
UPPAAL in 1995"

J o h a n B e n g t s s o n t K i m G. Larsen t
Fredr ik Larsson t Paul P e t t e r s s o n t W a n g y i t

ABSTRACT UPPAAL 1 is a tool suite for automatic verification of safety and
bounded liveness properties of real-time systems modeled as networks of timed auto-
mata [12, 9, 4], developed during the past two years. In this paper, we summarize
the main features of UPPAAL in particular its various extensions developed in 1995
as well as applications to various case-studies, review and provide pointers to the
theoretical foundation.

1 I n t r o d u c t i o n

UPPAAL is a tool suite for automat ic verification of safety and bounded liveness
p roper t i es of rea l - t ime systems modeled as networks of t imed a u t o m a t a extended
wi th da t a var iab les [12, 9, 4], developed during the past two years. In this paper , we
s u m m a r i z e the features of UPPAAL in par t icular the various extensions developed
in 1995 as well as appl icat ions to various case-studies, review and provide poin ters
to the theore t ica l foundat ion.

In developing an au tomat ic verification tool, there are two ma in issues to be con-
sidered: a user interface which should be easy to use and a model-checker which
should be efficient. UPPAAL consists of a graphical user interface based on Auto-
graph , t h a t allows sys tem descript ions to be defined graphical ly and a model-checker
t ha t combines on-the-fly verification wi th a symbolic technique reducing the veri-
f ication p r o b l e m to tha t of solving simple constraint systems [12, 9]. The cur ren t
vers ion of UPPAAL is able to check for invar ian t and reachabi l i ty propert ies , in
pa r t i cu la r whe ther cer ta in combinat ions of control-nodes of t imed a u t o m a t a and
cons t ra ins on var iables are reachable f rom an ini t ial configurat ion. Bounded live-
ness p roper t i es can be checked by reasoning about the sys tem in the context of
a tes t ing au tomata . In order to facil i tate debugging, the model-checker will repor t
a diagnostic trace in case the verification procedure t e rmina tes wi th a negat ive

answer [10]

*This work has been supported by the European Communities (under CONCUR2 and RE-
ACT), NUTEK (Swedish Board for Technical Development) and TFR (Swedish Technical Re-
search Council)

tDepartment of Computer Systems, Uppsala University, SWEDEN. E-mail: {johanh, fredrikl,
paupet, yi}adocs.uu.se

tBRICS (Basic Research in Computer Science, Center of the Danish National Research Found-
ation), Aalborg University, DENMARK. F~maih kglQiesd.auc.dk

1The current version of UPPAAL is available on the World Wide Web via the UPPAAL home
page ht tp ://wmw. does. uu. se/docs/rtmv/uppaal.

432

@ I~iiiiii!ii~!i~ii~i~i~i!i!iii]!iii!iiiiiiii!/

I I
I

iiiiii!ii~'l~!!iiiiiii ~
i!i!iiii~i!iiiii!i!i:ii~i!:!ii~ili~!!ilil

iiiiii!ilili ii!iiiiii
::~::t ~i: ~ : ~ : ~ : ! :
:::

i:ili:i:i:i:i:iiii~ilili iiiiii:i:i:i:i:~:i:~:~:~:ii~:i

?

[3
FIGURE 1. Overview of UPPAAL

7 ""YES'"

d i a ~ i c

The current version of UPPAAL is implemented in C++ . An overview of UPPAAL
is shown in Figure 1.

a t g 2 t a A compiler from the graphical representation (. a tg) of a network of t imed
automata, to the textual representation in UPPAAL (.ta).
h s 2 t a A filter that automatically transforms linear hybrid automata where the speed
of clocks is given by an interval into timed automata [11], thus extending the class
of systems that can be analyzed by UPPAAL.

c h e c k t a Given a textual representation (in the . ta-format) of a network of t imed
automata, check ta performs a number of simple but in practice useful syntactical
checks.

v e r i f y t a A model-checker that combines on-the-fly verification with constraint
solving techniques [12, 9].

2 Extensions in 1995

The UPPAAL model for real-time systems is networks of timed automata with data
variables. For detailed descriptions of the model, we refer to [9, 4]. The m o d e l
checking algorithms implemented in UPPAAL are developed in [12, 9]. During the
past year, we have applied UPPAAL to a number of case-studies reviewed in next
section. To meet requirements arising from the case studies, the UPPAAL model
and model-checker have been further extended with new features. In the following,
we summarize the new features of UPPAAL developed during 1995:

C o m m i t t e d L o c a t i o n s . UPPAAL adopts hand-shaking synchronization between
components in a network. The very recent case-study on the verification of Philips
Audio Control Protocol with bus-collisions shows that we need to further extend
the UPPAAL model with committed locations to model behaviors such as atomic

433

broadcasting in real-time systems. The notion of committed locations is introduced
in [3]. Our experiences with UPPAAL show that the notion of committed locations
implemented in UPPAAL is not only useful in modeling real-time systems but also
yields significant reductions in time- and space-usages in verifying such systems.

U r g e n t A c t i o n s . In order to model progress properties UPPAAL uses a notion of
maximal delay that requires discrete transitions to be taken within a certain time
bound. However, in some examples, e.g. the Manufacturing Plant [6], synchroniz-
ation on certain channels should happen immediately. For this reason the UPPAAL
model was extended with urgent channels, on which processes should synchronize
whenever possible [4]. The notion of urgent channels (also known as urgent actions
in the literature) has been implemented in both HYTEcH and KRONOS.

