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Abstract 
A well-known code transformation for improving the run-time performance of  a program is loop 
unrolling. The most obvious benefit of  unrolling a loop is that the transformed loop usually 
requires fewer instruction executions than the original loop. The reduction in instruction 
executions comes from two sources: the number of  branch instructions executed is reduced, and 
the control variable is modified fewer times. In addition, for architectures with features designed 
to exploit instruction-level parallelism, loop unrolling can expose greater levels of  instruction- 
level parallelism. Loop unrolling is an effective code transformation often improving the 
execution performance of  programs that spend much of  their execution time in loops by 10 to 30 
percent. Possibly because of  the effectiveness of  a simple application of  loop unrolling, it has not 
been studied as extensively as other code improvements such as register allocation or common 
subexpression elimination. The result is that many compilers employ simplistic loop unrolling 
algorithms that miss many opportunities for  improving run-time performance. This paper 
describes how aggressive loop unrolling is done in a retargetable optimizing compiler. Using a 
set o f  32 benchmark programs, the effectiveness o f  this more aggressive approach to loop 
unrolling is evaluated. The results show that aggressive loop unrolling can yield additional 
performance increase of  lO to 20 percent over the simple, naive approaches employed by many 
production compilers. 

Keywords: Loop unrolling, Compiler optimizations, Code improving transformations, 
Loop transformations. 

1 Introduction 
A well known programming rule of thumb is that programs spend roughly 90% of their 
time executing in 10% of the code [Henn90]. Any code transformation which can 
reduce the time spent in these small, critical portions is likely to have a measurable, 
observable impact on the overall execution time of the program. This critical 10% of 
the code frequently consists of loops. Therefore, code improvement techniques that 
speed up the execution of loops are important. One such technique is loop unrolling. 
Loop unrolling replicates the original loop body multiple times and adjusts the loop 
termination code. The primary effect is a reduction in the total number of instructions 
executed by the CPU when the loop is executed. The reduction in instructions executed 
comes from two sources: the number of branch instructions executed is reduced, and the 
number of increments of the control variable is reduced. In addition, loop unrolling, in 
conjunction with other code optimizations, can increase instruction-level parallelism 
and improve memory hierarchy locality [Alex93, Baco94, Davi94, Davi95a, Mah192]. 
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When implementing this transformation in a production compiler, three 
questions regarding the way to do loop unrolling most effectively arise: when should it 
be done, how should it be done, and what kinds of code bodies should it be applied to? 
Although loop unrolling is a well-known code improvement technique [Dong79, 
Weiss87], there has not been a thorough study that provides definitive answers to these 
questions. 

Possibly because of the lack of definitive answers, many production compilers 
use simplistic approaches when applying loop unrolling. We examined how loop 
unrolling was performed by various compilers on seven current architectures. The 
architectures were the DECstation 5000/125 (MIPS R3000 chipset), SGI RealityEngine 
(MIPS R4000 chipset) [Kane89], the DEC 3000 (Alpha 21064 chipset) [Digi92], the 
IBM model 540 (IBM RS6000 chipset) [IBM90], the SUN SPARCStation IPC 
(LSISIc0010 chip) [Sun87] and the SUN SPARCServer (Sun SuperSparc chipset). For 
each platform, we examined how the native C compiler and the GNU C compiler 
performed loop unrolling. 

The native compilers on the R4000 (ELF 32-bit executable version 1), R2000 
(version 2.1), SuperSparc (ELF 32-bit executable version 1) and the Alpha (3.11-6) 
unroll f o r  loops which have a single basic block and do not have any function calls. 
These compilers do not unroll loops with complex control flow. They do not unroll 
loops formed using while and goto statements also. Unfortunately, as this study 
shows, loops with complex control flow form a sizable percentage of the loops. 
Consequently these compilers forgo many opportunities for producing better code. The 
native compiler on the RS6000 (version 3.1) does unroll loops with complex control 
flow. However, after unrolling it fails to eliminate redundant loop branch instructions 
from an unrolled w h i l e  loop. Furthermore, the compiler does not unroll loops formed 
using g o t o  statements. The native compiler on the SUN IPC (Version 1.143) does not 
unroll loops. The GNU C compiler (versions 2.2.2, 2.4.5, 2.6.3) has the same limitations 
as the native compiler on the RS6000. Furthermore, it does not eliminate redundant loop 
branch instructions from an unrolled counting f o r  loop with a negative stride. The 
above survey of current technology indicates that the approach of existing optimizing 
compilers to loop unrolling is not uniform. 

