
Compiler Construction: Craftsmanship or
Engineering?

William M. Waite

Wflli am. Waite@Colorado.ED U
University of Colorado, Boulder, CO 80309-0425, USA

A b s t r a c t . Engineering is defined as the application of scientific princi-
ples to practical purposes, as the design, construction and operation of
efficient and economical structures, equipment and systems. Computer
science is concerned with efficient and economical systems, but what are
the "scientific principles" that we apply in their design, construction and
operation? Compiler construction was one of the first areas of computer
science to be treated formally, and is often used as a touchstone for ap-
plication of scientific principles in our field, but does formalization imply
scientific principles? The issues of craftsmanship and engineering in com-
piler construction are bound up with the set of problems that compilers
must solve and the ways in which people solve problems by computer; our
positions on these issues determine our approach to compiler research.

Keywords : Problem solving, formal methods, complexity, modularity,
reusability

1 I n t r o d u c t i o n

Two conferences, held under the sponsorship of the NATO Science Commit tee in
1968 [20] and 1969 [6], introduced the term "software engineering". This phrase
"was deliberately chosen to be provocative, in implying the need for software
manufacture to be based on the types of theoretical foundations and practical
disciplines that are traditional in the established branches of engineering [20]."

Wha t does software development in general and compiler construction in
particular have in common with "established branches of engineering"? Our
products are not manufactured in the same way as buildings and motors. Our
work is based on theoretical foundations, but they involve discrete rather than
continuous mathematics . We are not limited by the physical properties of mat ter ,
al though space and time certainly bound what we can do. In order to see whether
the analogy is useful, we need to look at it more carefully.

My dictionary defines engineering as "the application of scientific principles
to practical purposes, as the design, construction and operation of efficient and
economical structures, equipment and systems." We need to design, construct
and operate efficient and economical systems, but what scientific principles are
we applying?

Philosophers customarily divide the sciences into two main groups on the
basis of the way scientists arrive at conclusions. Mathematicians justify their

152

conclusions on the basis of deduction from some set of given axioms. Physi-
cists justify their conclusions as generalizations of behavior observed in nature.
Thus mathematics is classified as a deductive science and physics as an inductive
science.

Civil and mechanical engineers apply principles from inductive sciences like
physics and chemistry to create useful products. Those principles provide a
framework within which the engineer operates, both guiding and constraining
the engineer's efforts. Software engineers apply principles from deductive sciences
that guide their efforts but do not significantly constrain them.

Section 2 summarizes some properties of deductive principles, and Sect. 3
indicates how such principles are applied in compiler development. Thus it ap-
pears that our behavior satisfies the definition of engineering, but Sect. 4 argues
that we probably need to move more in that direction.

2 Scientific Principles for Compiler Construction

A system S is a nonempty set D (or possibly several such sets) of objects among
which certain relationships exist [16]. When the objects of the system are known
only through the relationships of the system, the system is abstract.

A lattice [26] is an example of an abstract system. The relation of the system
is <, and for any a, b, c E D the following hold:

- a < a

- i f a < b a n d b < _ c t h e n a < c
- i f a < b and b_< a then a and b are identical

A lower bound of X C D is an element a such that a < x for all x E X.
The greatest lower bound of X is a lower bound c of X such that a < c for
every lower bound a of X. Upper bounds and the least upper bound are defined
analogously. Every pair of elements must have a greatest lower bound and a least
upper bound if the system is to be a lattice.

Only the structure of an abstract system is established by its definition. What
the objects are, in any respects other than the way in which they fit into the
structure, is left unspecified. Any further specification of what the objects are
yields a representation of the abstract system. The representation is a system
whose objects satisfy the relationships of the abstract system but have some
further properties as well.

The type system of a programming language is usually a representation of a
lattice [12]: Each object is a type. For any types tl and t2, tl < t2 if and only
if values of type tl are coercible to values of type t2. (One value is coercible to
another if the compiler is allowed to insert a type conversion operation without
explicit programmer input.)

Another representation of a lattice is the system of addressing modes used
by machine instructions to obtain operands: Each object is an addressing mode,
and for any modes ml and m2 ml ~ m2 if and only if operands specified by
mode ml can also be specified by mode rn2. For example, an operand specified

153

by a literal addressing mode can also be specified by a memory addressing mode
or (after loading the value into a register) by a register addressing mode.

