
Aggressive Loop Unrolling in a Retargetable,
Optimizing Compiler

JACK W. DAVIDSON and SAN JAY JINTURKAR
{jwd, sj 3e} Ovirginia. edu

Department of Computer Science, Thornton Hall

University of Virginia,

Charlottesville, VA 22903 U. S. A.

Abstract
A well-known code transformation for improving the run-time performance of a program is loop
unrolling. The most obvious benefit of unrolling a loop is that the transformed loop usually
requires fewer instruction executions than the original loop. The reduction in instruction
executions comes from two sources: the number of branch instructions executed is reduced, and
the control variable is modified fewer times. In addition, for architectures with features designed
to exploit instruction-level parallelism, loop unrolling can expose greater levels of instruction-
level parallelism. Loop unrolling is an effective code transformation often improving the
execution performance of programs that spend much of their execution time in loops by 10 to 30
percent. Possibly because of the effectiveness of a simple application of loop unrolling, it has not
been studied as extensively as other code improvements such as register allocation or common
subexpression elimination. The result is that many compilers employ simplistic loop unrolling
algorithms that miss many opportunities for improving run-time performance. This paper
describes how aggressive loop unrolling is done in a retargetable optimizing compiler. Using a
set o f 32 benchmark programs, the effectiveness o f this more aggressive approach to loop
unrolling is evaluated. The results show that aggressive loop unrolling can yield additional
performance increase of lO to 20 percent over the simple, naive approaches employed by many
production compilers.

Keywords: Loop unrolling, Compiler optimizations, Code improving transformations,
Loop transformations.

1 Introduction
A well known programming rule of thumb is that programs spend roughly 90% of their
time executing in 10% of the code [Henn90]. Any code transformation which can
reduce the time spent in these small, critical portions is likely to have a measurable,
observable impact on the overall execution time of the program. This critical 10% of
the code frequently consists of loops. Therefore, code improvement techniques that
speed up the execution of loops are important. One such technique is loop unrolling.
Loop unrolling replicates the original loop body multiple times and adjusts the loop
termination code. The primary effect is a reduction in the total number of instructions
executed by the CPU when the loop is executed. The reduction in instructions executed
comes from two sources: the number of branch instructions executed is reduced, and the
number of increments of the control variable is reduced. In addition, loop unrolling, in
conjunction with other code optimizations, can increase instruction-level parallelism
and improve memory hierarchy locality [Alex93, Baco94, Davi94, Davi95a, Mah192].

60

When implementing this transformation in a production compiler, three
questions regarding the way to do loop unrolling most effectively arise: when should it
be done, how should it be done, and what kinds of code bodies should it be applied to?
Although loop unrolling is a well-known code improvement technique [Dong79,
Weiss87], there has not been a thorough study that provides definitive answers to these
questions.

Possibly because of the lack of definitive answers, many production compilers
use simplistic approaches when applying loop unrolling. We examined how loop
unrolling was performed by various compilers on seven current architectures. The
architectures were the DECstation 5000/125 (MIPS R3000 chipset), SGI RealityEngine
(MIPS R4000 chipset) [Kane89], the DEC 3000 (Alpha 21064 chipset) [Digi92], the
IBM model 540 (IBM RS6000 chipset) [IBM90], the SUN SPARCStation IPC
(LSISIc0010 chip) [Sun87] and the SUN SPARCServer (Sun SuperSparc chipset). For
each platform, we examined how the native C compiler and the GNU C compiler
performed loop unrolling.

The native compilers on the R4000 (ELF 32-bit executable version 1), R2000
(version 2.1), SuperSparc (ELF 32-bit executable version 1) and the Alpha (3.11-6)
unroll f o r loops which have a single basic block and do not have any function calls.
These compilers do not unroll loops with complex control flow. They do not unroll
loops formed using while and goto statements also. Unfortunately, as this study
shows, loops with complex control flow form a sizable percentage of the loops.
Consequently these compilers forgo many opportunities for producing better code. The
native compiler on the RS6000 (version 3.1) does unroll loops with complex control
flow. However, after unrolling it fails to eliminate redundant loop branch instructions
from an unrolled w h i l e loop. Furthermore, the compiler does not unroll loops formed
using g o t o statements. The native compiler on the SUN IPC (Version 1.143) does not
unroll loops. The GNU C compiler (versions 2.2.2, 2.4.5, 2.6.3) has the same limitations
as the native compiler on the RS6000. Furthermore, it does not eliminate redundant loop
branch instructions from an unrolled counting f o r loop with a negative stride. The
above survey of current technology indicates that the approach of existing optimizing
compilers to loop unrolling is not uniform.