D i a g n o s t i c Traces . Ideally, a model-checker should be able to report diagnostic
information whenever the verification of a particular real-time system fails. UPPAAL
reports such information by generating a diagnostic trace from the initial state to a
state violating the property. The usefulness of this kind of information was shown
during the debugging of an early version of Philips Audio-Control Protocol [10].

3 Case-Studies

UPPAAL was applied to a number of case-studies and benchmark examples during
1995, including: several versions of Pischers Protocol [1], two version of Philips
Audio-Control Protocol [5, 10, 3], a Steam Generator [2], a Train Gate Controller [7],
a Manufacturing Plant [6], a Mine-Pump Controller [8] and a Water Tank [11].

In terms of complexity, Philips Audio-Control Protocol with bus-collision is the
most serious case-study where UPPAAL is applied so far. The protocol is developed
by Philips to exchange information between components (e.g. amplifier, tuner, CD-
player, etc.) in one of their high-end audio sets. In [10] Philips Audio-Control Pro-
tocol without bus-collision [5] was verified using UPPAAL. In the verification of the
protocol, the diagnostic model-checking feature of UPPAAL was used for detecting
and correcting several errors in an early description of the protocol 2. Recently a
version of Philips Audio-Control Protocol with two senders and with bus-collision
handling was verified using UPPAAL. The result is reported in [3]. This case study is
comprehensive compared with previous verification efforts of real-time and hybrid
systems described in the literature. During this case-study UPPAAL was extended
with committed locations, allowing efficient modelling of broadcast communication s .

2UPPAAL installed on a Spare Station I0 running SunOS 4.1.4, with 32 MB of primary memory
verifies that the received bit stream is guaranteed to be identical to the sent bit stream in 3.6
seconds.

3The verification of Philips Audio-Protocol with Bus Collision was carried out using an exten-
ded version of UPPAAL installed on a SGI ONYX machine.

434

4 Future Extensions

In this pape r we have summar ized the m a i n features of UPPAAL in par t i cu la r i ts
recent extensions as well as applicat ions to var ious case-studies.

Our experience with UPPAAL during the pas t years shows tha t in verifying real-
t ime systems, spa~e-consuming is a more serious p rob lem than t ime-consuming as
a verif ication process mus t store not only control -nodes searched bu t also possible
clock values associated with the control-nodes. We have in t roduced the not ion of
c o m m i t t e d locations which is useful in model ing real- t ime behaviors , and also yields
significant reduction in memory-usage. As future work, we shall fur ther develop
techniques for minimizing memory-usage. Future work also includes extending the
cur ren t model-checker of UPPAAL to check bounded liveness proper t ies of [10] and
implemen t ing the newly developed composi t iona l model-checking technique of [9].

5 R E F E R E N C E S

[1] Martin Abwii and Leslie Lamport. An Old-Fashioned Recipe for Real Time. Lecture Notes
in Computer Science, 600, 1993.

[2] J.-R. Abrial. Steam-boiler control specification problem. June 1995. International Seminar
on Methods for Semantics and Specification.

[3] Jol-~n Bengtsson, David Griflioen, Ks Kristoffersen, Kim G. Larsen, Fredrik Larsson,
Paul Pettersson, and Wang Yi. Verification of an Audio Protocol with Bus Collision Using
UPPAAL. Submitted for publication, 1996.

[4] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. UPPAAL--
a Tool Suite for Automatic Verification of Real-Time Systems. In Proc. of the j th DIMACS
Workshop on Verification and Control of Hybrid Systems, Lecture Notes in Computer Sci-
ence, October 1995.

[5] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio-Control Protocol. In
Proc. of FTRTFT'9$, volume 863 of Lecture Notes in Computer Science, 1994.

[6] C. Daws and S. Yovine. Two examples of verification of multirate timed automata with
KRONOS. In Proe. of the 16th 1EEE Real-Time Systems Symposium, pages 66--75, December
1995.

[7] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A Users Guide to HYT~cH.
Technical report, Department of Computer Science, Cornell University, 1995.

[8] Mathal Joseph, Alan Burns, Andy Welling, Kritbi]~mamritham, Jozef Hooman, Steve
Schneider, Zhiming Liu, and Henk Schepers. Real-time Systems Specification, Verification
and Analysis. Prentice Hall, 1996.

[9] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic Model-Checking
of Real-Time Systems. In Proc. of the 16th IEEE Real-Time Systems Symposium, pages
76-87, December 1995.

[113] Kim G. L~wsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking for Real-Time
Systems. In Proc. of the t th DIMACS Workshop on Verification and Control of Hybrid
Systems, Lecture Notes in Computer Science, October 1995.

[11] A. Olivero, J. Sifakis, and S. Yovine. Using Abstractions for the Verification of Linear Hybrids
Systems. In Proc. of CAV'9$, volume 818 of Lecture Notes in Computer Science, 1994.

[12] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-Time Commu-
nicating Systems By Constraint-Solving. In Proe. of the 7th International Conference on
Formal Description Techniques, 1994.

