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A b s t r a c t .  Engineering is defined as the application of scientific princi- 
ples to practical purposes, as the design, construction and operation of 
efficient and economical structures, equipment and systems. Computer 
science is concerned with efficient and economical systems, but what are 
the "scientific principles" that we apply in their design, construction and 
operation? Compiler construction was one of the first areas of computer 
science to be treated formally, and is often used as a touchstone for ap- 
plication of scientific principles in our field, but does formalization imply 
scientific principles? The issues of craftsmanship and engineering in com- 
piler construction are bound up with the set of problems that compilers 
must solve and the ways in which people solve problems by computer; our 
positions on these issues determine our approach to compiler research. 

Keywords :  Problem solving, formal methods, complexity, modularity, 
reusability 

1 I n t r o d u c t i o n  

Two conferences, held under the sponsorship of the NATO Science Commit tee  in 
1968 [20] and 1969 [6], introduced the term "software engineering". This phrase 
"was deliberately chosen to be provocative, in implying the need for software 
manufacture to be based on the types of theoretical foundations and practical 
disciplines that  are traditional in the established branches of engineering [20]." 

Wha t  does software development in general and compiler construction in 
particular have in common with "established branches of engineering"? Our 
products  are not manufactured in the same way as buildings and motors.  Our 
work is based on theoretical foundations, but they involve discrete rather than 
continuous mathematics .  We are not limited by the physical properties of mat ter ,  
al though space and time certainly bound what we can do. In order to see whether 
the analogy is useful, we need to look at it more carefully. 

My dictionary defines engineering as "the application of scientific principles 
to practical purposes, as the design, construction and operation of efficient and 
economical structures, equipment and systems." We need to design, construct 
and operate efficient and economical systems, but what scientific principles are 
we applying? 

Philosophers customarily divide the sciences into two main groups on the 
basis of the way scientists arrive at conclusions. Mathematicians justify their 
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conclusions on the basis of deduction from some set of given axioms. Physi- 
cists justify their conclusions as generalizations of behavior observed in nature. 
Thus mathematics is classified as a deductive science and physics as an inductive 
science. 

Civil and mechanical engineers apply principles from inductive sciences like 
physics and chemistry to create useful products. Those principles provide a 
framework within which the engineer operates, both guiding and constraining 
the engineer's efforts. Software engineers apply principles from deductive sciences 
that  guide their efforts but do not significantly constrain them. 

Section 2 summarizes some properties of deductive principles, and Sect. 3 
indicates how such principles are applied in compiler development. Thus it ap- 
pears that  our behavior satisfies the definition of engineering, but Sect. 4 argues 
that  we probably need to move more in that direction. 

2 Scientific Principles for Compiler Construction 

A system S is a nonempty set D (or possibly several such sets) of objects among 
which certain relationships exist [16]. When the objects of the system are known 
only through the relationships of the system, the system is abstract. 

A lattice [26] is an example of an abstract system. The relation of the system 
is <, and for any a, b, c E D the following hold: 

- a < a  

- i f a < b a n d b < _ c t h e n a < c  
- i f a  < b and b_< a then a and b are identical 

A lower bound of X C D is an element a such that  a < x for all x E X. 
The greatest lower bound of X is a lower bound c of X such that a < c for 
every lower bound a of X. Upper bounds and the least upper bound are defined 
analogously. Every pair of elements must have a greatest lower bound and a least 
upper bound if the system is to be a lattice. 

Only the structure of an abstract system is established by its definition. What  
the objects are, in any respects other than the way in which they fit into the 
structure, is left unspecified. Any further specification of what the objects are 
yields a representation of the abstract system. The representation is a system 
whose objects satisfy the relationships of the abstract system but have some 
further properties as well. 

The type system of a programming language is usually a representation of a 
lattice [12]: Each object is a type. For any types tl and t2, tl < t2 if and only 
if values of type tl are coercible to values of type t2. (One value is coercible to 
another if the compiler is allowed to insert a type conversion operation without 
explicit programmer input.) 