The lack of a thorough study of unrolling and the uneven application of unrolling 
in production compilers motivated us to thoroughly analyze loop unrolling and examine 
the issues involved. This paper presents the results of a thorough compile- and run-time 
analysis of loop unrolling on a set of 32 benchmarks programs. The results of the 
analysis show that loop unrolling algorithms that only handle loops which consist of a 
single basic block and whose iteration count can be determined only at compile time 
miss many opportunities for creating more efficient loops. Using the benchmark 
programs, we analyzed the effectiveness of aggressive loop unrolling on run-time 
performance. Our measurements show that aggressive loop unrolling can yield 
performance increases of 10 to 20 percent for some sets of benchmarks over the simple, 
naive approaches employed by many production compilers, and that for some programs 
increases in performance by as much as 40 to 50 percent are achieved. 
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2 Terminology 
This section defines the frequently used terms in this paper. 

Loop branch: The loop code instruction(s) that check the loop control variable 
and decide if control should exit the loop. The number of instructions comprising the 
loop branch can vary. The basic block containing these instructions is called the loop 
branch block. 

Loop body: The loop code minus the loop branch instruction(s). A loop body 
may contain several basic blocks. 

Counting loop: A loop whose iteration count can be determined either at compile 
time or at execution time prior to the entry into the loop code. 

Compile-time counting loop: A counting loop whose iteration count is trivially 
known at compile time. 

Execution-time counting loop: A counting loop whose iteration count is not 
trivially known at compile time. 

Unrolled loop: A loop whose loop body consists of multiple copies of the loop 
body of a rolled loop. A loop unrolled n times consists of (n + 1 ) copies of the loop 
body of a rolled loop. The unroll factor is n. 

Prologue(Epilogue) code: If the iteration count of a rolled loop is not an integral 
multiple of the unroll factor + 1, then as many as unroll factor iterations are executed 
separately. These iterations are called leftover iterations. The code which executes these 
iterations is called the Prologue (Epilogue) code. 

Candidates for unrolling: All innermost counting loops are candidates for 
unrolling. 

3 How and When to Unroll 
An optimizing compiler is likely to apply loop unrolling in conjunction with other code 
optimizations. The question is how and when should loop unrolling be applied? 

Automatic unrolling can be done on source code, early on the unoptimized 
intermediate representation, or very late on an optimized, low-level representation of 
the program. If it is done at the source-code level, then typically only counting loops 
formed using f o r  statements are unrolled. Unrolling loops formed using other control 
constructs is difficult since the loop count is not obvious. If automatic unrolling is 
applied at the intermediate-code level, then a sophisticated system to perform loop 
analysis is required to identify anything beyond counting loops containing more than 
one basic block. Introducing such a system at this level is a wasteful duplication of 
effort, because recent research has shown that loop optimizations are more beneficial if 
they are done in the compiler back end [Beni94]. Additionally, performing unrolling 
early has a greater impact on compilation time because more code must be processed 
by subsequent phases of the compiler. 

Another important question concerning the implementation of loop unrolling is 
how many times a loop should be unrolled. Most of the benefits from unrolling are due 
to the elimination of branches. If loops are unrolled 15 times, then 93.75% of the 
branches are eliminated. Therefore, an unroll factor of 15 is sufficient to extract most 
of the benefits. Increasing the unroll factor further yields marginal improvement in 
performance. However, unconstrained unrolling can have an adverse impact on the 
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performance if the transformed loop overflows the instruction cache [Dong79, Weis87]. 
The performance degradation depends on the size, organization, and replacement policy 
of the cache. To make sure that the unrolled loop does not overflow the instruction 
cache, it is necessary for the compiler to determine the size of the unrolled loop code in 
terms of machine-language instructions. 