A computer program is inevitably an implementation of an abstract system.
The computer cannot perform manipulations on the basis of representations,
because it has no understanding of the world at large. Thus the task that we
undertake when we write a program is to develop an abstract system that cap-
tures exactly the relationships of interest in solving the given problem. That task
involves four distinct kinds of activity:

- Understanding the problem
- Pondering the problem to obtain an idea for a solution
- Reasoning about the idea to show that it solves the problem
- Implementing the idea in a programming language

Of course these activities do not proceed sequentially; there is much iteration
as certain aspects of the idea turn out to be wrong, or inefficient, or irrelevant.
Nevertheless, we can identify all of the individual things we do with one or
another of these activities.

The term "pondering" is due to Dijkstra, who said that the purpose of pon-
dering is to reduce the amount and complexity of the reasoning needed to show
that the idea solves the problem:

The ability to "ponder" successfully is absolutely vital. When we en-
counter a "brilliant, elegant solution", it strikes us, because the argu-
ment, in its austere simplicity, is so shatteringly convincing. And don't
think that such a vein of gold was struck by pure luck: the man who
found the conclusive argument was someone who knew how to ponder
well [8].

Both understanding and pondering often involve making connections with
other problems and methods. In any discipline, we make progress by increasing
the number of problems with known solutions [23]. Computing is not an excep-
tion: Studies have shown that the only reliable discriminator between novice and
expert programmers is the number of problem and solution patterns that they
can access [13].

The scientific principles of software development (and of compiler construc-
tion in particular) are therefore useful abstract systems and the deductions that
can be made within them. For example, computability theory and computa-
tional complexity involve deductions within abstract systems based upon simple
relationships among states and operations. They provide the only "physical lim-
itations" on computer algorithms. They give us ways of deciding what is and
is not possible, and of characterizing the behavior of an algorithm on the basis
of problem size. As long as real computers are representations of those systems,
the deductions will be applicable to all software we develop.

Formal languages are the abstract systems most frequently associated with
compiler construction. Any interesting programming language contains an in-
finite number of strings, and formal language theory allows us to give finite

154

descriptions of that infinite set. We can use the description to reason about the
language, deducing such properties as expressiveness and ambiguity.

The semantics of a programming language construct are often described in
terms of the semantics of the components of that construct. For example, the
meaning of a conditional is described in terms of the meanings of the condition,
then-part and else-part. A tree is an abstract system on whose elements the
"component of" relation exists, and therefore it is also associated with compiler
construction.

There are many other abstract systems that are useful in compiler construc-
tion, but I shall make no at tempt to list them here because the purpose of this
section is simply to characterize the nature of the scientific principles on which
the question of engineering vs. craftsmanship is based.

3 Application of Scientific P r i n c i p l e s

If we agree that the scientific principles of compiler construction constitute a set
of useful abstract systems, then the application of those principles to practical
purposes is the use of those abstract systems in building a cotnpiler. For a given
project, some of the abstract systems used will exist at the start and others
developed during the course of the project may later come into general use as
new scientific principles. Still others will be highly dependent on the particular
problem and will never be seen again.

In the terms of software engineering, application of existing abstract systems
by the compiler writer is reusing them. Initially applied to simple incorporation
of code fragments, this term has more recently been applied to a wide variety of
artifacts [17,21]. Here we will be concerned with only three kinds of reuse:

C o d e The artifact to be reused is specific source code. It may exist as a module
in a library, or as a fragment of an existing program.

G e n e r a t o r The artifact to be reused is a solution to a class of problems that
has been embodied in a tool.

D e s i g n The artifact to be reused is an explanation of how a class of problems
can be solved.

Reuse is only possible when, during either the understanding or the pondering
activity, we recognize the problem at hand as an instance of some problem class
for which a solution is known.

A problem class is characterized by some requirements space that distin-
guishes one instance of the class from another. Code reuse requires that the
developer understand only this requirements space, and be able to select the
appropriate code on the basis of the portion of the requirements space that it
covers. For example, a developer might select a dynamic storage manager on the
basis of whether or not it provided garbage collection facilities [5].

Generator reuse requires that the developer not only understand the require-
ments space, but also understand how to describe a problem to the generator.
For example, an attribute grammar is a formal language capable of describing

155

the structure of a tree and relating computations to that structure. Generators
that produce efficient programs to carry out the the computations described by
an at tr ibute grammar exist, but to use them the developer must understand
the at tr ibute grammar language in addition to the requirements space of tree
computations.

Design reuse involves reading and understanding the appropriate literature,
and then implementing the design in a manner compatible with the particular
problem instance being solved.

Our ability to apply scientific principles in compiler construction rests with
the availability of code fragments, generators and literature. Most of these arti-
facts deal with tactics: techniques for solving single problems that arise in the
course of writing a compiler. When we try to build a compiler using these tactics,
we find that very careful selection is required if they are to work smoothly to-
gether. Taken as a group, they must implement a coherent compilation strategy.

