
Rapid Prototyping for an
Assertional Specification
Language
Jorge Cu611ar*t
Dieter Barnard*
Martin Huber*

ABSTRACT
Temporal Language of Transitions (TLT) is a framework for the specifica-
tion and verification of reactive control systems. Message Passing Interface
(MPI) is a library for message-passing in a distributed environment. In this
paper we present a compiler from TLT to the language C and the library
MPI. The development of the compiler raised a number of interesting issues
like the implementation of deadlock-free synchronous communication and
the scheduling of guarded-commands.

1 Introduction

Today there exists a plethora of formal methods for the specification and
verification of distributed and embedded systems. However, in many cases
they still lack the recognition as a serious software development technique
in industry. One impor tan t reason is the perception of a large gap between
a correct specification on the one hand and its implementat ion on the other.
This deficiency can be addressed by rapid prototyping, which tries to deliver
an executable system based on a given specification as early as possible.
We present such a tool in the form of a compiler, which inputs (verified)
TLT specifications and facilitates their distributed execution on a network
of workstations using the MPI library.

2 Temporal Language of Transitions (TLT)

TLT is a compositional framework for the formal t rea tment of reactive
control systems [CH94, BC95, CBH95]. A TLT specification consists of a

*Siemens AG~ ZFE T SE 1, D-81730 Munich, Germany.
tE-Mail: Jorge.Cuellar~zfe.siemens.de, Tel. (089) 636-47585, Fax. (089) 636-42282.

403

number of modules. Each module consists of a number of interfaces and a
module body. The interfaces and the body each contain a set of declara-
tions of variables and actions, an initially predicate and a set of always-
commands. In addition, the body also contains a set of guarded-commands.

Actions are used to express synchronous message-passing. They are typed,
and declared as input or output, depending on whether they are under con-
trol of the environment or the given module. A module reacts to input ac-
tions using always-commands (thereby making it input-enabled). A module
executes output actions using guarded-commands in the usual way.

3 A Compiler for TLT

3.1 The Message-Passing Interface (MPI)

MPI is a library standard for message-passing [MPI94], with support for the
language C and SUN/SPARC workstations. We will concentrate here on
only a small part of MPI necessary for our compiler: initialization, point-to-
point communication, and termination. In MPI the code of all the modules
are packed together and then distributed. During initialization, each pro-
cessor node is assigned an id between 0 and n - 1, from which it determines
the appropriate part of the code to execute. A variety of asynchronous and
synchronous send/receive primitives is provided (discussed below). A MPI
application terminates if all participating nodes decide to do so.

3.2 Synchronous Input and Output
A central issue in the development of the compiler is the realization of syn-
chronous communication. Even though MPI explicitly provides a blocking
synchronous send primitive suitable for TLT output actions, it is easy to see
that two processes wishing to synchronize simultaneously can deadlock. We
therefore make use of the nonblocking synchronous send primitive, which
includes the possibility of checking whether a started synchronization has
completed. If not, care is taken not to initiate a new synchronization on
the same channel (by temporarily disabling the appropriate instructions).
TLT input actions are treated dually: the blocking receive primitive is used,
but only after checking that there indeed exists a matching output action
wishing to synchronize.

3.3 Scheduling
Consider the scheduling algorithm for each module, summarized in Fig-
ure 1. Every TLT variable is implemented as a unprimed and a primed
C variable. The unprimed versions are assigned initial values where spec-
ified. At the the start of the first execution phase, their values are copied

404

to the primed versions. This implements the frame axiom for TLT, namely
that variables which are not assigned new values retain their current val-
ues. Next the scheduler checks for the presence of any input actions; if
another module wishes to communicate, the appropriate always command
is executed.

After processing the inputs, a nondeterministic selection is made of any
enabled instruction (if there exists one). Note that in addition to the explicit
guard of an instruction, enabledness is also determined by the ability to
perform all of the output actions in the command part (i.e., all previous
synchronizations on those particular channels must have been completed).
Finally, the primed values are copied back to the unprimed variable~ before
the start of a new execution phase. The execution is repeated ad infinitum.
If no inputs are present and no instructions are enabled, the module just
stutters.