Another representation of a lattice is the system of addressing modes used 
by machine instructions to obtain operands: Each object is an addressing mode, 
and for any modes ml and m2 ml ~ m2 if and only if operands specified by 
mode ml can also be specified by mode rn2. For example, an operand specified 
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by a literal addressing mode can also be specified by a memory addressing mode 
or (after loading the value into a register) by a register addressing mode. 

A computer program is inevitably an implementation of an abstract system. 
The computer cannot perform manipulations on the basis of representations, 
because it has no understanding of the world at large. Thus the task that  we 
undertake when we write a program is to develop an abstract system that cap- 
tures exactly the relationships of interest in solving the given problem. That  task 
involves four distinct kinds of activity: 

- Understanding the problem 
- Pondering the problem to obtain an idea for a solution 
- Reasoning about the idea to show that it solves the problem 
- Implementing the idea in a programming language 

Of course these activities do not proceed sequentially; there is much iteration 
as certain aspects of the idea turn out to be wrong, or inefficient, or irrelevant. 
Nevertheless, we can identify all of the individual things we do with one or 
another of these activities. 

The term "pondering" is due to Dijkstra, who said that  the purpose of pon- 
dering is to reduce the amount and complexity of the reasoning needed to show 
that  the idea solves the problem: 

The ability to "ponder" successfully is absolutely vital. When we en- 
counter a "brilliant, elegant solution", it strikes us, because the argu- 
ment, in its austere simplicity, is so shatteringly convincing. And don't  
think that such a vein of gold was struck by pure luck: the man who 
found the conclusive argument was someone who knew how to ponder 
well [8]. 

Both understanding and pondering often involve making connections with 
other problems and methods. In any discipline, we make progress by increasing 
the number of problems with known solutions [23]. Computing is not an excep- 
tion: Studies have shown that the only reliable discriminator between novice and 
expert programmers is the number of problem and solution patterns that they 
can access [13]. 

The scientific principles of software development (and of compiler construc- 
tion in particular) are therefore useful abstract systems and the deductions that  
can be made within them. For example, computability theory and computa- 
tional complexity involve deductions within abstract systems based upon simple 
relationships among states and operations. They provide the only "physical lim- 
itations" on computer algorithms. They give us ways of deciding what is and 
is not possible, and of characterizing the behavior of an algorithm on the basis 
of problem size. As long as real computers are representations of those systems, 
the deductions will be applicable to all software we develop. 

Formal languages are the abstract systems most frequently associated with 
compiler construction. Any interesting programming language contains an in- 
finite number of strings, and formal language theory allows us to give finite 
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descriptions of that infinite set. We can use the description to reason about the 
language, deducing such properties as expressiveness and ambiguity. 

The semantics of a programming language construct are often described in 
terms of the semantics of the components of that construct. For example, the 
meaning of a conditional is described in terms of the meanings of the condition, 
then-part and else-part. A tree is an abstract system on whose elements the 
"component of" relation exists, and therefore it is also associated with compiler 
construction. 

There are many other abstract systems that are useful in compiler construc- 
tion, but I shall make no at tempt to list them here because the purpose of this 
section is simply to characterize the nature of the scientific principles on which 
the question of engineering vs. craftsmanship is based. 

3 Application of Scientific P r i n c i p l e s  

If we agree that the scientific principles of compiler construction constitute a set 
of useful abstract systems, then the application of those principles to practical 
purposes is the use of those abstract systems in building a cotnpiler. For a given 
project, some of the abstract systems used will exist at the start  and others 
developed during the course of the project may later come into general use as 
new scientific principles. Still others will be highly dependent on the particular 
problem and will never be seen again. 

In the terms of software engineering, application of existing abstract systems 
by the compiler writer is reusing them. Initially applied to simple incorporation 
of code fragments, this term has more recently been applied to a wide variety of 
artifacts [17,21]. Here we will be concerned with only three kinds of reuse: 

C o d e  The artifact to be reused is specific source code. It may exist as a module 
in a library, or as a fragment of an existing program. 

G e n e r a t o r  The artifact to be reused is a solution to a class of problems that 
has been embodied in a tool. 

