the t ruth  or falsity of the formula. Such algorithms typically 
exhibit good worst-case behavior; however, in practice, the overhead of 
computing the whole state space is often unnecessary, as the t ruth or fal- 
sity of the property can be deduced from an investigation of a small part  
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of it. Local, or on-the-fly, algorithms [1, 5, 16, 20] attempt to remedy this 
shortcoming by exploring the state space in demand-driven fashion. The 
procedures that have been proposed for the full mu-calculus, however, have 
uniformly had very poor worst-case behavior in comparison to the global 
approaches. An efficient algorithm for the alternation-free fragment has 
been given in [1], but this fragment is incapable of expressing certain fair- 
ness constraints that are often needed in practice. 

In this paper we present efficient local model-checking algorithms for 
fragments of the mu-calculus introduced by Emerson et al. in [11]. One of 
these fragments contains more expressive power than CTL* [10] and hence 
is capable of encoding properties involving subtle fairness constraints. Our 
algorithms also have worst-case behavior that matches that of the best 
existing global model-checking algorithms for these logics [11]. However, 
since our routines explore state spaces in a need-driven fashion, we expect 
them to perform much better in practice than the global approaches. 

The remainder of this paper is organized as follows. The next section 
presents the syntax and semantics of/J-calculus and defines the fragments 
L1 and L2 that we consider. In Section 3 we define a variant of traditional 
Kripke structures that we call and-or Kripke structures and give the se- 
mantics of a linear-time temporal logic with respect to them. The section 
following then shows how the model-checking problem for the modal mu- 
calculus may be reduced to one of model-checking and-or Kripke structures 
against temporal formulas of a restricted form. Section 5 presents our algo- 
rithms; in particular, we explain how the restricted form of L1 and L2 may 
be exploited to give very efficient on-the-fly procedures, and we briefly dis- 
cuss some implementation issues. The last section contains our conclusions 
and directions for future research. 

2 The Modal p-calculus 

This section presents the syntax and semantics of the modal p-calculus 
and defines the sublogics L1 and Ls. Throughout this section we fix a set 
(A, B G)A of atomic propositions. 

2.1 Syntaz 
The syntax of p-calculus formulas is parameterized with respect to a set 
(X, Y E)V of propositional variables and a set (a, b E)Act of actions. For- 
mulas are given by the following grammar. 

Formulas must also obey the following syntactic restriction: in pX.r or 
vX.r all free occurrences of X in r must fall within the scope of an even 
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number  of negations. We use r r  7 to range over formulas. We refer to [a] 
and (a) operators as modalities and to p and v as the least and greatest 
fixpoint operators,  respectively, and we call a formula of the form A or -~A 
a literal and use (L E)s to stand for the set of all literals. If  a formula has 
form p X . r  then we sometimes call it a #-formula, while if it has form vX. r  
we refer to it as a v-formula.  In what follows we also assume the usual 
definitions for (proper, maximal)  subformula, for free and bound variable, 
and for closed formulas, and we write r  to represent the capture-free 
simultaneous substi tut ion of 7 for all free occurrences of X in r We also 
introduce the following syntactic normal  forms. 

Defini t ion 2.1 Let r be a closed p-calculus formula. 

1. r is in positive normal form (PNF) if  the only negated subformulas 
it has are literals. 

2. r is L2 normal form (LNF) if  every variable is bound at most once 
and the only negated subformulas it has are closed. 

It  is trivial to show that  for any closed formula there are semantically 
equivalent PNF and LNF formulas. 

A l t e r n a t i o n  Leve l s  a n d  the F i s c h e r - L a d n e r  Closure .  

We now introduce the notions of alternation level and Fischer-Ladner clo- 
sure for LNF formulas. The former notion is defined for the fixpoint sub- 
formulas of a given formula; intuitively, it records the number  of "alterna- 
tions" in interdependent fixpoint constructors encountered in the pa th  in 
the parse tree from the root of the formula to the root of the subformula. 
To define it precisely, we introduce the following. For formulas r and r 
let r _-< r iff r is a subformula of r We also write r -<M r iff r is a 
maximal proper subformula of r We use cr to range over {#, v} and ~ to 
represent the dual of ~. 

Defini t ion 2.2 Let r be a mu-calculus formula in L2 normal form, with 
r ~ ~ X . r  -< r Then alr162 is defined as follows. 

�9 I f  r is closed then alr162 = 1. 

�9 I f  r is not closed then let 7 =- ~'Y.7 ~ ~ r be such that r -<M 7. 
I f  ~' = ~ and there exists a ~ =_ a ' .~  ~ with ~" = ~, 7 -< ~ and Z 
appearing free in "y', then alr162 = 1 + alr Otherwise alr162 = 
alr 

The notion of alternation level can be used to define the more usual one of 
al ternation depth as follows. 



110 

D e f i n i t i o n  2.3 Let r be a formula. Then the alternation depth, ad(r of 
is given as follows, l f  ~ contains fizpoint subformulas ~bl,.. . ,  ~bn(n > 1) 

then ad(~) = max{ali,(~bl), . . . ,  alr If fb contains no fizpoint sub/or- 
mulas, then ad(r = O. 