The lack of a thorough study of unrolling and the uneven application of unrolling
in production compilers motivated us to thoroughly analyze loop unrolling and examine
the issues involved. This paper presents the results of a thorough compile- and run-time
analysis of loop unrolling on a set of 32 benchmarks programs. The results of the
analysis show that loop unrolling algorithms that only handle loops which consist of a
single basic block and whose iteration count can be determined only at compile time
miss many opportunities for creating more efficient loops. Using the benchmark
programs, we analyzed the effectiveness of aggressive loop unrolling on run-time
performance. Our measurements show that aggressive loop unrolling can yield
performance increases of 10 to 20 percent for some sets of benchmarks over the simple,
naive approaches employed by many production compilers, and that for some programs
increases in performance by as much as 40 to 50 percent are achieved.

61

2 Terminology
This section defines the frequently used terms in this paper.

Loop branch: The loop code instruction(s) that check the loop control variable
and decide if control should exit the loop. The number of instructions comprising the
loop branch can vary. The basic block containing these instructions is called the loop
branch block.

Loop body: The loop code minus the loop branch instruction(s). A loop body
may contain several basic blocks.

Counting loop: A loop whose iteration count can be determined either at compile
time or at execution time prior to the entry into the loop code.

Compile-time counting loop: A counting loop whose iteration count is trivially
known at compile time.

Execution-time counting loop: A counting loop whose iteration count is not
trivially known at compile time.

Unrolled loop: A loop whose loop body consists of multiple copies of the loop
body of a rolled loop. A loop unrolled n times consists of (n + 1) copies of the loop
body of a rolled loop. The unroll factor is n.

Prologue(Epilogue) code: If the iteration count of a rolled loop is not an integral
multiple of the unroll factor + 1, then as many as unroll factor iterations are executed
separately. These iterations are called leftover iterations. The code which executes these
iterations is called the Prologue (Epilogue) code.

Candidates for unrolling: All innermost counting loops are candidates for
unrolling.

3 How and When to Unroll
An optimizing compiler is likely to apply loop unrolling in conjunction with other code
optimizations. The question is how and when should loop unrolling be applied?

Automatic unrolling can be done on source code, early on the unoptimized
intermediate representation, or very late on an optimized, low-level representation of
the program. If it is done at the source-code level, then typically only counting loops
formed using f o r statements are unrolled. Unrolling loops formed using other control
constructs is difficult since the loop count is not obvious. If automatic unrolling is
applied at the intermediate-code level, then a sophisticated system to perform loop
analysis is required to identify anything beyond counting loops containing more than
one basic block. Introducing such a system at this level is a wasteful duplication of
effort, because recent research has shown that loop optimizations are more beneficial if
they are done in the compiler back end [Beni94]. Additionally, performing unrolling
early has a greater impact on compilation time because more code must be processed
by subsequent phases of the compiler.

Another important question concerning the implementation of loop unrolling is
how many times a loop should be unrolled. Most of the benefits from unrolling are due
to the elimination of branches. If loops are unrolled 15 times, then 93.75% of the
branches are eliminated. Therefore, an unroll factor of 15 is sufficient to extract most
of the benefits. Increasing the unroll factor further yields marginal improvement in
performance. However, unconstrained unrolling can have an adverse impact on the

62

performance if the transformed loop overflows the instruction cache [Dong79, Weis87].
The performance degradation depends on the size, organization, and replacement policy
of the cache. To make sure that the unrolled loop does not overflow the instruction
cache, it is necessary for the compiler to determine the size of the unrolled loop code in
terms of machine-language instructions.

Another important issue concerns register allocation and assignment. If loop
unrolling is done prior to register allocation and assignment, the register allocator may
overcommit the registers to the unrolled code. Consequently, there may not be enough
registers available to apply other useful optimizations such as strength reduction and
induction variable elimination to the code. This may lead to degradation in
performance, instead of improvement.