D e s i g n  The artifact to be reused is an explanation of how a class of problems 
can be solved. 

Reuse is only possible when, during either the understanding or the pondering 
activity, we recognize the problem at hand as an instance of some problem class 
for which a solution is known. 

A problem class is characterized by some requirements space that distin- 
guishes one instance of the class from another. Code reuse requires that the 
developer understand only this requirements space, and be able to select the 
appropriate code on the basis of the portion of the requirements space that it 
covers. For example, a developer might select a dynamic storage manager on the 
basis of whether or not it provided garbage collection facilities [5]. 

Generator reuse requires that the developer not only understand the require- 
ments space, but also understand how to describe a problem to the generator. 
For example, an attribute grammar is a formal language capable of describing 
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the structure of a tree and relating computations to that structure. Generators 
that  produce efficient programs to carry out the the computations described by 
an at tr ibute grammar exist, but to use them the developer must understand 
the at tr ibute grammar language in addition to the requirements space of tree 
computations. 

Design reuse involves reading and understanding the appropriate literature, 
and then implementing the design in a manner compatible with the particular 
problem instance being solved. 

Our ability to apply scientific principles in compiler construction rests with 
the availability of code fragments, generators and literature. Most of these arti- 
facts deal with tactics: techniques for solving single problems that arise in the 
course of writing a compiler. When we try to build a compiler using these tactics, 
we find that  very careful selection is required if they are to work smoothly to- 
gether. Taken as a group, they must implement a coherent compilation strategy. 

For example, one of the simplest strategies is the classical one-pass approach 
taken in many current compiler classes. If the source language is suitably defined, 
a program can be checked for adherence to the language definition in a single 
pass over the text without retaining a representation of the program in memory. 
Often the entire translation can be accomplished as the source program is being 
checked, although the quality of the generated code may leave something to be 
desired. The result is a fast compiler with a relatively simple structure [2,3,4]. 

If source language properties require that the compiler retain a representa- 
tion of a portion of the program in memory for semantic analysis, then code 
generation tactics should be chosen to take advantage of that requirement. Thus 
selection of tactics for solving one subproblem of the compilation problem will 
depend on the characteristics of another subproblem. 

4 R e s e a r c h  A g e n d a  

Software engineers concerned with reuse believe that  the most significant reuse 
products involve specifications: 

Specification reuse, which offers the highest payoff of all, is a form of 
generative reuse [21]. 
By focusing on a narrow domain, the code expansion in application gen- 
erators can be one or more orders of magnitude greater than the code 
expansion in programming language compilers [17]. 

Compiler construction is the enabling technology for these forms of reuse. An 
application generator is a form of compiler that accepts a specification in a 
domain-specific language and automatically selects algorithms and data  struc- 
tures so that the developer can concentrate on what the system should do rather 
than how it is done. 

Figure 1 is a summary of the characteristics of application generators, taken 
from Krueger's paper on software reuse [17]. It makes a strong case for the 
importance of application generators. 
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Abstraction Abstractions come directly from the application domain. These high- 
level abstractions are mapped directly into executable source code by the generator. 

Selection Application generator libraries have not received much attention in the 
literature. The parallel between software schemas and application generators sug- 
gests, however, that library techniques could be used to select among a collection 
of application generators. 

Special izat ion Application generators are specialized by writing an input specifica- 
tion for the generator. Due to the diversity in application domain abstractions, the 
techniques used for specialization are also widely varied. Examples include gram- 
mars, regular expressions, finite-state machines, graphical languages, templates, 
interactive dialog, problem-solving methods and constraints. 

In tegra t ion  Application generators do not require integration techniques when a sin- 
gle executable system is generated. In cases in which a collection of generators 
produce a collection of subsystems, composition is best done in terms of domain 
abstractions. 

Pros  Since high-level abstractions from an application domain axe automatically 
mapped into executable software systems, most of the conventional software de- 
velopment life cycle is automated. This significantly reduces cognitive distance. 