Another important issue concerns register allocation and assignment. If loop 
unrolling is done prior to register allocation and assignment, the register allocator may 
overcommit the registers to the unrolled code. Consequently, there may not be enough 
registers available to apply other useful optimizations such as strength reduction and 
induction variable elimination to the code. This may lead to degradation in 
performance, instead of improvement. 

The above issues are addressed if unrolling is applied to a low-level  
representation of the program late in the optimization process after other traditional 
code optimizations have been done. With this approach, not all phases of the optimizer 
need to be reapplied to the larger unrolled loop bodies which reduces the increase in 
compila t ion time. Furthermore,  back ends of optimizing compilers  contain 
sophisticated loop detection mechanisms. These mechanisms can easily detect both 
structured and unstructured loops. Also, at this stage the size of the loop code is closer 
to its final size. This along with the use of a low-level representation (i.e., machine 
code) allows the most appropriate unroll factor to be determined. Also, since unrolling 
is applied after register allocation has been done, the register pressure will not increase. 
Any artificial dependencies introduced by this approach can be eliminated by applying 
register renaming [Davi95b]. 

4 What to Unroll 
An analysis of loops in 32 benchmarks was performed at compile time to determine the 
complexity and size of loop bodies and the nature of their loop bounds. These 
benchmarks are a mix of Unix utilities, user codes, synthetic benchmarks, numerical 
benchmarks and the C portion of the SPEC benchmark [SPEC89] suite. The 
benchmarks are listed in Table 1. 

The compile-time study consists of two parts. The first part classifies loops on 
the basis of whether they are compile-time counting loops or execution-time counting 
loops. The second part of the study classifies loops on the basis of the complexity of the 
loop body. These parts of the study give an indication of the sophistication required of 
the unrolling mechanism in the compiler. For each study, the percentages given are a 
percentage of the loops in that benchmark that are candidates for unrolling. 

4.1 Loop bounds analysis 
Our experience is that the iteration count of the majority of loops is difficult, and 

sometimes impossible to determine at compile time. An iteration count often cannot be 
determined at compile time because the loop bounds are passed as arguments to the 
function containing the loop. While interprocedural analysis provides some help, loop 
bounds are often based on problem size which are supplied as external inputs to the 
program. In these cases, the iteration count cannot be determined at compile time. 



63 

Type 

Z 

Program Description 

arraymerge Merges two sorted arrays 

bubblesort Sorting algorithm 

puzzle Test recursion 

queens Eight queens problem 

quicksort Sorting algorithm 

shellsort Sorting algorithm 

sieve Sieve of eratosthenes 

cache Cache simulation 

Encodes vpo's files 

Trav. salesman problem 

encode 

sa-tsp 

,.d 
< 

Z 

113 Livermore kernel 3 

114 Livermore kernel 4 

115 Livermore kernel 5 

116 Livermore kernel 16 

linpack Floating-point benchmark 

s006 Kernel by Kuck and assoc. 

s008 Kernel by Kuck and assoc. 

s011 Kernel by Kuck and assoc. 

Table 1: Description oI benchmarks 

Type Program Description 

.......................................... banner Draws a banner 

I Prints out a calender I 

cb ~ C beautifier 

compact Compresses text files 

diff ] Prints differences [ 

o I grep Searches for a string 

nroff ] Document formatter I 

..... .................. od Prints octal dump 
! 

sort I Sorting utility ] 

w c  , W o r d  c o u n t  , 
i 

eqntott PLA optimizer 
i 

r..) xlisp LISP interpreter 
u2 ~., , 

r~ espresso Boolean expr. translation 
t 

gcc Optimizing compiler 

Candidates for unrolling Execution-time counting loops 
Type (percentage) (percentage) 