We refer to a formula r as alternation-free when ad(r < 1. It  should be 
noted tha t  our definition is a slight variant of the usual one given in [12] 
tha t  corrects a minor anomaly in the t reatment  of open formulas. The 
above definition of alternation depth always returns a value less than or 
equal to the one produced by [12]. 

We now present the Fisher-Ladner closure [13] for a p-calculus formula 
and extend the notion of alternation level to the elements of the closure. 

D e f i n i t i o n  2.4 Let $ be an p-calculus formula. Then the Fisher-Ladner 
closure of q~, denoted by Cl((~), is the smallest set for which the following 
hold. 

�9 ~ ~ cl(!,).  

�9 f f - ~  ~ Cl(r ~hen ~ ~ Cl(r 

�9 ff r v r ~ Cl(r or ~ ^ ~2 ~ Cl(~) then r r ~ Cl(r 

�9 I f  [a]~b E Cl(~b) or (a)!b E Cl(r then ~b E C1(r 

�9 I1~x . r  ~ c l (r  then r  ~ Ci(r 

The next l emma  establishes that  there is a one-to-one correspondence 
between the subformulas of a LNF formula r and Cl(r 

L e m i n a  2.5 Let ~b be in LNF, with ~b -<_ r and 7 E C1(r There there is 
a unique ~b' E CI(~) and substitution p such that ~b' =_ 1hip], and there is a 
unique 7' ~_ ~b and subsitution pt such that 7 - 7'[P']. 

P r o o f .  Follows by induction on the definitions of _ and Cl and the fact 
that  variables are bound at most  once in LNF formulas. 
If  3' E Cl(r then we use s(r to denote the subformula of ~ whose existence 
is guaranteed by the lemma.  We may  now define a1r as follows. 

Definit ion 2.6 Let ~ be in LNF, and let 7 E C1(r Then ale(T) = 
ale(s(7)). 

2.2 S e m a n t i c s  

Labeled transitions systems are used to interpret p-calculus formulas. 

Definit ion 2.7 A labeled transition system is a quadruple (8, Act , -*,  I}, 
where 
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[A]~-e = 13(A) 

[ X l r e  = e(x)  

[r V r : ir O i(~2~Te 
[ r 1 6 2  = ~ r  [r 

[[{a}r = { s 13s'. s ~ s' ^ s' e [r } 

[ [a l e ] I re  = { s I vs'. s ~ s' ~ s' e [Cite } 

[~x.r  = U {  s c s I s c [ r  -~ Sl } 

[ .x .r  = n {  s c s i M r e [ X  ~ s] c_ s } 

FIGURE 1. Semantics of formulas for T = (S, Act,--*, I). 

�9 S is a set o f  states; 

�9 Ac t  is a set of  actions; 

�9 ---~C S • Act  • S is the transition relation; and 

�9 I E A ~ 2 a is the interpretation. 

I f  q- = {S, Act ,  ---*, 1} is a labeled transition system and s E S ,  then we refer 
to the pair (T ,  s} as a labeled transition structure; in this case, we call s 
the start state. 

Intuitively, a labeled transition system encodes the operational behavior of 
a system, with S containing the possible system states, Act  the actions the 
system may  engage in, ---* the transitions between states that  occurs as a 
result of execution of actions, and I indicating which states a given a tomic 
proposit ion is true in. A labeled transition system additionally contains a 
designated s tar t  state. Following traditional usage we write s a_. s~ in lieu of 
(s, a, s'} E---~ and call s '  an a-derivative of s. When ISI < c~ and IAct I < 
we call labeled transition system {S, Act,  -% I) finite-state. 

The semantics of/~-calculus formulas shown in Figure 2.2 is given with 
respect to a labeled transition system T = (S, Act,--% 1) and an environ- 
ment  e : l) --* 2 s .  The environment e[X ~-* 5"] is the environment obtained 
f rom e by updat ing X to S. Intuitively, the semantics maps  a formula to 
a set of states for which the formula holds. Accordingly, the meaning of 
an atomic proposition is given by 1, and the meaning of a propositional 
variable is the set of states bound to it by the environment e. The boolean 
constructs are interpreted in the usual fashion. The meaning of [a]r con- 
tains the set of states all of whose the a-derivatives satisfy r Similarly, (a)r 
represents the set of states for which there is some a-derivative satisfying 
r 
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The semantics of pX.r  and vX.r  are taken to be the least and greatest 
fixpoints of the function Ce(S) = [r ~-* S] repectively. The existence 
of these fixpoints is guaranteed by the monotonicity of Ce over the lattice 
of sets of states and the Tarski Fixpoint Theorem [17]. 

We now define what it means for a labeled transition structure to satisfy 
a formula. 

Definit ion 2.8 Let (T, s I be a labeled ~ransition strudure and e an envi- 
ronment. Then s ~ -  r i~ s �9 [r 

If r is closed then the environment e does not influence [r In this case 
we write s ~T r when s ~ -  r holds for some (hence any) e. 

2.3 The L1 and L2 Sublogics 

We now present the syntax of two fragments of p-calculus. The first, LI, is 
the set of formulas formed by the following rules. 

1. All atomic propositions and variables are elements of L1. 

2. If r162 are in L1 then 

(a) r V r (a)r pX.r and vX.r  are in L1. 