The above issues are addressed if unrolling is applied to a low-level
representation of the program late in the optimization process after other traditional
code optimizations have been done. With this approach, not all phases of the optimizer
need to be reapplied to the larger unrolled loop bodies which reduces the increase in
compila t ion time. Furthermore, back ends of optimizing compilers contain
sophisticated loop detection mechanisms. These mechanisms can easily detect both
structured and unstructured loops. Also, at this stage the size of the loop code is closer
to its final size. This along with the use of a low-level representation (i.e., machine
code) allows the most appropriate unroll factor to be determined. Also, since unrolling
is applied after register allocation has been done, the register pressure will not increase.
Any artificial dependencies introduced by this approach can be eliminated by applying
register renaming [Davi95b].

4 What to Unroll
An analysis of loops in 32 benchmarks was performed at compile time to determine the
complexity and size of loop bodies and the nature of their loop bounds. These
benchmarks are a mix of Unix utilities, user codes, synthetic benchmarks, numerical
benchmarks and the C portion of the SPEC benchmark [SPEC89] suite. The
benchmarks are listed in Table 1.

The compile-time study consists of two parts. The first part classifies loops on
the basis of whether they are compile-time counting loops or execution-time counting
loops. The second part of the study classifies loops on the basis of the complexity of the
loop body. These parts of the study give an indication of the sophistication required of
the unrolling mechanism in the compiler. For each study, the percentages given are a
percentage of the loops in that benchmark that are candidates for unrolling.

4.1 Loop bounds analysis
Our experience is that the iteration count of the majority of loops is difficult, and

sometimes impossible to determine at compile time. An iteration count often cannot be
determined at compile time because the loop bounds are passed as arguments to the
function containing the loop. While interprocedural analysis provides some help, loop
bounds are often based on problem size which are supplied as external inputs to the
program. In these cases, the iteration count cannot be determined at compile time.

63

Type

Z

Program Description

arraymerge Merges two sorted arrays

bubblesort Sorting algorithm

puzzle Test recursion

queens Eight queens problem

quicksort Sorting algorithm

shellsort Sorting algorithm

sieve Sieve of eratosthenes

cache Cache simulation

Encodes vpo's files

Trav. salesman problem

encode

sa-tsp

,.d
<

Z

113 Livermore kernel 3

114 Livermore kernel 4

115 Livermore kernel 5

116 Livermore kernel 16

linpack Floating-point benchmark

s006 Kernel by Kuck and assoc.

s008 Kernel by Kuck and assoc.

s011 Kernel by Kuck and assoc.

Table 1: Description oI benchmarks

Type Program Description

.. banner Draws a banner

I Prints out a calender I

cb ~ C beautifier

compact Compresses text files

diff] Prints differences [

o I grep Searches for a string

nroff] Document formatter I

..... od Prints octal dump
!

sort I Sorting utility]

w c , W o r d c o u n t ,
i

eqntott PLA optimizer
i

r..) xlisp LISP interpreter
u2 ~., ,

r~ espresso Boolean expr. translation
t

gcc Optimizing compiler

Candidates for unrolling Execution-time counting loops
Type (percentage) (percentage)

User 46 89

Unix 9 35

Synthetic 54 69

Numerical 79 73

SPEC 15 84

Table 2: Distribution of loops based on loop bounds

To d e t e r m i n e h o w i m p o r t a n t it is for a l o o p u n r o l l i n g a l g o r i t h m to h a n d l e

execut ion- t ime count ing loops, we measured the percentage o f loops that are execut ion-

t ime count ing loops. Table 2 contains the results. C o l u m n 2 is the average percen tage

o f loops which are candidates for unrol l ing in each benchmark in the f ive categories . As

e x p e c t e d , n u m e r i c a l b e n c h m a r k s h a v e a h igh p e r c e n t a g e o f loops w h i c h can be

unrolled. On the other hand, Unix utilities have a low percentage of loops which can be

64

unrolled. On the other hand, Unix utilities have a low percentage of loops which can be
unrolled. Column 3 contains the percentage of candidate loops which are execution-
time counting loops. Thus, in user codes, on an average 46 percent of loops in each
benchmark are candidates for unrolling and 89 percent of these candidates are
execution-time counting loops. These statistics clearly indicate that algorithms that only
handle compile-time counting loops miss many opportunities for producing more
efficient code.