User 46 89 

Unix 9 35 

Synthetic 54 69 

Numerical 79 73 

SPEC 15 84 

Table 2: Distribution of loops based on loop bounds 

To  d e t e r m i n e  h o w  i m p o r t a n t  it is for  a l o o p  u n r o l l i n g  a l g o r i t h m  to h a n d l e  

execut ion- t ime  count ing  loops, we measured  the percentage  o f  loops that are execut ion-  

t ime count ing  loops. Table  2 contains the results. C o l u m n  2 is the average  percen tage  

o f  loops which  are candidates for unrol l ing in each benchmark  in the f ive  categories .  As  

e x p e c t e d ,  n u m e r i c a l  b e n c h m a r k s  h a v e  a h igh  p e r c e n t a g e  o f  loops  w h i c h  can  be  

unrolled.  On  the other  hand, Unix  utilities have  a low percentage  of  loops which can be 
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unrolled. On the other hand, Unix utilities have a low percentage of loops which can be 
unrolled. Column 3 contains the percentage of candidate loops which are execution- 
time counting loops. Thus, in user codes, on an average 46 percent of loops in each 
benchmark are candidates for unrolling and 89 percent of these candidates are 
execution-time counting loops. These statistics clearly indicate that algorithms that only 
handle compile-time counting loops miss many opportunities for producing more 
efficient code. 

4.2 Control-flow complexity analysis 

For the analysis of the control-flow complexity of loops, we developed a scheme for 
classifying the innermost counting loops based on the complexity of their loop bodies. 
The classification scheme has six categories and is cumulative in nature t. Figure 1 
shows this classification. The first category contains loops which have a single basic 

Z 

t I 
Category t 

-B 

Catugory iii 

Category IV "4- 

I ] 

Category V 

Categop/I + 

Category II 

. . . . . . . . . .  

E-7 
ca~gory Iv 

Category V + 

Category Vl 

Fig: 1. Categories of loops. 

block and no function calls. The second category contains loops which have a single 

?That is, category n contains all the loops in category n - 1. 
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basic block and function calls. The third category includes loops which have internal 
branches t but no function calls. The fourth category permits function calls also. The 
fifth category permits loops which have multiple exits, but have no function calls. The 
sixth category allows function calls also. 

Table 3 shows the statistics related to this classification. Column 1 contains the 
type of benchmark. Columns 2 indicates the average percentage of loops in each 
benchmark in a benchmark category which are candidates for unrolling. Columns 3 
through 8 show the average distribution of loops which can be unrolled in the various 
categories. All measurements are percentages. 

From this table, it is apparent that benchmarks in all the categories have a sizable 
percentage of loops which have more than one basic block. This indicates that if loops 
with only a single basic block are unrolled, a high percentage of loops will not be 
considered. Consequently, unrolling loops consisting of a single basic block only limits 

the effectiveness of loop unrolling. 

Type 
Candidates 

for unrolling 
(Percentage) 

User 46 

Unix 9 

Synthetic 54 

Numerical 79 

SPEC 15 

T a b l e  3: 

Category 
(Percentages) 

I il  Ili IV v Vl 

39 67 78 78 100 100 

38 52 53 72 98 100 

42 74 83 98 100 100 

75 76 94 100 100 100 

29 37 52 66 89 100 

Distribution of loops based on control-flow complexity. 

5 Results 
To measure the impact of aggressive unrolling, we implemented an aggressive loop 
unroller in vpo, a highly optimizing back end that has been used to implement a variety 
of imperative languages such as Ada, C, PL/I, and Pascal. vpo has two characteristics 
that make it an ideal framework for implementing and evaluating aggressive loop 
unrolling algorithms. First, vpo performs all code improvements on a single, low-level 
representation called RTLs (register transfer lists) [Beni94, Davi81]. Within vpo's 
framework, loop unrolling can be applied late in the compilation process after many 
other code improving transformations have been applied and detailed information about 
loops has been gathered by vpo's analysis phase. In addition, the late application of loop 
unrolling and the low-level representation allows vpo to accurately estimate the size of 
loops and choose the largest unroll factor that will not cause the loop to exceed the size 
of the machine's instruction cache. It also means that not all phases of vpo need to 
process the larger loop bodies which minimizes the increase in compilation time. 
Second, vpo's internal program representation and organization permits optimizations 

tThe targets of all conditional and unconditional branches lie inside the loop. 
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tO be reapplied as needed. Because of this, the implementation of loop unrolling is 
simplified as we can rely on these phases to remove any inefficiencies introduced by 
unrolling. 