(b) --r is in L1 provided that r is atomic. 

(c) r r is in L1 provided r is a literal. 

(d) [a]r is in L1 provided r is a literal. 

It should be noted that this definitions differs slightly from the one given 
in [11]; the difference, however, is insignificant for the purposes of this 
paper. 

To obtain L2 we modify rules 2(b), 2(c) and 2(d) by replacing "atomic" 
and "literal" with "closed formula". Note that L1 is a sublogic of L2. It 
is also straightforward to establish that for any formula in L2, there is an 
equivalent LNF formula that is also in L2 (hence the motivation for LNF). 
The same does not hold for PNF; in general, L2 formulas do not have PNF 
equivalents that are also in L2. 

The expressiveness of L2 has been studied by Emerson et al. [11]; in par- 
ticular they have shown that it has the same expressive power as Wolper's 
ECTL* [18] and hence is strictly more expressive than CTL* [10]. 

3 And-Or Kripke Structures and Temporal Logic 

In this paper we wish to present algorithms for solving the model-checking 
problem for closed formulas in L1 and L2 interpreted over finite-state la- 
beled transition structures. This problem may be phrased as follows. 
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Given L t / L 2  formula r and labeled transition structure (T, s), 
does s ~ T  r 

Our approach uses this general strategy. 

1. From (T, s) and r generate an intermediate structure representing 
the possible "at tempted proofs" that  s ~7- r 

2. Check whether one of the at tempted proofs is valid. 

It turns out that  the construction of the intermediate structure can be com- 
bined with the check for validity, thereby yielding an on-the-fly algorithm. 

In this section, we introduce the intermediate structures used in our 
methodology. They resemble the traditional Kripke structures used in defin- 
ing the semantics of temporal  logics; the main difference is that  the under- 
lying graph structure is an and-or graph. Hence we call these structures 
and-or Kripke structures. We also show how a linear-time temporal  logic 
may  be interpreted over these structures; we use this logic to define the 
"validity check" referred to above. 

3.1 A n d - O r  K r i p k e  S t r u c t u r e s  

And-or Kripke structures may be defined formally as follows. 

D e f i n i t i o n  3.1 An and-or Kripke structure is a tuple (Q,.4, R, L, P, qo) 
where 

�9 Q is a set of states; 

�9 .4 is a set of atomic propositions; 

�9 R C_ Q x Q is the transition relation, which is total: for every q E Q 
there must exist a q' E Q with (q, q'} E R; 

�9 L : Q --+ 2 .4 is the propositional labeling; 

�9 P : Q --+ {V, A} is the and-or labeling; and 

�9 qo 6 Q is the start state. 

If P(s)  -- V then we sometimes refer to s as a V-state, and similarly for A. 
And-or Kripke structures differ from traditional Kripke structures in the 

inclusion of the and-or labeling P.  In a traditional Kripke structure, an 
execution, or run, of the system is typically defined as a maximal sequence 
of states qoql . . .  where (qi, qi+l) E R. In an and-or Kripke structure, a run 
will instead be a tree of states, with A-states having multiple successors, in 
general. This intuition is captured by the following definition. 

D e f i n i t i o n  3.2 Let IC =- (Q,.4, R,  L, P, qo} be an and-or Kripke structure. 
Then a run of ]C is a maximal (hence infinite) tree with nodes labeled by 
elements of Q that satisfies the following properties. 
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�9 The root o f  the tree is labeled by qo. 

�9 Let a be a node labeled by q. 

- I f P ( q )  = A and {q' I (q,q') E R} = {ql,.--qra} then a has 
exactly m successors a l , . . . ,  am, with ai labeled by qi. 

- I f  P(q)  = V then a has exactly one successor, a' ,  and a ~ is 
labeled by some q~ such that (q, q~) E R.  

We use R(IC) to represent the set o f  all runs of  IC. 

Note that  if an and-or Kripke structure contains only V-states, then its 
runs are sequences; in this ease, the notion of run coincides exactly with 
the one found for traditional Kripke structures. 

We also use the following notions in the rest of the paper. 

Definition 3.3 Let IC =_ (Q, ,4, R,  L, P, qo) be an and-or Kripke structure. 

�9 A path through IC is a maximal  sequence i ~ ~ qoql . . .  such that (qi, qi+l) E 
R.  

�9 Let  r E R(IC). Then r(r) ,  the paths through r, contains all sequences 
of  the f o r m  ' ' qoqx �9 �9 ., where q~o labels the root o f  r and qi+x' labels a 
successor ai+x of  a in r i f  q~ labels node al in r. 

And-or Kripke structures may also be viewed as variations on amor- 
phous alternating tree automata [2], the main difference being that  tree 
automata have an explicit acceptance condition used for defining runs and 
have propositional labelings on their transitions rather than states. 

3 . 2  A L i n e a r  T e m p o r a l  L o g i c  

We now introduce a simple linear-time temporal logic and show how for- 
mulas may be interpreted with respect to and-or Kripke structures. The 
semantics of the logic, which we call LTL, is given as follows, where (A E),4 
is assumed to be a set of atomic propositions. 

r ::= A I r 1 6 2  I r 1 6 2  I F r  I Gr 

The boolean operations are interpreted in the usual manner, while F and 
G represent the standard "eventually" and "henceforth" operators. 