4.2 Control-flow complexity analysis

For the analysis of the control-flow complexity of loops, we developed a scheme for
classifying the innermost counting loops based on the complexity of their loop bodies.
The classification scheme has six categories and is cumulative in nature t. Figure 1
shows this classification. The first category contains loops which have a single basic

Z

t I
Category t

-B

Catugory iii

Category IV "4-

I]

Category V

Categop/I +

Category II

.

E-7
ca~gory Iv

Category V +

Category Vl

Fig: 1. Categories of loops.

block and no function calls. The second category contains loops which have a single

?That is, category n contains all the loops in category n - 1.

65

basic block and function calls. The third category includes loops which have internal
branches t but no function calls. The fourth category permits function calls also. The
fifth category permits loops which have multiple exits, but have no function calls. The
sixth category allows function calls also.

Table 3 shows the statistics related to this classification. Column 1 contains the
type of benchmark. Columns 2 indicates the average percentage of loops in each
benchmark in a benchmark category which are candidates for unrolling. Columns 3
through 8 show the average distribution of loops which can be unrolled in the various
categories. All measurements are percentages.

From this table, it is apparent that benchmarks in all the categories have a sizable
percentage of loops which have more than one basic block. This indicates that if loops
with only a single basic block are unrolled, a high percentage of loops will not be
considered. Consequently, unrolling loops consisting of a single basic block only limits

the effectiveness of loop unrolling.

Type
Candidates

for unrolling
(Percentage)

User 46

Unix 9

Synthetic 54

Numerical 79

SPEC 15

T a b l e 3:

Category
(Percentages)

I il Ili IV v Vl

39 67 78 78 100 100

38 52 53 72 98 100

42 74 83 98 100 100

75 76 94 100 100 100

29 37 52 66 89 100

Distribution of loops based on control-flow complexity.

5 Results
To measure the impact of aggressive unrolling, we implemented an aggressive loop
unroller in vpo, a highly optimizing back end that has been used to implement a variety
of imperative languages such as Ada, C, PL/I, and Pascal. vpo has two characteristics
that make it an ideal framework for implementing and evaluating aggressive loop
unrolling algorithms. First, vpo performs all code improvements on a single, low-level
representation called RTLs (register transfer lists) [Beni94, Davi81]. Within vpo's
framework, loop unrolling can be applied late in the compilation process after many
other code improving transformations have been applied and detailed information about
loops has been gathered by vpo's analysis phase. In addition, the late application of loop
unrolling and the low-level representation allows vpo to accurately estimate the size of
loops and choose the largest unroll factor that will not cause the loop to exceed the size
of the machine's instruction cache. It also means that not all phases of vpo need to
process the larger loop bodies which minimizes the increase in compilation time.
Second, vpo's internal program representation and organization permits optimizations

tThe targets of all conditional and unconditional branches lie inside the loop.

66

tO be reapplied as needed. Because of this, the implementation of loop unrolling is
simplified as we can rely on these phases to remove any inefficiencies introduced by
unrolling.

Figure 2 contains a diagram of the organization of vpo. Vertical columns

Source
Code ---~ Front End ~ - ~

vpo
Basic Block Optimizations

Instruction Selection
Evaluation Order Determination

Local Register Allocation
Common Subexpression Elimination

Copy Propagation
Dead Variable Elimination

Global Register
Allocation and

Assignment
Code Motion

Loop ~
Detection Strength Reduction

Induction Variable
Elimination
Recurrence
Detection

Instruction Scheduling

Object Code

Global
Data-Flow
Analysis

Stream
Opts

Fig: 2. Schematic of vpo-based C compiler.

represent logical phases which operate serially. Columns that are divided horizontally
into rows indicate that the sub-phases of the column may be executed in an arbitrary
order. For example, instruction selection may be performed at any time during the
optimization process. Global data-flow analysis, on the other hand, is done after the
basic block optimizations, instruction selection, and evaluation order determination, but
before local register assignment, common subexpression elimination, etc.