Figure 2 contains a diagram of the organization of vpo. Vertical columns 

Source 
Code ---~ Front End ~ - ~  

vpo 
Basic Block Optimizations 

Instruction Selection 
Evaluation Order Determination 

Local Register Allocation 
Common Subexpression Elimination 

Copy Propagation 
Dead Variable Elimination 

Global Register 
Allocation and 

Assignment 
Code Motion 

Loop ~ 
Detection Strength Reduction 

Induction Variable 
Elimination 
Recurrence 
Detection 

Instruction Scheduling 

Object Code 

Global 
Data-Flow 
Analysis 

Stream 
Opts 

Fig: 2. Schematic of vpo-based C compiler. 

represent logical phases which operate serially. Columns that are divided horizontally 
into rows indicate that the sub-phases of the column may be executed in an arbitrary 
order. For example, instruction selection may be performed at any time during the 
optimization process. Global data-flow analysis, on the other hand, is done after the 
basic block optimizations, instruction selection, and evaluation order determination, but 
before local register assignment, common subexpression elimination, etc. 

To determine the impact of aggressive loop unrolling, we measured the increase 
in performance due to unrolling. We measured both execution cycles/dynamic 
instruction counts and actual CPU time. While measures of execution cycles/dynamic 
instruction counts are useful in understanding the effects of code improvements, they 
do not take into account  other system effects  such as memory  traffic,  cache 
performance, and pipeline stalls which can effect overall execution time. Furthermore, 
most users are concerned with how much faster their program runs when a code 
improvement is applied. Consequently, we felt it important to collect both types of 
measurements. 

We gathered our measurements on a R3000-based DECstation Model 5000/125 
and Motorola 68020 based Sun-3/200 [Moto84]. These two architectures were chosen 
because they represent two ends of the computer architecture spectrum: the DECstation 
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is a RISC architecture while the Sun-3 is a CISC architecture. The measurements for 
the performance increase in execution cycles were taken only on DECstation, while the 
measurements of the performance increase in CPU times have been taken on the 
DECstation as well as the Sun-3. 

As described in Section 3, our loop unrolling algorithm automatically determines 

the best unroll factor n, where 0 < n < 15, to use for each loop. For the DECstation 
5000, all loops were unrolled fifteen times. On the Sun-3, however, the small instruction 
cache size (64 words) limited the amount of unrolling possible. 

5.1 Performance increase 

5.1.1 Reduction in cycle count 
Measurements of execution cycles of all benchmarks except xlisp, espresso and gcc 
were taken using pixie t, an architecture evaluation tool for MIPS processors [Kane89]. 
The unit of measurement is cycles. Performance of benchmarks gcc, espresso and xlisp 
were measured using ease [Davi90], a tool to evaluate architectures. One of the 
measures provided by ease is dynamic instruction counts. It works at the assembly 

t t  language level, and therefore, does not count n o - o p s .  
To determine whether handling execution-time counting loops is important, we 

measured the performance increase of the benchmarks when only compile-time loops 
were unrolled and when both compile-time and execution-time loops were unrolled. 
Figure 3 contains the graph showing the percentage increase using each approach. The 
graph shows that unrolling algorithms that only handle compile-time counting loops are 
much less effective than algorithms that also handle execution-time counting loops. 

A second set of measurements was performed to determine the benefits of 
handling loops with complex control flow. Using the categories described in Figure 1, 
we measured the percentage increase in performance for each set of benchmarks as 
loops with increasingly complex control-flow are handled. Figure 4 shows the 
percentage performance increase for each set of benchmarks and average performance 
increase across benchmark categories. We measured performance increase for each 
benchmark set because we were interested to see if the percentage increase depended 
on the type of benchmark. 