Traditionally, LTL formulas are interpreted with respect to paths in 
Kripke structures. We recall the definition here. 

Definition 3.4 Let If. - (Q, ,4, R,  L, P, qol be an and-or Kripke structure, 
! ! 

let x ---- qoql . . .  be a path in IC, and let r be an LTL  formula.  Then x ~lc r 
is defined inductively as follows. 
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�9 z ~pc A i f fA  e L(q~o). 

�9 x ~/r r A r i f f x  ~lc r and x ~t:  r 

�9 ;T ~/C r V r i/~x ~/C r or X ~/C r 

�9 z ~1c F r  ifftheve is a suffix z i = q~q~+l.., o f x  such that x i ~Ic r 

�9 x ~t:  Gr i f f for  every suj~z x i = q~q~+l.., of z, x i ~t:  r 

We m a y  now extend the notion of ~ t :  to runs of/C as follows. 

D e f i n i t i o n  3.5 Let IC be an and-or Kripke structure with r E R(1C), and 
let r be an LTE formula. Then r ~t:  r iff for every x E zc(r), x ~pc r 

Finally, we may  identify two different ways in which an and-or Kripke 
structure satisfies an LTL formula. 

D e f i n i t i o n  3.6 Let IC be an and-or Kripke structure, and let r be an LTL 
formula. Then: 

�9 IC ~ r iffthere is an r E R(IC) such that r ~t:  r 

�9 Jc r i g f o r  every ," e n(Jc) ,  r r 

4 #-Calculus Model Checking via And-Or Kripke 
Structures 

We now show how model-checking for the general p-calculus can be reduced 
to the model-checking problem for LTL interpreted over and-or Kripke 
structures. The reduction proceeds as follows. 

1. We give a set of "proof rules" for establishing that  a labeled transition 
structure satisfies a/z-calculus formula in PNF. 

2. We then show how one may  use the rules to generate an and-or Kripke 
structure from a labeled transition structure and/z-calculus formula. 

. Finally, we describe how to build a formula in LTL tha t  is satisfied 
by the and-or Kripke structure if and only if the labeled transit ion 
structure satisfies the original p-calculus formula. 

The proof  rules for inferring if a labeled transition structure satisfies a 
PNF formula are given in Figure 5. They work on assertions of form s bz" r 
intuitively, s t-T r represents the s ta tement  that  transition structure (:T, s) 
satistifies r In what follows we use (~r, ~ E)~  to refer to the set of all 
assertions. The proof rules are also goal-directed, meaning that  given an 
assertion to be proved, an application of a proof rule yields subassertions 
to be proved. The following l emma establishes the soundness of the rules. 
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sFr L (sDr L) 
V true 

S ~-r r 1 6 2  S ~-T r 1 6 2  
A V 

8 ~T r S [-7" r a }-2- r s ~-T r 

A 

V 

V, 

s I-r [.1r 
Sl I-r r .., s ~  I-r r 

s I-r (a)r 
sl I - r  r .., s=  k r  r 

{ , 1 , . . . , s ~ }  = {s'ls ~ s'} 

{ s l , . . . ,  s=}  = {s'l* -~ *'} 

s t-T I~X.r V s F-r uX.r  
s ~r  r 1 6 2  ,, ~r  r162  

FIGURE 2. Proof rules for the #-calculus, where T = (S, Act, --*, I}. 

Lemma 4.1 L e t  ~ - s t -T r be an a s s e r t i o n .  

1. I f  the subgoals resulting from applying a rule to  ~ have  the form Sl FT 
~1 , . . . ,  sra }-7" r then s ~7" r iff si ~ T  r for each i. 

2. I f  the subgoal resulting from applying a rule to a is true then s ~ T  r 

3. I f  no rule can be applied to or then s ~=T r 

P r o o f .  Follows f rom the semantics of p-calculus formulas. 
We now introduce the notion of proof structure. 

Def in i t i on  4.2 Let V C E U {true}, E C_C_ V • V and ~ E E. Then {V, E I 
is a proof structure for r if  ~r E V and V and E are maximal sets satisfying 
the following for every ~' E V: a' is reachable from ~ using edges in E, 
and the set {~"1{~', ~"} E E} is the result of applying a rule from Figure 5 
to (r t . 

Note tha t  a proof  structure for a given a is unique, since at most  one rule is 
applicable to any assertion. Intuitively, a proof structure for a in intended 
to encode all possible ways of "proving" that  e holds. A "candidate p r o o f '  
may  be obtained f rom a proof structure by removing all but  one outgoing 
edge f rom all assertions to which a rule labeled by V has been applied. 
I t  is also the case tha t  proof structures may  contain cycles, owing to the 
presence of the fixpoint operators in the logic; this fact complicates a de- 
terminat ion of when a proof structure for a contains a "valid proof" of a.  
In tradit ional  proof theory, circular reasoning is always deemed incorrect; 
in such a setting, a proof  for a tha t  contains a cycle could not be used as 
evidence of the t ru th  of a.  However, in the p-calculus, while one may  not 
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use such "circular reasoning" to establish that  s ~-T #X. r  holds, one may  
use it in order to prove s F:r uX.r  Consequently, in order to determine if 
a proof  structure contains a valid proof, one should permit  cycles in which 
the "top-level" formula in a u-formula. More specifically, a cycle is allowed 
in a proof  if the formulas with the lowest alternation level on the cycle are 
u-formulas. Our approach to checking this condition is as follows. 

