
Pipelining-Dovetailing: A Transformation to 
Enhance Software Pipelining for Nested Loops* 

Jian Wang and Guang R. Gao 

School of Computer Science 
McGill University 

3480 University Street 
Montr6al, QC 

Canada, H3A 2A7 
email: {jwang, gao }~acaps.cs.mcgill.ca 

A b s t r a c t .  The objective of software pipelining is to generate code which 
can maximally exploit instruction-levelparallelism (ILP) in modern multi- 
issue processor architectures, such as VLIW and superscalar processors. 
Since the amount of ILP is usually fixed to a small number, four - eight, 
using state-of-the-art software pipelining scheduling techniques, modern 
compilers have been able to schedule instructions in a small window of 
successive iterations and keep the machine resources usefully busy. To 
maximally take advantage of software pipelining, it is beneficial if the 
number of iterations of the loops to be software pipelined is large (called 
trip counts in this paper). Therefore, software pipelining of nested loops 
becomes important, especially when the innermost loops have smaller 
trip counts. 
This paper presents a loop transformation which extends software pipelin- 
ing from the innermost loops to the enclosing loop nests. Unlike some 
popular loop transformation techniques (e.g. unimodular transforma- 
tion) targeted to multi-processor machines (where the goal has been to 
maximally expose loop-level parallelism i.e. the transformed loop nests 
have maximum number of doall loops), the goal of our transformation, 
pipelining-dovetailing, is to extend the software pipelining of the inner- 
most loop to the surrounding loop nests. Thus all iterations of the loop 
nests can be smoothly software pipelined through, and the number of 
effective trip counts is maximized. We also define the condition under 
which pipelining-dovetailing is valid. As a result, a software pipelining 
framework is derived for loop nests which integrates software pipelining 
and pipelining-dovetailing together. 

Keywords :  Instruction-Level Parallelism, Fine-Grain Parallelism, Soft- 
ware Pipelining, Loop Scheduling, Nested Loop, Very Long Instruction 
Word(VLIW), Superscalar 

* This work was supported by research grants from NSERC, Micronet - Network Cen- 
ters of Excellence, Canada. 



1 Introduct ion 

Exploiting Instruction-Level Parallelism [1] for loop programs has become a ma- 
jor challenge in the design of optimizing compilers for high-performance com- 
puter architectures. To this end, software pipelining has been proposed to sched- 
ule instructions from several consecutive iterations of an innermost loop for 
overlapped execution. Over the past decade, software pipelining has been widely 
studied and it is now successfully used in modern compilers to effectively ex- 
ploit instruction-level parallelism under the resource and register constraints 
[2, 3, 4, 5, 6, 7, 8, 91. 

Up to now, most proposed software pipelining approaches have only focused 
on the innermost loops and little work has been done to apply software pipelining 
across a whole loop nest 2. For a uniprocessor architecture, which has been the 
primary target of software pipelining, the available hardware parallelism is quite 
limited and software pipelining of the innermost loops is quite effective. Note 
that in order to take advantage of software pipelining, it is desirable that a 
loop to be software pipelined should have a large number of iterations (called 
trip counts in this paper). In many applications the innermost loops do have 
reasonably large trip counts, making software pipelining beneficial. 

There are three reasons that software pipelining of outer loops is becoming 
increasingly important. First, since the speeds of innermost loops with long trip 
counts have already been improved significantly by software pipelining, handling 
of those with smaller trip counts may become important - an incentive to extend 
software pipelining to outer loops. Secondly, modern compilers may introduce 
loop transformations such as tiling to improve data locality, as a result the 
transformed loop tiles may have a much smaller trip count at the innermost 
level. Finally, for multiprocessor machines, a loop nest may be partitioned to 
different processors, consequently the loops to be executed on one processor 
may also have smaller trip counts at the innermost level. 

In this paper, we study a software pipelining method applicable to nested 
loops. A main feature of our methodology is to retain the existing (and quite 
mature) framework of software pipelining techniques for innermost loops, and 
investigate how such a framework can be naturally exlended from the innermost 
loops to the enclosing loops. The key question to be answered is how can such 
an extension be done in a smooth and efficient fashion ? 

At the center of our approach there is the following observation: for a major- 
ity of innermost loops to which software pipelining has been successfully applied, 
there is enough instruction-level parallelism across a few iterations of the loop 
body to fully utilize the hardware parallelism within the resource and register 
constraints in modern uniprocessor architectures. Therefore, our objective here 
is not to further "widen" the parallelism of the software pipeline (already being 
exploited very well for the innermost loop) by globally scheduling instructions 
from several outer-loop iterations together. Instead, taking a 2 dimensional loop 
nest as an example, we will apply software pipelining to the innermost loop as 

2 In this paper, we use "loop nest" and "nested loop" interchangeably. 



before, but try to "dovetail" the end of one outer loop iteration - an already soft- 
ware pipelined loop body - to the beginning to the next (also software pipelined). 
In other word, we would like to effectively stretch the whole loop nest as a long 
software pipeline with a fixed width (the same as the innermost one), such that 
the total trip count is now increased to the number of iterations of the entire 
loop nest. 