In user codes, the benchmarks encode and cache slow down due to unrolling. 
This is because the unrolled loops in the two benchmarks are not executed enough 
number of times to amortize the cost of loop unrolling. Encode has an execution-time 
counting loop whose iteration count is less than sixteen. Since the unroll factor used on 
the DECstation is 15, only the epilogue code is executed, and the unrolled portion of the 
code is not executed at all. The overhead incurred in computing the iteration count of 
the unrolled loop slows down the benchmark. If the unroll factor had been lower, then 
the unrolled loop would have been executed, yielding benefits. Thus, increasing the 
unroll factor can have a negative impact on the performance.The benchmark cache 
slows down when loops with a single basic block and function calls are unrolled 
because the unrolled loop is not executed enough times to amortize the cost of  

tThe code breaks if compiled with pixie. 
t tOn R2000, scheduling is done by the assembler, and therefore, no-ops are inserted by it. 
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0 ~ Unix Numerical Synthetic SPEC 
Benchmarks 

I ~ Compile-Time Counting Loops ~ Execution*Time Counting Loops I 

Fig: 3. Performance increase due to unrolling compile-time counting loops and ex- 
ecution-time counting loops on MIPS R2000. 

calculating the loop iteration count and the extra conditional branch. In Unix utilities, 
the performance of cal, difJ and nrof-J improves because of unrolling. The performance 
of other utilities does not improve because they spend a majority of their execution time 
in non-counting loops. 

For numerical benchmarks and synthetic benchmarks, substantial performance 
increase occurs from unrolling loops with internal branches and multiple exits. For 
instance, the performance of bubblesort improves by approximately 50% when loops 
with complex control-flow are unrolled. Similarly, the performance of the benchmark 
sO08 increases by over 50% when loops with internal branches are unrolled. If loops 
with complex control-flow are not unrolled, these benefits would not be attained. 

For SPEC benchmarks, the performance of benchmark eqntott improves by 
approximately 19% when loops with multiple exits and internal branches are unrolled. 
This improvement would not have been obtained if only the loops with a single basic 
block were to be unrolled. The performance of benchmark espresso is marginally better 
if loops with multiple basic blocks are not unrolled. This is because this benchmark 
contains a number of execution-time counting loops with multiple basic blocks which 
have an iteration count of zero or one and the overhead incurred to execute the unrolled 
loop is not amortized. Benchmark xlisp has no improvement since the execution of this 
benchmarks is dominated by non-counting loops, while gcc improves by about 0.7 
percent. 

The combined result shows that while unrolling loops with a single basic block 
is very beneficial, unrolling loops with complex control-flow is even more beneficial. 
The performance of numerical and synthetic benchmarks increases by an additional 
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12% and 17% respectively, when loops with internal branches are unrolled. The 
performance of SPEC benchmarks increases by about 3% when loops with multiple 
exits are unrolled. Clearly, unrolling loops with complex control-flow increases 
performance for various benchmarks. 

5.1.2 Reduction in execution times 
This section presents the increase in performance computed using execution times on 
the DECstation and the 68020-based Sun-3. To measure execution time, the Unix 
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Fig: 4. Percentage increase in performance for benchmarks in all categories by loop 
body complexity on MIPS R2000. 
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Fig: 4. Percentage increase in performance for benchmarks in all categories by loop 
body complexity on MIPS R2000. 

command ~bin~time was used, and the user portion of the execution time was reported 
for each benchmark when loops are rolled and unrolled. Each benchmark was executed 
on a lightly loaded machine five times, the highest and the lowest measurements were 
dropped, and the average of the remaining three measurements was computed. The 
average of performance increase in each category is reported in this paper. Detailed 
results are available in a technical report [Davi95b]. 

Table 3 contains the measurements of the percentage increase in execution time. 
Column 2 gives the average percent increase in performance for a benchmark in each 
benchmark category on the Sun-3. Column 3 contains the percent increase in 

performance on DECstation. These measurements indicate that loop unrolling increases 

Performance increase (%) on Performance increase (%) on 
Type 

M68020 (User Time) DEC R2000 (User Time) 

User -0.74 -0.44 

Unix 0.90 0.47 

Synthetic 15.75 17.42 

Numerical 2.61 21.44 

SPEC 0.07 3.47 

Table 4: Execution-time improvement from unrolling loops on 68020 
and MIPS R2000. 