Assign initial values to (unprimed) variables.
Assign unprimed values to primed variables.
while (true) d0 {

Perform always commands triggered by inputs.
Select and execute an enabled instruction.
Assign primed values to unprimed variables.

FIGURE 1. The Scheduler for a TLT Module

This scheduling algorithm renders a true implementation of the TLT se-
mantics for a large class of TLT modules (that respect commutativity con-
ditions similar to [Mis91]). In particular, it is not possible for consistently
composed TLT modules to deadlock, since output actions are performed
in a nonblocking manner and since all inputs are processed at the start
of each phase. This covers the case where two modules wish to synchro-
nize simultaneously, and where one module wants to synchronize twice but
the other module has not reacted to the first yet. In this case the second
synchronization is disabled temporarily until the first has completed.

3.4 Execution and Logging

Compiled TLT systems can be executed on SUN/SPARC workstations con-
nected by a LAN, with one TLT module executing on each computer. Each
module contains a scheduler as explained above. There axe two ways in
which a user can visualize the execution of a systems. Firstly, provision has
been made for ASCII-based input (keyboard) and output (screen). If only
one of the modules performs I/O, then the compiler starts this module on
the default console. If more than one module wishes to perform I/O, then
the compiler adds an I /O manager, i.e. a separate MPI process dedicated
handling all I /O requests.

405

The second possibility is to make use of the MPE (Message Passing Envi-
ronment) library, which offers extensive logging facilities. If activated, each
MPI process creates a local log-file. After (proper) termination, the log-files
are collected and integrated, and displayed by the MPE tool upshot. For
this purpose, there is a special keyword HALT in TLT, which can be used
in instructions to terminate execution for logging puposes. An example is
provided in Figure 2, where we compiled and executed a small master/slave
system. The top bar represents the master module, the lower two represent
the slaves, and the arrows represent MPI communication.

FIGURE 2. MPI/MPE Logging of Master/Slave

4 Conclusion

We have presented a compiler which allows rapid prototyping of TLT speci-
fications. Our goal was to narrow the gap between formal specifications and
their implementation. We maintain that the compiler preserves the original
(formal) semantics of TLT, even though the synchronous input and output
actions of TLT have been replaced by MPI communication. Such proto-
types not only serve the role of simulations, but can significantly aid in the
understanding of a specification, by visualizing their distributed execution
and communication. In addition to numerous small examples, the compiler
was used to create a real-time, distributed controller of the FZI production
cell simulation [CH94].

Acknowledgements: Christine Roeckl and Dagmar Proell contributed
significantly towards the implemenation of the TLT compiler.

406

5

[BC95]

[CBH95]

[CH94]

[Mis91]

[MPI94]

REFERENCES

Dieter Barnard and Simon Crosby. The Specification and Ver-
ification of an ATM Signalling Protocol. In Proc. of 15~h IFIP
PSTV'95, Warsaw, June 1995.

Jorge Cu~llar, Dieter Barnard, and Martin Huber, A Solution re-
lying on the Model Checking of Boolean Transition Systems. Sub-
mitted as Final Solution to Dagstuhl Seminar of Broy/Lamport,
1994, Siemens Corporate Research and Development, ZFE T SE
1, D-81730 Munich, Germany, 1995.

.]orge Cu~llar and Martin Huber. The FZI Production Cell Case
Study: A distributed solution using TLT. In Proc. of the FZI,
volume 891 of LNCS. Springer-Verlag, 1994.

Jayadev Misra. Loosely-Coupled Processes. In Springer Verlag,
editor, PARLE'91, Vol. 2, pages 1-26, 1991, LNCS 506.

MPIF (MPI Forum). MPI: A Message-Passing Interface Stan-
dard. Technical report, University of Tennessee, May 1994.