1. Represent the proof  structure for an assertion r as an and-or Kripke 
structure whose runs are a t tempted  proofs of tr; and 

2. devise an LTL formula that  holds of runs whose paths satisfy the 
"good cycles" condition. 

In order to determine if a proof structure contains a proof for or, one would 
then check whether the resultant and-or Kripke structure satisfies the LTL 
formula.  

To convert a proof structure (V, E / for assertion cr ~ s I-7- r into an and- 
or Kripke structure, we must  specify the set of states Q, the set of a tomic 
propositions .A, the transition relation R, the propositional labeling L, the 
and-or labeling P,  and the s tar t  s tate q0. Most of these are straightforward. 

�9 For the s tate  set, take Q = V. 

�9 For the transition relation R it is tempt ing to take E.  However, R is 
required to be total, while E may  not be (there may  be "leaves" in 
the proof  structure). To handle this, we extend E to a total  relation 
by adding self loops to every leaf. Formally, 

R =  E U  { (~ ' ,~ ' )  I W "  ~ V.(~', ~") r R}  

�9 As remarked above, for any given assertion at most  one rule is ap- 
plicable. So we define P ( a )  to be the label of the rule in Figure 5 
applicable to a, if such a rule exists; if no such rule exists, we take 
P(tr)  to be V. 

�9 For the s tar t  state, we take q0 = or. 

In order to complete our definition, we need to specify ,4 and L. Our 
intention is to use the atomic propositions in order to record the alternation 
level off ixpoint  formulas contained in assertions; accordingly, we the atomic 
propositions to be of form ui and/J>~, where i < ad(r (recall that  r is 
the formula  in the "root assertion" in the proof structure). Formally, if r 
is the p-calculus formula being checked then the set of atomic propositions 
.,4 = { t rue}  U { ul I i <_ ad(r } U {#>i  I i < ad(r }. The function L can 
now be defined as follows, where ~1 ~ s ~ &M r u~ E L(~ ~) iff r is a y- 
formula  and a/r162 = i . /z>i  E L(r  iff either r  is a non-/~-formula or r  
is a / J - formula  and a/r162 > i. If  er' is of form true,  then L(~) = { t rue ) .  
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s eT r A r (s ~ r 
V s F-~r r 

V 
s t-T [a]r 

true (Vs" �9 { s' I s ~ s' }.s" PT r 

FIGURE 3. Modified proof rules for L1. 

The following theorem states that the p-calculus model-checking prob- 
lem may be reduced to checking specific LTL formulas on and-or Kripke 
structures. 

T h e o r e m  4.3 Let K.o be the and-or Kripke structure corresponding to ~ = 
sPT  0. Then s ~M r il~ lCo ~ r( true)  Y V~.d=~r A FGp>,). 

The proof of this theorem appears in an appendix, but the intuition is as 
follows. Suppose that /Ca,  where ~ = s t-T r contains a run r satisfying 
GFv~ A FGp>~ for some i < ad(r Suppose further that  the run contains a 
cycle. It  then follows that  the run contains a path that traverses this cycle 
an infinite number of times. In order for this path to satisfy this formula, 
it must follow that  some v-formula of level i appears infinitely often while 
p-formulas of level < i can only appear finitely often. This implies that  the 
cyclic reasoning implicit in the cycle is being used in support a v-formula 
and hence that  the cycle is allowable. Similarly, if all cycles in a run satisfy 
the "good cycle" condition then given LTL formula must hold the infinite 
paths in the run. 

5 M o d e l  C h e c k i n g  for L1 and  L2 

The previous characterization of p-calculus model checking in terms of 
and-or Kripke structures does not by itself suggest efficient algorithms for 
determining whether states satisfy formulas in the full calculus. However, 
when the formulas are in L1 or L2, it turns out that  the and-or Kripke 
structures have a special structure that  permits them to be manipulated 
efficiently. In the remainder of this section we use these facts to develop 
local model-checking algorithms for these logics. 

5.1 Ej~icient L1 Model  Checking 

Recall tha t  the syntactic restrictions on the L1 sublogic stipulate that  in 
formulas of the form r A r and [a]r r and r must be literals. These 
facts imply that  proof structures involving formulas of these types have a 
restricted form. In particular, in a structure built for assertion s t-~- r Ar 
the left child of the root (s t-T r where r is atomic) is either a leaf if 
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s ~ T  Cz or has the leaf true as its only child otherwise. A similar property 
holds for all children of s F-T [a]r when r is atomic; by only looking at the 
a-derivatives of s and no other states, one may determine if a successful 
proof structure may be constructed for this assertion. 

Using these observations, we may alter the proof rules for the full it- 
calculus to obtain the ones given in Figure 3. What  is noteworthy about 
these is the absence of rules labeled by A; instead, side conditions are used 
to handle the left conjuncts in conjunctions and formulas using the [a] 
modality. 