performance of benchmarks on the DECstation and the Sun-3. The performance 
increase is comparable for non-numerical benchmarks on both the machines. For 
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numerical benchmarks, which perform floating-point computations, the benefits are 
higher on the DECstation. Loop unrolling eliminates conditional branch instructions 
and redundant increments to the induction variable. As a side effect, the unrolled loop 
has an extra counter which is required by the loop which executes the leftover iterations. 
The combined cost of these instructions is significant when compared to the total cost 
of floating-point instructions inside the loops in numerical benchmarks on the 
DECstation. On the other hand, the cost of conditional branches and associated 
instructions required to maintain the loop is not significant when compared to the 
floating-point instructions inside the loops on the Sun-3 t. Therefore, the benefits from 
the elimination of branch instructions and redundant increments is higher on the 
DECstation. Loop unrolling will result in larger performance increase on the 
DECstation (a RISC architecture) if register renaming is applied along with it because 
the instruction pipeline will be better utilized [Davi95b]. In general, the benefits from 
loop unrolling, to a large extent, are contingent on the cost of branch instructions to 
other instructions inside the loop body. 

From the data presented in the above sections, it is clear loop unrolling can be a 
very effective code improvement. Furthermore, to be most effective, loop unrolling 
algorithms must handle loops with complex control flow and loops whose the iteration 
count is not known at compile time. For some programs, performance improvements as 
high as 20 to 50 percent can be achieved when loops are unrolled aggressively. Also, 
loop unrolling does not result in excessive increase in the size of executable code 
[Davi95b]. 

Thus, loop unrolling is similar to many other code improvements, which affects 
only a subset of the programs to which it is applied. It is most beneficial when it is 
applied aggressively to unroll execution-time counting loops and loops with complex 
control -flow. 

6 Previous Work 
Many researchers have presented loop unrolling as a way of decreasing loop overhead. 
Dongarra suggested manual replication of the code body for loops written in 
FORTRAN [Dong79]. Array subscripts and loop increments are adjusted to reflect that 
the loop has been unrolled. Weiss discussed loop unrolling from the perspective of 
automatic scheduling by the compiler [Weis87]. His study considers only Livermore 
loops. This study also discussed the effect of loop unrolling on instruction buffer size 
and register pressure within the loop. 

Mahlke discussed optimizations which can increase instruction-level parallelism 
for supercomputers [Mah192]. Loop unrolling is one of them. By analyzing loops with 
known bounds, they showed that if register renaming is applied after loop unrolling, the 
execution time of the loop decreases. In trace-scheduling and global compaction 
methodology [Fish83, Freu94], loop unrolling is a key feature. Freudenberger discussed 
the effect of loop unrolling on SPEC benchmarks and the way in which it facilitates 
global scheduling and insertion of the compensation code [Freu94]. 

tThe relative cost of a floating-point instruction, when compared to a conditional branch in- 
struction, is higher on Sun-3 than on the DECstation. 
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7 Summary 
While loop unrolling is a well-known code improvement, there has been little 
discussion in the literature of the issues that must be addressed to perform loop 
unrolling most effectively. This paper addresses this deficiency. Through extensive 
compile- and run-time analyses of a set of 32 benchmark programs the paper analyzes 
the loop characteristics that are important when considering loop unrolling. One factor 
analyzed was the importance of handling loops where the loop bounds are not known 
at compile time. The analysis shows that most loops that are candidates for unrolling 
have bounds that are not known at compile time (i.e., execution-time counting loops). 
Consequently, an effective loop unrolling algorithm must handle execution-time 
counting loops. Another factor analyzed was the control-flow complexity of loops that 
are candidates for unrolling. The analysis shows that unrolling loops with complex 
control-flow is as important as unrolling execution-time counting loops. For some 
benchmark programs significant improvements can be gained if loops with complex 
control flow are unrolled. Because handling such loops does not significantly impact 
compilation time or unduly complicate the loop unrolling algorithms, our conclusion is 
that an aggressive compiler should unroll such loops. 

Using tile benchmark programs and a C compiler that implements the algorithms 
for loop unrolling, the effectiveness of the code transformation at improving run-time 
efficiency was measured. Our measurements show that aggressive loop unrolling can 
yield run-time performance increases of 10 to 20 percent for some sets of benchmarks 
over a simple and naive approach, and that for some programs increases in performance 
by as much as 40 to 50 percent are achieved. 
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