This paper will present a new transformation - called pipelining-dovetailing 
to make the above "dovetail" possible. However, this transformation is quite 
different from some popular loop transformation techniques (e.g. unimodular 
~ransformations) targeted to multiprocessor machines where the goal has been 
to maximally expose loop-level parallelism i.e. the transformed loop nests should 
have maximum numbers of doall loops [10, 11, 12, 13]. The goal of our trans- 
formation is to effectively extend the software pipelining of the innermost loop 
to the surrounding loop nests so that all iterations of the loop nests can be 
smoothly software pipelined through, and the number of effective trip counts is 
maximized. Our loop transformation does not need to make the innermost loop 
or any of the enclosing loops into doall  loops! In other word, our loop transfor- 
mation does not perform any global scheduling and that explains the simplicity 
of the resulting algorithm. 

It is important to note that we should view our techniques and previous 
loop transformation techniques (e.g. unimodular transformation, tiling, etc.) as 
complementary to each other - -  each can be applied for their own purpose 
at a different phase in a compiler. For example, one can imagine that some 
unimodular transformation or tiling may be performed at an earlier phase of 
compilation for parallelization or storage optimization, then our technique can 
be applied at the later code generation phase. 

This paper is organized as follows: The next section gives a brief introduc- 
tion to software pipelining and the data dependence representation of loop nests, 
making this paper self-contained. Section 3 consists of the motivating examples 
which highlight the principle of pipelining-dovetailing and discusses the rela- 
tion with unimodular loop transformation. In Section 4, we present a sufficient 
condition under which pipelining-dovetailing is valid. The performance analysis 
is given in Section 5. Section 6 compares our approach with the related work. 
People assume the last section is a conclusion. 

2 B a c k g r o u n d  

2.1 Sof tware  P ipe l in lng  

Software pipelining is an efficient instruction-level loop scheduling technique. It 
tries to overlap the execution of operations from several consecutive iterations 
of a loop under the constraints of data dependences and resources. Figure 2.1 
gives an example of software pipelining. A software pipelined loop consists of 
three parts: the prelude and the postlude which are executed exactly one time, 



and the software pipelined loop body a which may be executed many times. The 
length of the software pipelined loop body is called initiation interval(II). I I  = 1 
for this example. 

(a) a loop 

sl sl prelude 
s2 sI s2 sl 
s3 s2 sl 

s3 s2 sl v[ [ software pipclined 
s3 s2 sl s3 s2 s l ~  n-2 loop body 

s3 s2 
s3 s2 s3 ...... postlude 

s3 

(b) software pipelining (c) software pipelined loop 

Figure 2.1 An example of software pipelining 

Software pipelining can be combined with a loop unrolling transformation 
to improve its performance. We often consider a software pipelining technique 
with loop unrolling in such a way that  we first unroll the loop and then software 
pipeline the unrolled loop without any unrolling. 

The data  dependences of a single-level loop can be represented by a Data 
Dependence Graph (DDG), (O, E, A, 6), where O is the operation set, E is the 
dependence edge set, A is the dependence distance and/~is the delay. A and/~ are 
two non-negative integers associated with each edge. For example, e = (op, op') 
and (A(e), 6(e)) denote that  op' can be only issued 6(e) cycles after the start  of 
the operation op of the A(e)th previous iteration [14]. Not more formally, we can 
define software pipelining without loop unrolling as follows: 

Construct a loop schedule a, a mapping function from O x N to N (N is the 
positive integer set), a(op, i) denotes the execution cycle where the instance of 
operation op of ith iteration is issued. If the following constraints are satisfied: 

1. Resource constraints: In each cycle, the same resource can not be used more 
than once. 

2. Dependence constraint: Ve = (opi,opj) E E, Vk E N,  tr(opi,k) + 6(e) < 
k + 

3. Cyclicity constraint: tr must be expressible in the form of a loop, that  is, 
~ I I  E N,  Vop E O, Vi E N and i > O, er(op, i) = a(op, 1) + I I  * (i - 1). 

then we say that  a is a valid loop schedule for the given loop. I I  is called the 
initiation interval of a. The goal of software pipelining is to find a valid loop 
schedule with the minimum initiation interval. 

a There are some other names, e.g. the steady state, the repeating pattern, the new 
loop body. 



2.2 T h e  D a t a  D e p e n d e n c e  R e p r e s e n t a t i o n  o f  L o o p  N e s t s  

The data  dependence representation of a single-level loop should be extended 
for loop nests. For simplicity of formulation, we only consider normalized perfect 
nested loops 4 [15] as shown in Figure 2.2, but the ideas presented in this paper 
can be extended to any nested loop. 

foril = I toNI do 

for i2 = I to N2 do 

for im= I to Nm do 

be~ 
sl; 

s2; 

.,...~ 

sn; 

end 

Figure 2.2 The perfect nested loop 

Each iteration in a nested loop of depth m is identified by its index vector 
(i1,i2, ..., ira), where ik is the value of the kth loop index in the nested loop, 
numbered successively from the outermost loop to the innermost loop. In a 
sequential loop, the iterations are thus executed in lexicographic order of their 
index vectors [15]. 