From the definition of the procedure for constructing and-or Kripke 
structures from models and /z-calculus formulas, it immediately follows 
that  if r is in L1 then the and-or Kripke structure for assertion s ST r 
contains no A-states. This implies that  all the runs of this structure degen- 
erate to sequences of states, as branching in a run arises only from A-states. 
Therefore, checking if there exists a run which satisfies an LTL formula is 
equivalent to checking if there exists a path satisfying the formula. As we 
observed before, this is the LTL model-checking problem for traditional 
Kripke structures, for which an efficient on-the-fly algorithm has been de- 
veloped [3]. As the proof rules permit us to construct the Kripke structure 
on-the-fly, we therefore obtain an on-the-fly model-checking routine for L1. 

T i m e  Complex i t y  

In order to quantify the time complexity of this algorithm we first character- 
ize the size of the proof structure yielded by applying the rules in Figure 3. 
First, note that  in any assertion s ~ F-T r found in a proof structure for 
s F-T r r E Cl(r This leads the following result. 

T h e o r e m  5.1 Let (7-, s) be a labeled transition structure, let r a Lz for- 
mula, and let (V,E) be a proof structure for s ST r Then JV I + IEI < 
Ir ITJ. 

Also observe that  the formula we give in Theorem 4.3 is O(ad(r in size. 
Consequently, as the LTL model-checking algorithm in [3] has complexity 
2~ * J/C I for a Kripke structure ]~ and LTL formula r one would expect 
the complexity of our algorithm for L1 formula r and labeled transition 
structure (:T, s) to be 2 ~162 �9 [01 * JT-J. However, recall that  formula 

under consideration has the form Ftrue V v~.d=~r A FG#>i), where 
true and the vi and tt>i are atomic propositions. It can be shown that  for 
formulas in this form the algorithm in [3] takes time in O(ad(r c) where c 
is constant. Intuitively, this is due to the observation that  to check whether 
a there is a path in a Kripke structure satisfying (Vi~=t(GFp A FGq)), it 
suffices to check each disjunct in isolation. As a result our model-checking 
algorithm for the logic L1 has time complexity O(ad(r * Ir * J~rJ) �9 



120 

s 1-7- (s V:7- r 
V true 

FIGURE 4. Additional rule for L2. 

5.2 Efficient L2 Model Checking 

The model checker for Lg~ uses the same essential observations as the one 
given above for L1. Indeed, the same proof rules are used (with one rule, 
given in Figure 4, to handle negation). However, the side Conditions in the 
rules for propositions of the form -~r r A r and [ale are nontrivial to 
handle because r and r are no longer assumed to be atomic; in L2 they 
are only required to be closed. We may nevertheless exploit the following 
observations. Suppose we wish to build a proof structure for an assertion 
a using the proof rules for the full/~-calculus, and suppose further g t-7- 
Cz A r is an assertion in the proof structure and that  r is closed. It then 
follows that  the substructure computed for s I 1-7- r will have no edges 
leading to any other part of the proof structure; in other words, g 1-7" r 
may be checked independently. Our L2 model checker thus handles the 
side conditions for the negation rule and for the former A-rules by invoking 
itself recursively on them. The resulting algorithm may be shown also to 
have time complexity O(ad(r �9 [r * 17"[) using a simple induction on the 
structure of formulas. 

5.3 Implementation Concerns 

We have implemented our algorithm in the NCSU Concurrency Workbench, 
which is a re-implementation of the tool for analyzing concurrent systems 
described in [7], and have experimented with the implementation using 
several small and medium-sized (up to 5,000 states) examples, including a 
train signalling scheme. In its current prototype form, and running on a 
Sun SparcStation 20 with 512 MB of memory, the implementation seems 
to be capable of processing roughly 1,000 states per minute. 

However, a number of tricks can be used to improve the performance 
of the algorithm. Firstly, we are explicitly calling an implementation of 
the LTL model checker of [3] in our /J-calculus model checker. However, 
since the LTL formulas we use have an extremely restricted form, partially 
evaluating the LTL model checker with respect to these formulas would 
yield a substantial time and space savings: Secondly, the LTL formulas 
being checked can be "optimized" to yield formulas for which the (partially 
evaluated) model checker exhibits better behavior. For example, the LTL 
formula FGp A GFq, where p and q are atomic, is logically equivalent to 
FG(p A Fq); the latter, however, is much more efficient to process in the 
scheme of [3] than the former. 
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6 Conclusion 

In this paper we have presented efficient on-the-fly model-checking algo- 
rithms for fragments of the modal p-calculus. In contrast with existing al- 
gorithms for these logics [11] our routines construct the system state space 
in a demand-driven manner; the fragments are also capable of express- 
ing fairness constraints that are beyond the expressive power of fragments 
of the ~-calculus for which efficient on-the-fly algorithms have been devel- 
oped [1]: Our approach relies on a reduction of the model-checking problem 
for the full p-calculus to the model checking problem for LTL interpreted 
over novel structures that we call and-or Kripke structures. We have also 
implemented our algorithms in the Concurrency Workbench [7], a tool for 
analyzing concurrent systems. 
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8 Appendix  �9 Proof  of Theorem 4.3 

We use the result in [5] to prove our theorem. First, we say tha t  an and-or 
Kripke s t ructure  is successful if satisfies the tempora l  formula  in Theo-  
r em  4.3. Our  goal is to show tha t  an assertion s ~M r is t rue  iff the 
corresponding and-or  Kripke s t ructure  is successful. In [5], necessary and 
sufficient condit ion for the t ru th  of s F-7- r is given. Therefore, our  goal now 
can be reduced to showing tha t  the and-or Kripke Structure corresponding 
an assertion a - s ~-T r is successful iff a satisfies this condition. 