To determine the impact of aggressive loop unrolling, we measured the increase
in performance due to unrolling. We measured both execution cycles/dynamic
instruction counts and actual CPU time. While measures of execution cycles/dynamic
instruction counts are useful in understanding the effects of code improvements, they
do not take into account other system effects such as memory traffic, cache
performance, and pipeline stalls which can effect overall execution time. Furthermore,
most users are concerned with how much faster their program runs when a code
improvement is applied. Consequently, we felt it important to collect both types of
measurements.

We gathered our measurements on a R3000-based DECstation Model 5000/125
and Motorola 68020 based Sun-3/200 [Moto84]. These two architectures were chosen
because they represent two ends of the computer architecture spectrum: the DECstation

67

is a RISC architecture while the Sun-3 is a CISC architecture. The measurements for
the performance increase in execution cycles were taken only on DECstation, while the
measurements of the performance increase in CPU times have been taken on the
DECstation as well as the Sun-3.

As described in Section 3, our loop unrolling algorithm automatically determines

the best unroll factor n, where 0 < n < 15, to use for each loop. For the DECstation
5000, all loops were unrolled fifteen times. On the Sun-3, however, the small instruction
cache size (64 words) limited the amount of unrolling possible.

5.1 Performance increase

5.1.1 Reduction in cycle count
Measurements of execution cycles of all benchmarks except xlisp, espresso and gcc
were taken using pixie t, an architecture evaluation tool for MIPS processors [Kane89].
The unit of measurement is cycles. Performance of benchmarks gcc, espresso and xlisp
were measured using ease [Davi90], a tool to evaluate architectures. One of the
measures provided by ease is dynamic instruction counts. It works at the assembly

t t language level, and therefore, does not count n o - o p s .
To determine whether handling execution-time counting loops is important, we

measured the performance increase of the benchmarks when only compile-time loops
were unrolled and when both compile-time and execution-time loops were unrolled.
Figure 3 contains the graph showing the percentage increase using each approach. The
graph shows that unrolling algorithms that only handle compile-time counting loops are
much less effective than algorithms that also handle execution-time counting loops.

A second set of measurements was performed to determine the benefits of
handling loops with complex control flow. Using the categories described in Figure 1,
we measured the percentage increase in performance for each set of benchmarks as
loops with increasingly complex control-flow are handled. Figure 4 shows the
percentage performance increase for each set of benchmarks and average performance
increase across benchmark categories. We measured performance increase for each
benchmark set because we were interested to see if the percentage increase depended
on the type of benchmark.

In user codes, the benchmarks encode and cache slow down due to unrolling.
This is because the unrolled loops in the two benchmarks are not executed enough
number of times to amortize the cost of loop unrolling. Encode has an execution-time
counting loop whose iteration count is less than sixteen. Since the unroll factor used on
the DECstation is 15, only the epilogue code is executed, and the unrolled portion of the
code is not executed at all. The overhead incurred in computing the iteration count of
the unrolled loop slows down the benchmark. If the unroll factor had been lower, then
the unrolled loop would have been executed, yielding benefits. Thus, increasing the
unroll factor can have a negative impact on the performance.The benchmark cache
slows down when loops with a single basic block and function calls are unrolled
because the unrolled loop is not executed enough times to amortize the cost of

tThe code breaks if compiled with pixie.
t tOn R2000, scheduling is done by the assembler, and therefore, no-ops are inserted by it.

68

30

~ 2 5
t~
E

20
13.

e
=o
==1o
(9
(9
a. 5

0 ~ Unix Numerical Synthetic SPEC
Benchmarks

I ~ Compile-Time Counting Loops ~ Execution*Time Counting Loops I

Fig: 3. Performance increase due to unrolling compile-time counting loops and ex-
ecution-time counting loops on MIPS R2000.

calculating the loop iteration count and the extra conditional branch. In Unix utilities,
the performance of cal, difJ and nrof-J improves because of unrolling. The performance
of other utilities does not improve because they spend a majority of their execution time
in non-counting loops.

For numerical benchmarks and synthetic benchmarks, substantial performance
increase occurs from unrolling loops with internal branches and multiple exits. For
instance, the performance of bubblesort improves by approximately 50% when loops
with complex control-flow are unrolled. Similarly, the performance of the benchmark
sO08 increases by over 50% when loops with internal branches are unrolled. If loops
with complex control-flow are not unrolled, these benefits would not be attained.