Therefore, an instance of an operation op in a nested loop is represented as 
(op, (il, i2, ..., ira)). For any two instances, (op, (il, i2, --., i,n)) and (op I, (i~, i[, ..., i~m)), 
if there is a data  dependence between them, then we say there is a data  depen- 
dence between op and op' with a distance vector [15] of (dl, d2, ..., din), where 
dk = i~ - ik, Vk = 1,2, .... m. Like the data  dependences in a single-level loop, 
there is also a delay ~ associated with each dependence in a nested loop. 

However, for some nested loops, their data  dependences may not he repre- 
sentable with a finite set of distance vectors. In this case, extensions to include 
direction vector [15] are necessary. 

The direction vector (07,02, ..., 0m) of two iterations (il, i2 ..... ira) and (i~, i[, ..., i~n ) 
is defined by, for all j (1 < j _< m) 

. !  
' < ' i fz~  - i j  > 0 

Oj = ' = ' i f s ]  ij = O 
i > , i f s j  i j < O  

4 In this paper, "nested loop" or "loop nest" refers to the normalized perfect nested 
loop unless it is specified. 



A direction vector may contain the symbol ~*~ which stands for an arbitrary 
relationship between corresponding components of two iterations. (=,  <, , ) ,  for 
example, stands for the set {(=, <, <), (=, <, >), (=, <, =)}. 

6 
for il=l to 2 do "~ 

for i2=I to 10 do ((0,0),0 

sl" T=A[il- 1,i2- I]+B [il,i2]; 
s2" A[il,i2l=T*B[il,i2l; ((0,0),1) 
s3: C[il,i2]=A[il,i2]+5; 

end 

(1) a nested loop and its DDG 

sl; 
s2;sl; 

[ s3;s2;sl; i ~  8 

s3;s2; 
s3; 

(3) unrolling the outer loop 

sl; 
s2;sl; 

s3;s2;sl; 1 8  

sl; s3;s2; 

s2;sl; s3; 

s3;s2;sl; 1 8 

s3;s2; 
s3; 

Figure 3.1 

r 

for il=l to 2 do 

begin 

sl; 

((1,1),1) s2; sl; 
for i2=3 to 10 do 
bc~n 

s3; s2; sl; 
end 

s3; s2; 
s3; 

end 

(2) software pipelining of 
Uae innermost loop 

sl; 
s2;sl; 

s3;s2; 
s3; 

sl; 
s2;sl; 

for i1=1 to 2 do 
for i2=lb(il) to 10 do 
begin 
s3;s2;sl; 

end 

(4) dovetailing 

(5) merging 
s3;s2; 

s3; 

(6) re-writing in the form 
of a nested loop 

The Principle of Pipelining-Dovetailing 

3 P i p e l i n i n g - D o v e t a i l i n g :  M o t i v a t i n g  E x a m p l e s  

3.1 T h e  P r i n c i p l e  o f  P i p e l i n i n g - D o v e t a i l i n g  

Let us first describe the principle of pipelining-dovetailing with a simple nested 
loop shown in Figure 3.1(1), where the value on each dependence edge denotes 
the distance vector and the delay. The distance vector (0,0) represents a loop- 
independent dependence. Assume we software pipeline the innermost loop as 



shown in Figure 3.1(2). Imaging that we fully unroll the outer loop as shown in 
Figure 3.1(3). Now, we present a transformation, called dovetailing, to transform 
Figure 3.1(3) to (4). In Figure 3.1(3), the prelude of the second software pipelined 
loop can be moved upward to fit together with the postlude of the first software 
pipelined loop, thus generating Figure 3.1(4). It is easy to check that all data 
dependences are satisfied in Figure 3.1(4) so the dovetailing is valid for this 
example. Guaranteeing a valid dovetailing will be theoretically detailed in the 
next section. After dovetailing, the loop in Figure 3.1(4) can be merged as shown 
in Figure 3.1(5), which is always valid since we do not change the execution order 
of the loop iterations. We re-write the merged loop in the form of a nested loop 
as shown in Figure 3.1(6), where lb(il) means that i2 should count from 3 if 
i l  - 1, otherwise from 1. We call ~pipelining-dovetailing" the transformation 
from Figure 3.1(2) to Figure 3.1(6). 

3.2 T w o  Full Examples  of  P ipe l in ing-Doveta i l ing  

Next we discuss two examples to illustrate the applications of pipelining-dovetailing. 
The first example illustrates how pipelining-dovetailing improves the efficiency 
of software pipelining of the innermost loop. We can also see the simplicity, 
the low computation complexity and the low implementation cost of pipelining- 
dovetailing in the first example. The second example can not be pipelining- 
dovetailed due to data dependence constraint. 