We first give a brief description of  the technique in [5]. The  model  
checking technique in [5] is also a goal oriented approach based on the 
use of proof rules. But  the assertions they use are of a slightly different 
form. Their  assertions are of  form H : s ~-:r r where H is referred to as 
the hypothesis  set whose elements are of form s / ~-=r r Intuitively, the 
hypothesis  set records informat ion about  the assertions seen on the pa th  
f rom the root.  The  proof  rules in [5] with some minor  modificat ions is 
shown in Fig 5. 

A leaf ~ is successful iff 

�9 ~ is of  form true. 

�9 a is of form H : s ~-~- [a]r and s does not have any a transit ions.  

�9 ~r is of  form H : s F-=r uX.r  

A tableau for an assertion is successful iff all the leaves in the tableau are 
successful. 

T h e o r e m  8.1  For an assertion a =_ {} : s ~-T r s ~ : r  r i f f a  has a 
successful tableau. 

Before we present our proof,  we introduce what  we refer to as proof trees. 
We use these structures as means  to connect the notions of and-or  Kripke 
s tructures  and tableaus.  

Let E --- (Q, .4, R, L, P, q0) be the and-or Kripke s tructure corresponding 
to the assertion s ~-~- r Let c~ E {it, p}. Also let ~ = p iff a = u and vice 
versa. 

D e f i n i t i o n  8 .2  A proof tree for an assertion er is a finite tree satisfying 
the following. 
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1. Every node in the tree is labelled with an element of Q. 

2. The root of the tree is labelled with ~. 

3. Let n be a node labeled by ~. 

�9 I f P ( a )  = h and { a '  I (a,a'> E R}  = {aa , . . . am}  then n has 
exactly rn successors n l , . . . ,  nm, with ni labeled by ~i. 

�9 I f  P (~)  = V then n has exactly one successor, n', and n' is 
labeled by some ~' such that (a, a') E R. 

4. Every leaf a in the tree is of the form 

�9 true or 

�9 s t-7" L where s ~=T L or 

�9 s 1-7" a X . r  and there exists an internal no de ~' such that a' = 
~,~l is an ancestor of ~ and for every assertion ~,t of  form 
s' 1-7" 6~Y.r on the path from ~' to r al(6tY.r > a l (~X.r  

A leaf n labelled with a is successful iff o" = s t-7- uX . r  or ~ -= true. A 
proof tree is successful iff all the leaves in the tree are successful. 

Our proof now follows from the following two theorems. 

T h e o r e m  8.3 An assertion a =_ s 1-7- r has a successful proof tree iff the 
and-or Kripke structure corresponding to the assertion is successful. 

P r o o f .  '=~' Assume a has a successful proof tree. Now if we unwind the 
proof tree into an infinite tree, we get a run of the and-or Kripke structure 
corresponding to a. From the definition of a successful proof tree, it is clear 
that  this run satisfies the temporal formula in Theorem 4.3. 

'~=' Assume that  the and-or Kripke structure corresponding to a is suc- 
cessful. Then there exists a run of the Kripke structure that  satisfies the 
LTL formula in Theorem 4.3. We now show how a successful proof tree 
can be constructed from this run. Since the run satisfies the LTL formula 
in Theorem 4.3, we know that  on every path starting from the root in the 
run either (i) eventually there is a node labelled with true or (it) an as- 
sertion a' - s' 1-7- uX . r  occurs infinitely often and no assertion of form 
s" 1-7- p Y . r  such that al(#Y.r  < al(uX.r  occurs infinitely often 
on the path. In the first case, we terminate the path when we hit node 
labelled with true.  In the second case we know there exists an node nl 
on the path labelled with a '  and there exists an ancestor n2 of nx such 
that  for every node labelled with s" 1-7" pY .r  on the path from nl to n2, 
a l (pY . r  > al(uX.r  We terminate the path at such a node. It clear that  
all the leaves the leaves the resulting tree are successful. It remains to be 
shown that  the tree resulting from this construction is finite. Assume that  
the constructed proof tree is not finite. By KSnig's Lemma, there exists an 
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inf ini te  p a t h  in the  tree.  Th i s  is con t rad ic t ion  since this  p a t h  is successful 
and  would  be t e r m i n a t e d  by  our  cons t ruc t ion .  

T h e o r e m  8 .4  A n  assertion a has a successful proof  tree i f f  it has a suc- 
cessful tableau. 