For SPEC benchmarks, the performance of benchmark eqntott improves by
approximately 19% when loops with multiple exits and internal branches are unrolled.
This improvement would not have been obtained if only the loops with a single basic
block were to be unrolled. The performance of benchmark espresso is marginally better
if loops with multiple basic blocks are not unrolled. This is because this benchmark
contains a number of execution-time counting loops with multiple basic blocks which
have an iteration count of zero or one and the overhead incurred to execute the unrolled
loop is not amortized. Benchmark xlisp has no improvement since the execution of this
benchmarks is dominated by non-counting loops, while gcc improves by about 0.7
percent.

The combined result shows that while unrolling loops with a single basic block
is very beneficial, unrolling loops with complex control-flow is even more beneficial.
The performance of numerical and synthetic benchmarks increases by an additional

69

12% and 17% respectively, when loops with internal branches are unrolled. The
performance of SPEC benchmarks increases by about 3% when loops with multiple
exits are unrolled. Clearly, unrolling loops with complex control-flow increases
performance for various benchmarks.

5.1.2 Reduction in execution times
This section presents the increase in performance computed using execution times on
the DECstation and the 68020-based Sun-3. To measure execution time, the Unix

6 ,

5 ,

~ 4

=o 3 ,

-r 2 ,

i 0,
a. - 1 ,

- 2 ,

User Codes

II III IV V VI

Categories

6

5

i'

ii
S ~
Ct. -1

-2

Unix Utilities

. ~ P

. ~ - ' . ~ 2 o . ,~ . ~. ~ o_~d

Categor ies

m

Numerical Benchmarks

55

50

4 5

c~ 40

~ 35

~ 3 0 -
.c
~ 25

20 .u_
~ 15

~. 10

I II III IV V VI

Categories

Synthetic Benchmarks

55

iO

;5

;0 .

;0

~5

~0

15

O / -"-"Kc"--'P~ 1 I I
II III IV V VI

Categories

I
4 -
arraymerge

bul~esort

puzzle

q ~
-4-

quicksort
-4-

sheUsort

slsve

V - -

Fig: 4. Percentage increase in performance for benchmarks in all categories by loop
body complexity on MIPS R2000.

7 0

24

19

.r
|

9

SPEC Benchmarks

II III IV V V l

Categories

o m 19

~ 9 ~-~ ~

~ 4
Q.

24 ,

Performance at a Glance

I II III IV V Vl

Categories

Synlhet~
4l-
Jn~
q-

~umenc~
4D*

Jser
41-

3PEC

Fig: 4. Percentage increase in performance for benchmarks in all categories by loop
body complexity on MIPS R2000.

command ~bin~time was used, and the user portion of the execution time was reported
for each benchmark when loops are rolled and unrolled. Each benchmark was executed
on a lightly loaded machine five times, the highest and the lowest measurements were
dropped, and the average of the remaining three measurements was computed. The
average of performance increase in each category is reported in this paper. Detailed
results are available in a technical report [Davi95b].

Table 3 contains the measurements of the percentage increase in execution time.
Column 2 gives the average percent increase in performance for a benchmark in each
benchmark category on the Sun-3. Column 3 contains the percent increase in

performance on DECstation. These measurements indicate that loop unrolling increases

Performance increase (%) on Performance increase (%) on
Type

M68020 (User Time) DEC R2000 (User Time)

User -0.74 -0.44

Unix 0.90 0.47

Synthetic 15.75 17.42

Numerical 2.61 21.44

SPEC 0.07 3.47

Table 4: Execution-time improvement from unrolling loops on 68020
and MIPS R2000.

performance of benchmarks on the DECstation and the Sun-3. The performance
increase is comparable for non-numerical benchmarks on both the machines. For

71

numerical benchmarks, which perform floating-point computations, the benefits are
higher on the DECstation. Loop unrolling eliminates conditional branch instructions
and redundant increments to the induction variable. As a side effect, the unrolled loop
has an extra counter which is required by the loop which executes the leftover iterations.
The combined cost of these instructions is significant when compared to the total cost
of floating-point instructions inside the loops in numerical benchmarks on the
DECstation. On the other hand, the cost of conditional branches and associated
instructions required to maintain the loop is not significant when compared to the
floating-point instructions inside the loops on the Sun-3 t. Therefore, the benefits from
the elimination of branch instructions and redundant increments is higher on the
DECstation. Loop unrolling will result in larger performance increase on the
DECstation (a RISC architecture) if register renaming is applied along with it because
the instruction pipeline will be better utilized [Davi95b]. In general, the benefits from
loop unrolling, to a large extent, are contingent on the cost of branch instructions to
other instructions inside the loop body.