The first example is shown in Figure 3.2(a). After the innermost loop is 
software pipelined, we get the nested loop shown in Figure 3.2(b). Although 
the instruction-level parallelism within the innermost loop is fully exploited, 
its prelude and postlude are executed N1 �9 N2 times, thus the whole nested 
loop can not be efficiently executed on a VLIW/superscalar processor. If we 
apply pipelining-dovetailing to it, however, then the final nested loop is shown 
in Figure 3.2(c) where the prelude and the postlude are only executed once. 
The lower bound of i3 should be rewritten so that it counts from 5 instead of 
1 when il  = 1 and i2 - 1. We can see that the whole nested loop is in the 
form of software pipelining in Figure 3.2(c). It is not difficult to check that all 
dependences are satisfied in the loop of Figure 3.2(c) so pipelining-dovetailing is 
valid for this example. 

Now we do a simple quantitative anMysis to see how pipelining-dovetailing 
improves the efficiency of software pipelining. Let N1 = N2 = N3 = 10, and 
the execution time of each operation is one cycle, then the originM nested loop 
in Figure 3.2(a) needs Tor~ = (1 + 1 + 1 + 1 + 1) �9 10 * 10 * 10 = 5000 cycles; 
the loop in Figure 3.2(b) needs T~,n = (4 + 4) �9 10 �9 10 + 1 * 10 * 10 �9 6 = 1400 
cycles; the loop in Figure 3.2(c) needs Tpd = 4 + 4 + 1 * (10 �9 10 * 10 -- 4) = 1004 
cycles. Therefore, software pipelining of the innermost loop gets the speedup of 
Tori/Tinn = 3.57 over the original loop; but software pipelining plus pipelining- 
dovetailing can get the speedup of Tori/Tpd -- 4.98 over the original loop, and 
an improvement of 28.29% over software pipelining the innermost loop only. 

We give the second example in Figure 3.3. The nested loop in Figure 3.3(a) 
can not be pipelining-dovetailed due to the dependence edge from s2 to Sl. 



Readers  can easily check tha t  this edge will be viola ted if we software pipeline 
the  innermost  loop and then do pipel ining-dovetai l ing directly. 

T h e  next  section will develop a condi t ion under  which pipel ining-dovetai l ing 
is guaranteed  to be valid. 

f 
for i1=1 to N1 do ( s l  

for i2=1 to N2 do 
for i3=1 to N3 do ((0,0,0),1) 

be~n 
sl: Tl=A[il,i2-1,i3-1]+C 1; 
s2: A[il,i2,i3]=Tl+C2; ( ( 0 , 0 , 0 ~  

s3" 'I~A[il,i2,i3]*C3; , 
s4: T3=T2*C4; 
sS: B[il,i2,i3]=T3+CS; 

end 

~~ (((0,1,1),I) 

0,0,0),1) 

(a) a nested loop and its DDG 

for i l=l to N1 do 
for i2=1 to N2 do 
be~n 

sl; 
s2; sl; 
s3; s2; sl 
s4; s3; s2; sl; 
for i3=5 to N3 do 
begin 

sS; s4; s3; s2; sl; 
end 
sS; s4; s3; s2; 

sS; s4; s3; 
s5; s4; 

sS; 
end 

(b) software pipelining 
of the innermost loop 

sl; 
s2; sl; 
s3; s2; sl; 
s4; s3; s2; sl; 
for i1=1 to N1 do 

for i2=1 to N2 do 
for i3= L(il,i2) to N3 do 
beg~n 

sS; s4; s3; s2; sl; 
end 

sS; s4; s3; s2; 
sS; s4; s3; 

sS; s4; 
s5; 

(c) valid pipelining-dovetaili.g 

Figure 3.2 Example I 

3.3 R e l a t i o n  w i t h  U n i m o d u l a r  L o o p  T r a n s f o r m a t i o n  

It is impor t an t  to  highlight relat ion between the pipel ining-dovetai l ing transfor-  
ma t ion  we develop in this paper  and the un imodula r  loop t ransformat ion  [16, 10] 



for il=l to 10 do 
for i2=1 to 10do 
for i3=1 to 10 do 
begin 
sl: T=A[il-l,i2+9,i3+8]+CI; 
s2: A[il,i2,i3]=T*C2; 
s3: B [ii,i2,i3]=A[il,i2,i3]+C3; 

end 

((0,0,0), 1 ) ~  ((1'-9'-8)'1) 

( ( 0 , 0 , 0 ~  

(a) a nested loop and its DDG 

for il=l to 10 do 
for i2=1 to 10 do 
beg~n 
sl; 
s2; sl; 
for i3=3 to 10 do 
begin 
s3; s2; sl; 

end 
s3; s2; 

s3; 
end 

(b) software pipelining 
of the innermost loop 

sl; 
s2; sl; 
for il=l to 10 do 
for il=l to 10 do 
for i3= L(i2,il) to 10 do 

begin 
s3; s2; sl; 

end 
s3; s2; 

s3; 
(c) invalid pipelining-dovetailing 

Figure 3.3 Example 2 

which is well known in the field of optimizing and parallelizing compilers. Uni- 
modular loop transformation provides a novel matrix representation to combine 
loop transformations such as loop interchange, loop reversal and loop skewing. 
Its goal has been to maximally expose loop-level parallelism, i.e. the transformed 
loop nests have maximum number of doall loops. Consider the example as shown 
in Figure 3.1(1), since the innermost loop is already a doa l l  loop in effect, uni- 
modular loop transformation may not do anything to further transform it for ex- 
posing instruction-level parallelism in the innermost loop. However, our method 
would perform dovetailing to extend the software pipelining to the outer-loop. 