Cons Because of limited availability of application generators, many of which have 
narrow domain coverage, it is often difficult or impossible to find an application 
generator for a paxticul~r software development problem. It is difficult to build ~n 
application generator with appropriate functionality and performance for a broad 
range of applications. 

Fig. 1. Reuse in Application Generators 

The drawbacks of application generators presented in Fig. I are closely re- 
lated. Availability is limited because they are expensive to build, and the only 
incentive to broaden the range of application is to spread the cost. Nevertheless, 
it is often cost-effective to build an application generator to generate one software 
system [19], and becomes more so the cheaper the application generator. Since 
application generators always involve specification languages, anything that re- 
duces the cost of implementing processors for specification languages will reduce 
the cost of the application generator. 

A specification language processor is a compiler, so in order to reduce the 
cost of building an application generator we need to reduce the cost of building 
a compiler. According to the software engineers, the best w~y to reduce the 
cost of building a compiler is to use an application generator whose application 
domain is compiler construction! This should not be surprising, because scanner 
and parser generators have been part of the compiler writer's toolbox for years 
[14,18]. Compare the specification of a simple expression language using these 
tools to early papers on expression analysis [24] to get an idea of the leverage 
that  an application generator can provide. 

Scanning and parsing only account for about 9% of the time and 11% of the 
code in a typical compiler, so to continue to increase our leverage we need to go 
to application generators that deal with larger subproblems. A key point is to 
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begin to embody strategy as well as tactics in the generator. 
We already have experience with application generators for the scanning 

[10,18], parsing [7,14], tree computation [15,28], and code generation [1,22] sub- 
tasks of a compiler. Several such generators have been combined under the con- 
trol of an expert system to create an application generator for complete compilers 
[11,27]. An evaluation of such generators shows that the code they generate runs 
as fast as hand code, but uses more memory [25]. Additional research is needed 
to improve space efficiency and broaden coverage. 

Creation of a more comprehensive application generator for the compiler 
construction domain is really just a process of making our understanding of the 
compilation process explicit. None of the details are left to the imagination, as 
they usually are in a reusable design. Many of those details involve things that  
everyone supposedly understands, but that are easy to do poorly. For example, 
the speed of a generated compiler and a hand-coded compiler were recently com- 
pared by using each to process a test suite of 471 programs [25]. The generated 
compiler was about 5.4% faster on average. Careful analysis of the compilation 
time revealed that the source text input routine was responsible for a significant 
part of speed differential: A carefully optimized routine was produced by the 
generator, but the hand coder had simply used the C library. 

Complete compiler generators give tremendous leverage to the compiler ex- 
pert. In order to fulfill their promise of lowering the cost of other application 
generators, however, they must also make the abstractions that constitute our 
scientific principles available to people with limited experience. That  means pack- 
aging support for developing a processor design as part of the generator [9], and 
providing training materials covering basic compiler construction technology. 

Even for the expert, it is not sufficient to have only the compiler generator. 
Input specifications that specialize (Fig. 1) it to analyze common programming 
languages and generate code for common machines are required as well. Such 
specifications would make it possible for (say) a person interested in optimization 
research to quickly and cheaply generate a program to build an appropriate 
representation of the code to be optimized. If they want to make extensions to 
the source language to convey additional information those changes can be made 
in specifications rather than in code. Thus the researcher obtains the necessary 
infrastructure cheaply and can get on with the interesting aspects of their work. 

5 C o n c l u s i o n  

Compiler construction as a discipline can be considered engineering according 
to the definition given in Sect. 1. There is a set of scientific principles, and those 
principles are applied to practical purposes. Design reuse is practiced widely, 
and some generators are used. Code is also reused in specific cases. 

Craftsmanship is by no means unknown, however. Optimizing compilers are 
usually built by craftsmen on an engineered base, and compilers for new or 
unusual languages involve ad-hoc solutions. 
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Compiler construction is an enabling technology for application generators, 
and in order to support  this area we need to provide higher levels of automation.  
Such improvements would also reduce the cost of entry for compiler researchers 
who wish to investigate problems involving specific compiler components.  
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