From the data presented in the above sections, it is clear loop unrolling can be a
very effective code improvement. Furthermore, to be most effective, loop unrolling
algorithms must handle loops with complex control flow and loops whose the iteration
count is not known at compile time. For some programs, performance improvements as
high as 20 to 50 percent can be achieved when loops are unrolled aggressively. Also,
loop unrolling does not result in excessive increase in the size of executable code
[Davi95b].

Thus, loop unrolling is similar to many other code improvements, which affects
only a subset of the programs to which it is applied. It is most beneficial when it is
applied aggressively to unroll execution-time counting loops and loops with complex
control -flow.

6 Previous Work
Many researchers have presented loop unrolling as a way of decreasing loop overhead.
Dongarra suggested manual replication of the code body for loops written in
FORTRAN [Dong79]. Array subscripts and loop increments are adjusted to reflect that
the loop has been unrolled. Weiss discussed loop unrolling from the perspective of
automatic scheduling by the compiler [Weis87]. His study considers only Livermore
loops. This study also discussed the effect of loop unrolling on instruction buffer size
and register pressure within the loop.

Mahlke discussed optimizations which can increase instruction-level parallelism
for supercomputers [Mah192]. Loop unrolling is one of them. By analyzing loops with
known bounds, they showed that if register renaming is applied after loop unrolling, the
execution time of the loop decreases. In trace-scheduling and global compaction
methodology [Fish83, Freu94], loop unrolling is a key feature. Freudenberger discussed
the effect of loop unrolling on SPEC benchmarks and the way in which it facilitates
global scheduling and insertion of the compensation code [Freu94].

tThe relative cost of a floating-point instruction, when compared to a conditional branch in-
struction, is higher on Sun-3 than on the DECstation.

72

7 Summary
While loop unrolling is a well-known code improvement, there has been little
discussion in the literature of the issues that must be addressed to perform loop
unrolling most effectively. This paper addresses this deficiency. Through extensive
compile- and run-time analyses of a set of 32 benchmark programs the paper analyzes
the loop characteristics that are important when considering loop unrolling. One factor
analyzed was the importance of handling loops where the loop bounds are not known
at compile time. The analysis shows that most loops that are candidates for unrolling
have bounds that are not known at compile time (i.e., execution-time counting loops).
Consequently, an effective loop unrolling algorithm must handle execution-time
counting loops. Another factor analyzed was the control-flow complexity of loops that
are candidates for unrolling. The analysis shows that unrolling loops with complex
control-flow is as important as unrolling execution-time counting loops. For some
benchmark programs significant improvements can be gained if loops with complex
control flow are unrolled. Because handling such loops does not significantly impact
compilation time or unduly complicate the loop unrolling algorithms, our conclusion is
that an aggressive compiler should unroll such loops.

Using tile benchmark programs and a C compiler that implements the algorithms
for loop unrolling, the effectiveness of the code transformation at improving run-time
efficiency was measured. Our measurements show that aggressive loop unrolling can
yield run-time performance increases of 10 to 20 percent for some sets of benchmarks
over a simple and naive approach, and that for some programs increases in performance
by as much as 40 to 50 percent are achieved.

Acknowledgements
This work was supported in part by National Science Foundation grants CCR-9214904
and MIP-9307626. We also thank Mark Bailey and Bruce Childers for their feedback.

References
[Alex93] Alexander, M. J., Bailey, M. W., Childers, B. R., Davidson, J. W., and Jin-

turkar, S., "Memory Bandwidth Optimizations for Wide-Bus Machines",
Proceedings of the 25th Hawaii International Conference on System Sci-
ences, Maul, HA, January 1993, pp. 466-475.