In fact, we can view pipelining-dovetailing and unimodular loop transfor- 
mation to be complement with each other - -  each can be applied for their 
own purpose at a different phase in a compiler. For example, one can imagine 
that  some unimodular transformation or tiling may be performed at an earlier 
phase of compilation for parallelization or storage optimization, then pipelining- 
dovetailing can be applied at the later code generation phase. 



10 

4 The Condition for Valid Pipelining-Dovetailing 

As discussed in the last section, pipelining-dovetailing is not always valid due 
to data  dependence constraint. In this section, a sufficient condition will be 
presented under which pipelining-dovetailing is valid. 

We first illustrate three concepts - innermost DDG, linearized DDG and 
pipelining-depth - which will be used as a basis in the following discussion. 

The innermost DDG is the DDG of the innermost loop, which retains only 
those dependences which have zeros on all outer dimensions. Figure 4.1(a) is 
an example of the innermost DDG of the nested loop shown in Figure 3.2(a). 
Innermost DDG is traditionally used when software pipelining is applied to the 
innermost level only. 

(a) the innermost DDG 

~ . - ~ ' ( ~  (0,1) 
( 0 , 1 ) ~  

(b) the linearized DDG 

Figure 4.1 The innermost DDG and the linearized DDG 
of the nested loop in Figure 3.2(a) 

The linearized DDG is a new concept we present in this paper, which has 
the same node set and the same edge set as the DDG of a nested loop, but 
each dependence edge's distance vector is linearized into a scalar. For example, 
the dependence distance (0,1,1) of the edge from s2 to sl  in Figure 3.2(a) is 
linearized into 0 * N2 * N3 + 1 * N3 + 1 = N3 + 1, which is the dependence 
distance of the edge from s2 to sl in Figure 4.1(b). The linearized DDG can be 
exactly defined as: 

Given a nested loop and its DDG, G = (O, E, (dl, d2, ..., din), 6) where O is 
the node set, E is the edge set, (dx, d2, ..., d,~) is the distance vector and 6 the 
delay on each edge, the linearized DDG of G, G' = (O I, E ~, A', 6'), is defined by: 

(1) O ' =  O, E '  = E; 

(2) For each edge e, 

A'(e) = N2*Na*. . .*Nm*dl(e)+Na*N4*. . .*Nm*d2(e)+. . .+Nm*dm-l (e)+dm(e);  

(3) For each edge e, 6'(e) = 6(e). 



1] 

In general, given a nested loop, its linearized DDG and its innermost DDG 
have the same node set. Moreover, the edge set of the innermost DDG is a subset 
of the edge set of the linearized DDG. While the innermost DDG is the data 
dependenee constraint when software pipelining is only applied to the inner- 
most loop, the linearized DDG is the data dependence constraint when software 
pipelining is applied to the linearized loop of the nested loop. By "linearizing 
a loop nest", we mean that the loop nest is first completely unrolled and then 
re-rolled into a single level loop. Figure 4.2(1) is an example of a "linearized 
loop". As we can see, the two dimensional iteration space (il,i2) in Figure 3.1(1) 
is linearized into a one-dimensional iteration space ((il,i2)--* (il * 10 + i2)) in 
Figure 4.2(1). 

6 
for k=l to 20 do "~ ~" ~ 
begin (0,1) ~ ~  (11,1) 

sl: T=A[il- 1,i2-1]+B [il,i2]; 
s2: A[il,i2]=T*B[il,i2]; 
s3: C[il,i2]=A[il,i2]+5; (0,1) 

where il= the floor of k/10 s3; 
i2= (k rood 10)+1 

(1) the lineafiz_~ loop and the l i n ~  DDG (2) s o, ft~,.are p.ipelining 
of the nested loop in Figure 3.1(1) me nneanzea Joop 

Figure 4.2 Linearizing a loop nest and software pipelining 

sl;  

s2; sl;  
for k=3 to 20 do 

~gin 
s3; s2; sl;  

end 

s3; s2; 

The pipelining-depth is defined as the number of different iterations which are 
overlapped in the software pipelined loop body. For example, in Figure 3.2(b), 
the pipelining-depth is 5 since there are 5 different iterations being overlapped 
in the software pipelined loop body; while in Figure 3.3(b), the pipelining-depth 
is 3. Pipelining-depth is of an important property: If the dependence distance of 
a loop-enrried dependence is greater than or equal to the pipelining-depth, then 
this loop-carried dependence can be omitted during software pipelining. This 
property is very useful when we software pipeline a loop nest: After the loop nest 
is linearized, some dependence edges may have long dependence distances and 
removal of these edges may simplify the data dependence graph. For example, 
in Figure 4.2, the dependence distance of the edge from s2 to sl is 11, which is 
much greater than the pipelining-depth, 3. 