For example, one of the simplest strategies is the classical one-pass approach
taken in many current compiler classes. If the source language is suitably defined,
a program can be checked for adherence to the language definition in a single
pass over the text without retaining a representation of the program in memory.
Often the entire translation can be accomplished as the source program is being
checked, although the quality of the generated code may leave something to be
desired. The result is a fast compiler with a relatively simple structure [2,3,4].

If source language properties require that the compiler retain a representa-
tion of a portion of the program in memory for semantic analysis, then code
generation tactics should be chosen to take advantage of that requirement. Thus
selection of tactics for solving one subproblem of the compilation problem will
depend on the characteristics of another subproblem.

4 R e s e a r c h A g e n d a

Software engineers concerned with reuse believe that the most significant reuse
products involve specifications:

Specification reuse, which offers the highest payoff of all, is a form of
generative reuse [21].
By focusing on a narrow domain, the code expansion in application gen-
erators can be one or more orders of magnitude greater than the code
expansion in programming language compilers [17].

Compiler construction is the enabling technology for these forms of reuse. An
application generator is a form of compiler that accepts a specification in a
domain-specific language and automatically selects algorithms and data struc-
tures so that the developer can concentrate on what the system should do rather
than how it is done.

Figure 1 is a summary of the characteristics of application generators, taken
from Krueger's paper on software reuse [17]. It makes a strong case for the
importance of application generators.

156

Abstraction Abstractions come directly from the application domain. These high-
level abstractions are mapped directly into executable source code by the generator.

Selection Application generator libraries have not received much attention in the
literature. The parallel between software schemas and application generators sug-
gests, however, that library techniques could be used to select among a collection
of application generators.

Special izat ion Application generators are specialized by writing an input specifica-
tion for the generator. Due to the diversity in application domain abstractions, the
techniques used for specialization are also widely varied. Examples include gram-
mars, regular expressions, finite-state machines, graphical languages, templates,
interactive dialog, problem-solving methods and constraints.

In tegra t ion Application generators do not require integration techniques when a sin-
gle executable system is generated. In cases in which a collection of generators
produce a collection of subsystems, composition is best done in terms of domain
abstractions.

Pros Since high-level abstractions from an application domain axe automatically
mapped into executable software systems, most of the conventional software de-
velopment life cycle is automated. This significantly reduces cognitive distance.

Cons Because of limited availability of application generators, many of which have
narrow domain coverage, it is often difficult or impossible to find an application
generator for a paxticul~r software development problem. It is difficult to build ~n
application generator with appropriate functionality and performance for a broad
range of applications.

Fig. 1. Reuse in Application Generators

The drawbacks of application generators presented in Fig. I are closely re-
lated. Availability is limited because they are expensive to build, and the only
incentive to broaden the range of application is to spread the cost. Nevertheless,
it is often cost-effective to build an application generator to generate one software
system [19], and becomes more so the cheaper the application generator. Since
application generators always involve specification languages, anything that re-
duces the cost of implementing processors for specification languages will reduce
the cost of the application generator.

A specification language processor is a compiler, so in order to reduce the
cost of building an application generator we need to reduce the cost of building
a compiler. According to the software engineers, the best w~y to reduce the
cost of building a compiler is to use an application generator whose application
domain is compiler construction! This should not be surprising, because scanner
and parser generators have been part of the compiler writer's toolbox for years
[14,18]. Compare the specification of a simple expression language using these
tools to early papers on expression analysis [24] to get an idea of the leverage
that an application generator can provide.

Scanning and parsing only account for about 9% of the time and 11% of the
code in a typical compiler, so to continue to increase our leverage we need to go
to application generators that deal with larger subproblems. A key point is to

157

begin to embody strategy as well as tactics in the generator.
We already have experience with application generators for the scanning

[10,18], parsing [7,14], tree computation [15,28], and code generation [1,22] sub-
tasks of a compiler. Several such generators have been combined under the con-
trol of an expert system to create an application generator for complete compilers
[11,27]. An evaluation of such generators shows that the code they generate runs
as fast as hand code, but uses more memory [25]. Additional research is needed
to improve space efficiency and broaden coverage.

Creation of a more comprehensive application generator for the compiler
construction domain is really just a process of making our understanding of the
compilation process explicit. None of the details are left to the imagination, as
they usually are in a reusable design. Many of those details involve things that
everyone supposedly understands, but that are easy to do poorly. For example,
the speed of a generated compiler and a hand-coded compiler were recently com-
pared by using each to process a test suite of 471 programs [25]. The generated
compiler was about 5.4% faster on average. Careful analysis of the compilation
time revealed that the source text input routine was responsible for a significant
part of speed differential: A carefully optimized routine was produced by the
generator, but the hand coder had simply used the C library.