[Baco94] Bacon, D. F., Graham, S. L., and Sharp, O. J., "Compiler Transformations
for High-Performance Computing", ACM Computing Surveys, 26(4),
Dec. 1994, pp. 345-420.

[Beni94] Benitez, M. E. and Davidson, J. W., "The Advantages of Machine-Depen-
dent Global Optimizations", Proceedings of the Conference on Program-
ming Languages and System Architecture, Springer Verlag Lecture Notes
in Computer Science, Zurich, Switzerland, March 1994, pp. 105-124.

[Davi81] Davidson, J. W., and Fraser, C. W., "The Design and Application of a
Retargetable Peephole Optimizer", ACM Transactions on Programming
Languages and Systems, 2(2), April 1980, pp. 191-202.

[Davi90] Davidson, J. W. and Whalley, D. B., "Ease: An Environment for Archi-
tecture Study and Experimentation", Proceedings of the 1990 A CM Sig-

73

[Davi94]

[Davi95a]

[Davi95b]

[Digi92]

[Dong79]

[Fish84]

[Freu94]

[Henn90]

[IBM90]
[Kane89]

[Mah192]

[Moto84]

[Sta189]

[Sun87]

[Weis87]

metrics Conference on Measurement and Modelling of Computer
Systems, Boulder, CO, May 1990, pp. 259-260.
Davidson, J. W. and Jinturkar, S., "Memory Access Coalescing: A Tech-
nique for Eliminating Redundant Memory Accesses", Proceedings of
SIGPLAN '94 Conference on Programming Language Design and Imple-
mentation, Orlando, FL, June 1994, pp 186-195.
Davidson, J. W. and Jinturkar, S., "An Aggressive approach to Loop
Unrolling", available as University of Virginia Technical Report # CS-95-
26.
Davidson, J. W. and Jinturkar, S., "Improving Instruction-level Parallel-
ism by Loop Unrolling and Dynamic Memory Disambiguation", Pro-
ceedings of the 28th International Symposium on Microarchitecture, Ann
Arbor, MI, Nov 1995, pp 125-134.
Alpha Architecture Handbook, Digital Equipment Corporation, Boston,
MA, 1992.
Dongarra, J.J. and Hinds, A. R., "Unrolling Loops in Fortran", Software-
Practice and Experience, 9(3), Mar. 1979, pp. 219-226.
Fisher, J. A., Ellis, J. R., Ruttenberg, J. C. and Nicolau, A., "Parallel Pro-
cessing: A Smart Compiler and a Dumb Machine", Proceedings of the
SIGPLAN'84 Symposium on Compiler Construction, Montreal, Canada,
June 1984, pp. 37-47.
Freudenberger, S. M., Gross, T. R. and Lowney, P. G., "Avoidance and
Suppression of Compensation Code in a Trace Scheduling Compiler",
ACM Transactions on Programming Languages and Systems, 16(4), July
1994, pp. 1156-1214.
Hennessy, J. L. and Patterson, D. A., Computer Architecture: A Quantita-
tive Approach, Morgan Kaufmann Publishers, Inc, San Mateo, CA, 1990.
IBM RISC System/6000 Technology, Austin, TX, 1990.
Kane, G., "MIPS RISC Architecture", Prentice-Hall, Englewood Cliffs,
NJ, 1992.
Mahlke, S. A., Chen, W. Y., Gyllenhaal, J. C. and Hwu, W. W., "Com-
piler Code Transformations for Superscalar-Based High-Performance
Systems", Proceedings of Supercomputing '92, Portland, OR, Nov. 1992,
pp. 808-817.
MC68020 32-Bit Microprocessor User's Manual, Prentice-Hall, Engle-
wood Cliffs, N.J.
Stallman, R. M., Using and Porting GNU CC, Free Software Foundation,
Cambridge, MA, 1989.
The SPARCArchitecture Manual, Version 7, Sun Microsystems Corpora-
tion, Mountain View, CA, 1987.
Weiss, S, and Smith, J. E., "A Study of Scalar Compilation Techniques
for Pipelined Supercomputers", Proceedings of Second International
Conference on Architectural Support for Programming Languages and
Operating Systems", Palo Alto, CA, Oct. 1987, pp. 105-109.