Now we derive a sufficient condition on the basis of the above three con- 
cepts under which pipelining-dovetailing is valid. Let us recall the principle of 
pipelining-dovetailing illustrated in Figure 3.1. That is, we first software pipeline 
the innermost loop and then do pipelining-dovetailing. This can be regarded as 
to first linearize the loop nest into a single level loop and then software pipeline 
the linearized loop, as shown in Figure 4.2. 

We now see that if the linearized DDG and the innermost DDG are the 



]2 

same, pipelining-dovetailing is definitely valid. If the linearized DDG has more 
dependence edges than the innermost DDG and those edges have large depen- 
dence distances (greater than or equal to the pipelining-depth), according to the 
property of pipelining-depth, pipelining-dovetailing is still valid. Let us take the 
example of Figure 4.2. Although the linearized DDG has an edge from s2 to sl  
which is not in the innermost DDG, the dependence distance of this edge is 11, 
greater than the pipelining-depth, 3, thus pipelining-dovetailing is valid for this 
loop nest. Therefore, we have the following theorem. 

T h e o r e m  4.1 Given a nested loop, let its innermost DDG be (O, E, A, 6), 
the lineaxized DDG be (O, E',  A', ~'), assume pd is the pipelining-depth. If E = 
E' - {ele E E' and M(e) _> pd}, Then the nested loop can be validly pipelining- 
dovetailed. 

Readers can find the proof in the Appendix. 
Although Theorem 4.1 can be used to determine if pipelining-dovetailing is 

valid, it needs to construct innermost DDG and linearized DDG. Our question 
is: can we directly check each dependence distance vector of a given nested loop 
to determine if pipelining-dovetailing is valid? Theorem 4.1 itself provides a hint 
that  we can give the question a positive answer. 

The sufficient condition stated in Theorem 4.1 actually requires that  the 
(linearized) DDG of the nested loop does not include the edges which are not in 
the innermost DDG and whose (linearized) dependence distances are less than 
the pipelining-depth. We have found that  the distance vectors of those edges can 
be expressed in the form of (0, ..., 0, 1, 1 - Ni+l, ..., 1 - Nm-1, d,n) where 1 < i < 
m 5, dm is a negative integer of less than (pd-Nm),  Nj (1 < j < m) is the number 
of iterations of the level-j loop and pd is the pipelining-depth. We call those edges 
dovetailing-prevenfin9 edges since they prevent the valid pipelining-dovetailing. 
Figure 3.3 gives an example of dovetailing-preventing edges, where the edge from 
s2 to sl has the distance vector (1, - 9 , - 8 ) ,  in the form of (1, 1 - 10 , -8)  where 
d m =  - 8  is less than p d -  N,,, = 3 - 10 = -7 .  As discussed in section 3.2, 
This edge prevents the valid pipelining-dovetailing. Thus, we have Theorem 4.2 
(readers can find the proof in the Appendix). 

T h e o r e m  4.2 Given a nested loop, if there is not any dovetailing-preventing 
edge in its DDG, then the nested loop can be validly pipelining-dovetailed. 

Theorem 4.2 gives a very feasible method for applying pipelining-dovetailing. 
Finally, we want to point out that,  the above results can be easily extended 

to the nested loops whose data dependences may include direction vectors. Here 
we only use a simple example to illustrate the extension. 

Given the nested loop, for simplicity, let the number of levels, m = 2. A 
direction vector, say (=, <), is a set of distance vectors, {(0, 1), (0, 2), ..., (0, N 2 -  
1)}. When we construct the DDG of the innermost loop and the linearized 
DDG, we only take the worst case, that  is (0, 1). When we consider the data  
dependences in Theorem 4.2, we still only take the worst case, (0, 1). 

The direction vector, (=, >), is also a set of distance vectors, {(0 , -1) ,  (0 , -2 ) ,  
..., (0, -N2  + 1)}. When we construct the DDG of the innermost loop and the 

s If i = m, the edge is in the innermost DDG. 



]3 

linearized DDG, we only take the worst case, that  is ( 0 , - N 2  + 1). When we 
consider the data  dependences in Theorem 4.2, we still only take the worst case, 
(0,-g2 + 1). 

5 Applicability and Performance Improvement 

The applicability of pipelining-dovetailing depends on how many loop nests in 
practical programs satisfy the condition of Theorem 4.2. According to the form 
of the distance vector of a dovetailing-preventing edge, the condition is quite 
relaxed and we expect that most loop nests may not include any dovetailing- 
preventing edge and satisfy the condition. 