P r o o f .  ' ~ '  Assume  cr has  a successful t ab leau .  Replace  every asser t ion  
H : s h7- r by the  asser t ion  s ~-7- r Our  c la im is t h a t  the  resul t ing  t ree  is a 
successful  p r o o f  tree.  I t  clear  t h a t  th is  t ree satisfies all r equ i rements  except  
4. So we need to  prove t h a t  every leaf  n in the  cons t ruc ted  tree satisfies the  
r equ i r emen t s  for the  leaves in a p roo f  tree.  I f  the  leaf  is l abe l led  wi th  t rue  i t  
obv ious ly  does.  I f  the  leaf  is l abe l led  wi th  s }-T v X . r  then  we know t h a t  th is  
co r responds  to  a t a b l e a u  leaf  l abe l led  wi th  H : s }-7" v X . r  where v X . r  E H .  
Now, f rom the  t a b l e a u  cons t ruc t ion  i t  follows t h a t  the  leaf  has  an ances tor  
l abe l l ed  wi th  H ~ : s }-7- v X . r  and  for every node on the  p a t h  f rom th is  
ances to r  to  the  leaf  there  exists  no asser t ion of form H "  : # }-7"/zY.r ~ such 
t h a t  al(l~Y.r < v X . r  I t  follows f rom the  above  observa t ion  t h a t  the  leaf  
n in the  cons t ruc ted  p roo f  t ree satisfies the  necessary requi rement .  

':=~' In  th is  case we consider  the  smallest  successful p roof  t ree and  m a p  
i t  to  a successful t ab leau .  Basically,  an asser t ion ~ = s }-7" r in the  p r o o f  
t ree  is r ep laced  by the  asser t ion H : s }-7- r in the  t a b l e a u  where H = 
{ ~"  I ~"  - ~ X . b ' i s  an ances tor  of ~, and  for every asser t ion of  fo rm 
6~Y.r al(6~Y.r > a l ( a X . r  To show t h a t  the  resul t ing  s t ruc tu re  is 
indeed  a successful t ab leau ,  we need to  show tha t  (i) t a b l e a u  rules can 
be app l i ed  at  each in te rna l  node  n, and  the  successors of  n cor respond to  
asser t ions  o b t a i n e d  as a resul t  of an app l i ca t ion  of a rule in F igure  5. (ii) 
the  leaves are indeed leaves and are successful (Recal l  t h a t  a successful leaf  
in a t a b l e a u  is l abe l led  wi th  t rue  or of  l abe l led  wi th  H : s }-7" v X . r  where  
s b-7" u X . r  E H) .  

T h e  l a t t e r  case is s t r a igh t fo rward .  The  first case requires  an analys is  of  
the  s t ruc tu re  of  the  fo rmu la  appea r ing  in the  the  asser t ion labe l l ing  node  
n. Mos t  of the  cases are s t r a igh t fo rward .  The  in teres t ing  cases are when 
the  asser t ion  has  fo rm H : s }-7" v X . r  or H : s }-7" p X . r  For the  first 
case, a s sume  no t a b l e a u  rule can be app l ied  at  node n. Th is  impl ies  t h a t  
s FT" v X . r  E H .  From our  cons t ruc t ion  i t  follows t h a t  node  n ~ which is 
the  p r e - image  of  n in the  or ig ina l  p roo f  t ree has  an ances tor  n"  l abe l led  
wi th  s F-7" v X . r  and on the  p a t h  f rom n '  to  n"  there  is no p - f o r m u l a  wi th  
lower a l t e r n a t i o n  level. Therefore,  n t can be a leaf  in the  p roo f  tree.  Th is  
would  m e a n  there  exis ts  a smal le r  successful p roo f  t ree  which con t rad ic t s  
our  a s s u m p t i o n  the  or ig ina l  p roo f  t ree was the  smal les t  successful p r o o f  
tree.  

For  the  second case, aga in  assume t h a t  no t a b l e a u  rule can be app l i ed  
at  node  n. Th is  impl ies  t h a t  s }-7" p X . r  E H.  F r o m  our cons t ruc t ion  i t  
fol lows t h a t  node  n I which is the  p re - image  of n in the  or ig inal  p roof  t ree  
has  an  ances tor  n"  l abe l led  wi th  s }-7- p X . r  Let the  subt rees  at  nodes  n t 
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R1 H : S F - T L  ( s ~ T L )  
true 

R2 H : s t - r  r A r R3 
H : s t-=r r H : s b ~ - r  

H : s  FT r Vr 
H : s ~-T r 

H : SbT  r Vr 
R4 

H : s FT r 

R5 
H : s  t-7 [a]r 

H : sl t-~- r .., H :sm t-T r 
{ s l , . . . , , m }  = , ' }  

R6 H : s F T  (a)r (s-*a sl) 
H : sl FT r 

H : s b~- a X . r  (s ~-~ a X . r  ~ H)  
R7 g '  ~. s ~-TT-r  

where c~ E {/J, v} ,  & = / ~ ( v )  if  c~ = / ~ ( v )  
and H'  = H - {s' bT" &X'.C'lal(&X'.r > a l (aX.r  

FIGURE 5. Proof rules for the/z-calculus, where T = (,.g, Act, --% I). 

and n" be T~ and T~ ~ respectively. Now, in the original proof tree, if we 
replace the subtree T~' at node n ~ by the T~, the resulting tree is a smaller 
successful proof tree. This again is a contradiction as we assumed that  the 
original proof tree was the smallest successful proof tree. 