In order to verify the applicability of our method we studied three well known 
benchmarks from SPECfp92 - fppp.f, tomcatv.f and ora.f. We have identified all 
loop nests which are suitable for software pipelining. For each such loop nest we 
examined the dependence relation of the loop body and checked it against the 
condition for dovetailing outlined in the last section. We found that all such loop 
nests in these three programs satisfy the condition so that the dovetailing can 
be successfully applied 6 

It is beyond the scope of this paper to fully assess the performance impact of 
pipelining-dovetailing. However, we found it useful to provide some preliminary 
analysis based on a straight-forward back-to-the-envelop calculation as detailed 
below. 

Given an m-level nested loop, let the execution time of the original loop body 
be T,  N O = N1 * N2 * ... * Nm-1 where Nj is the number of iterations of level-j 
loop, then the execution time of the original nested loop is t0 = N O * Arm * T. 

Assume we only software pipeline the innermost loop, let I I  be the initiation 
interval, then the execution t ime of the software pipelined loop is 

t .p= N o * 2 I I * ( [ T ] - I ) +  N O * ( N m - [ H ]  + 1) .11  = N~ + I T ] -  1)* II.  

We pipelining-dovetail the software pipelined loop. It is not difficult to com- 
pute the execution time of the loop which is software pipelined and pipelining- 
dovetailed 

t.,_p,, = 2zz . (r  T]  - 1 ) +  N O �9 Arm-  r T ] + 1 ) .  I I  

Provided N ~ �9 Arm is large enough compared to [ ~ ] ,  we get the following 
result approximately Gp-p,~ = N o * Nm * II.  

We can compute the performance improvement below 

to to T I 
= - -  - - -  (6.1) tsp_pd tsp I I  * r } + l  ........... 

s We also develop a loop transformation to transform those loop nests which include 
dovetailing-preventing edges such that they satisfy the condition. However, due to 
the limitation of the paper's length, we can not present this work in this paper. 



]4 

N m Where ,1 = [ ~ ] - t "  
From equation (6.1), we directly have the following conclusions: 

1. The efficiency of pipelining-dovetailing only depends on ~ and Nm; 
2. When ~ is large and N,n is small, the efficiency of pipelining-dovetailing is 

significant; 
3. When T is small and Nm is large, it is not necessary to do pipelining- 

dovetailing; 
4. After software pipelining the innermost loop, we can get ~t, thus make a 

decision whether or not it is worth to do pipelining-dovetailing; 
5. Note that, in order to transform the innermost loop into a doall loop, the 

leading loop transformation techniques [10] tend to cause a large T and a 
small Nm of the innermost loop, which indicating that pipelining-dovetailing 
is very promising. 

6 R e l a t e d  W o r k  

Most of existing software pipelining methods have been focused on the innermost 
loops. In [17] and [4], an approach has been presented to deal with nested loops 
(in [4], it is called hierarchical reduction); that is, first software pipeline the 
innermost loop, then reduce the software pipelined loop as a single node in the 
body of outer loop so that the outer loop can be software pipelined further. 

Another software pipelining method for nested loops has been presented in 
[18], where the loop schedule ~ was defined as 

L/rx * ix + T2 �9 i2 + ... + �9 + A ( s j ) j  
o'( s j  , (it, i2, ira)) ooo~ 

r 

Tt,T2,. . . ,Tm, A(s j ) ,Vj  = 1,2,...,n, are non-negative integers, r is a positive 
integer, called periodicity. For software pipelining without unrolling, r = 1 and 
the above formula can be simplified below 

~r(sj, (ix, i2,..., ira)) = Tx * it + T2 * i2 +.. .  +Tm * i,~ + A(sj)  

In [18], a method has been presented to determine the optimal 711, T2, ..., Tm 
and A(sj) while, in [i9], a method has been presented to generate the new loop 
based on TI, T2, ..., T,n and A(sj).  The computational complexity of this method 
appears to be quite high. In addition, it remains to be a challenge to handle the 
resource constraint under this method. 

Many loop transformation techniques have been proposed to exploit coarse- 
grain parallelism for multi-processor architectures and vector machines [15, 12, 
20, 21, 11]. Unimodular loop transformation provides a framework to combine 
the loop transformations such as loop interchange, loop reversal and loop skew- 
ing to exploit the maximum degree of parallelism [16, 10]. In [13], the affine 
transformation technique has been presented to extend the work of [10]. We 
have already highlighted the differences of these work from ours in section 1 and 
3.3. 



]5 

7 Conclusion 

In this paper, we have proposed pipelining-dovetailing as a simple method  to 
extend software pipelining from the innermost loop to the enclosing loops in 
a loop nest. We have also formulated the condition under which pipelining- 
dovetailing is legal. 

We anticipate that  software pipelining will become increasingly impor tan t  
for future generation processor architectures with ample instruction-level paral- 
lelism. The method developed in this paper has the advantage that  it  can be built  
upon on the existing software pipelining method,  and appears to be simple to 
implement. Nevertheless, much work remains to be done to assess its feasibility 
in practical compilers. 

Acknowledgments 

We would like to thank Dr. Christine Eisenbeis, Dr. Andreas Krall and Prof. 
Bogong Su for their comments, and thank Mr. Hisham Perry for proof-reading. 
We would also like to appreciate the helpful suggestions from Prof. Uwe Kastens 
and our anonymous referees for improving the presentation of this paper. 

References 

1. B. R. Ran and J.A. Fisher. Instruction-level parallel processing: History, overview 
and perspective. The Journal of Supercomputing, 7(1), January 1993. 

2. B.R. Ran and C.D. Glaeser. Some scheduling techniques and an easily schedulable 
horizontal architecture for high performance scientific computing. In proceedings 
of the l~th ]nternatlonal Symposium on Microprogramming and Microarchitectures 
(MICRO-I~), pages 183-198, October 1981. 

3. K. Ebcioglu and T. Nak~tani. A new compilation technique for paralelizing loops 
with unpredictable branches on a vliw architecture. In A. Nicolau D. Gelernter 
and D. Padua, editors, Languages and Compilers for Parallel Computing, pages 
213-229. Pitman/The MIT Press, London, 1989. 

4. M.S. Lain. A Systolic Array Optimizing Compiler. PhD thesis, CMU, 1987. CMU- 
CS-87-187. 

5. C. Eisenbeis, W. Jalby, and A. Lichnewsky. Compile-time optimization of mem- 
ory and register usage on the cray-2. In proceedings of the second Workshop on 
Languages and Compilers, 1989. 

6. A. Aiken and A. Nicolan. A realistic resource-constrainted software pipelining al- 
gorithm. In T.Gross A. Nicolau, D. Gelernter and D. Padua, editors, Languages 
and Compilers for Parallel Computing, pages 274-290. Pitman/The MIT Press, 
London, 1991. 

7. R. Huff. Lifetime-sensitive modulo scheduling. In proceedings of ACM SIGPLAN 
PLDI, pages 258-267, June 1993. 

8. Q. Ning and G.R. Ga~. A novel framework of register allocation for software 
pipelining. In proceedings of POPL, January 1993. 



16 

9. Jian Wang, Christine Eisenheis, Martin Jourdan, and Bogong Su. Decomposed 
Software Pipelining: A new perspective and a new approach. International Journal 
of Parallel Programming, 22(3):357-379, 1994. 

10. Michael E. Wolf and M. S. Lain. A loop transformation theory and an algorithm 
t o  maximize parallelism. IEEE Transactions on Parallel and Distributed Systems, 
2(4), 1991. 

11. U. Baaerjee. Loop Transformations ]or Restructuring Compilers. Kluwer Aca- 
demic, 1993. 

12. A. Darte, L. Risset, and Y. Robert. Loop nest scheduling and transformations. In 
proceedings of Environments and Tools ]or Parallel Scientific Computing, 1992. 

13. Amy W. Lira and M. S. Lain. Communication-free parallelization via atiine trans- 
formations. In proceedings o] LCPC'9~, 1994. 

14. F. Gasperoni. Compilation techniques for vliw architectures. Technical Report 
TR435, New York University, March 1989. 

15. Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Com- 
puters. ACM Press, New York, 1990. 

16. U. Banerjee. Unimodular transformations of double loops. In proceedings of the 
3rd Workshop on Languages and Compilers for Parallel Computing, 1990. 

17. Bogong Su, Shiyuan Ding, Jian Wang, and Jinshi Xia. GURPR-a method for 
global software pipelining. In proceedings of the ~Oth Annual International Work- 
shop on Microprogramming (MICRO-~O), pages 88-96. ACM and IEEE, November 
1987. 

18. Guang R. Ga~, Qi Ning, and Vincent Van Dongen. Extending software pipelining 
techniques for scheduling nested loops. In proceedings of the 6th Workshop on 
Languages and Compilers for Parallel Computing, 1993. 

19. Ki chang Kim and Alexandru Nicolau. Parallelizing tightly nested loops. In pro- 
ceedings of International Conference on Parallel Processing, 1991. 

20. P. Feautrier. A collection of papers on the systematic construction of parallel and 
distributed programs. Technical Report Hors-serie, Lab. MASI, Universite P. et 
M. Curie, 1992. 

21. M. J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam- 
bridge, MA, 1989. 

Appendix: The Proofs of  Theorem 4.1 and 4.2 

T h e o r e m  4.1 Given a nested loop, let its innermost DDG he (O, E,  A, ~), the 
linearized DDG he (O,E~,~',6~), assume pd is the pipelining-depth. If E -- 
E ~ - {ele E E ~ and ~(e)  > pd}, Then the nested loop can be validly pipelining- 
dovetailed. 

P r o o f :  We first software pipeline the innermost loop and then do pipelining- 
dovetailing for the whole nested loop, which is equivalent to that  we software 
pipeline the whole nested loop in its lexicographic order under the data  depen- 
dence constraints given in the linearized DDG. Therefore, we only need to show 
that ,  given the condition of the theorem, the linearized DDG is satisfied if the 
DDG of the innermost loop is satisfied. From the property of pipelining-depth, 
we can remove those loop-carried dependences whose dependence distances are 
greater than or equal to pd since they will he automatically satisfied. Further- 
more, from the condition of the theorem, after those loop-carried dependences 