Complete compiler generators give tremendous leverage to the compiler ex-
pert. In order to fulfill their promise of lowering the cost of other application
generators, however, they must also make the abstractions that constitute our
scientific principles available to people with limited experience. That means pack-
aging support for developing a processor design as part of the generator [9], and
providing training materials covering basic compiler construction technology.

Even for the expert, it is not sufficient to have only the compiler generator.
Input specifications that specialize (Fig. 1) it to analyze common programming
languages and generate code for common machines are required as well. Such
specifications would make it possible for (say) a person interested in optimization
research to quickly and cheaply generate a program to build an appropriate
representation of the code to be optimized. If they want to make extensions to
the source language to convey additional information those changes can be made
in specifications rather than in code. Thus the researcher obtains the necessary
infrastructure cheaply and can get on with the interesting aspects of their work.

5 C o n c l u s i o n

Compiler construction as a discipline can be considered engineering according
to the definition given in Sect. 1. There is a set of scientific principles, and those
principles are applied to practical purposes. Design reuse is practiced widely,
and some generators are used. Code is also reused in specific cases.

Craftsmanship is by no means unknown, however. Optimizing compilers are
usually built by craftsmen on an engineered base, and compilers for new or
unusual languages involve ad-hoc solutions.

158

Compiler construction is an enabling technology for application generators,
and in order to support this area we need to provide higher levels of automation.
Such improvements would also reduce the cost of entry for compiler researchers
who wish to investigate problems involving specific compiler components.

R e f e r e n c e s

1. Aho, A. V., Ganapathi, M. & Tjiang, S. W. K., "Code Generation Using Tree Pat-
tern Matching and Dynamic Programming," ACM Transactions on Programming
Languages and Systems 11 (October 1989), 491-516.

2. Ammann, U., "The Method of Structured Programming Applied to the Develop-
ment of a Compiler," in Proceedings of the International Computing Symposium
1973, North-Holland, Amsterdam, 1974, 94-99.

3. Ammann, U., "Die Entwicklung eines PASCAL-Compilers nach der Methode des
Strukturierten Programmierens," EidgenSssischen Technischen Hochschule Ziirich,
Ph.D. Thesis, Ziirich, 1975.

4. Ammann, U., "On Code Generation in a PASCAL Compiler," Software- Practice
$c Experience 7 (1977), 391-423.

5. Boehm, H-J. & Weiser, M., "Garbage Collection in an Uncooperative Environ-
ment," Software - Practice & Experience 18 (September 1988), 807-820.

6. Buxton, J. N. & Randell, B., eds., Software Engineering Techniques, NATO Science
Committee, April 1970.

7. Dencker, P., Dfirre, K. & Heuft, J., "Optimization of Parser Tables for
Portable Compilers," ACM Transactions on Programming Languages and Sys-
tems6 (October 1984), 546-572.

8. Dijkstra, E. W., On the Teaching of Programming, i.e. On the Teaching of Think-
ing, International Summer School on Language Hierarchies and Interfaces, Munich,
1975.

9. Fischer, G. & Nakakoji, K., "Empowering Designers with Integrated Design En-
vironments," in Artil~cial Intelligence in Design '91, J. Gero, ed., Butterworth-
Heinemann Ltd., Oxford, 1991, 191-209.

10. Gray, R. W., "A Generator for Lexical Analyzers That Programmers Can Use,"
Proceedings USENIX Conference (June 1988).

11. Gray, R. W., Heuring, V. P., Levi, S. P., Sloane, A. M. & Waite, W. M., "Eli:
A Complete, Flexible Compiler Construction System," Communications of the
ACM 35 (February 1992), 121-131.

12. Hext, J. B., "Compile-Time Type Matching," The Computer Journal 9 (February
1967), 365-369.

13. Jeffries, R., Turner, A. T., Polson, P. G. & Atwood, M. E., "The Processes In-
volved in Software Design," in Acquisition of Cognitive Skills, J. R. Anderson, ed.,
Lawrence Erlbaum Associates, Hillsdale, N J, 1981, 254-284.

14. Johnson, S. C., "Yacc - Yet Another Compiler-Compiler," Bell Telephone Labo-
ratories, Computer Science Technical Report 32, Murray Hill, N J, July 1975.

159

15. Kastens, U., "LIGA: A Language Independent Generator for Attribute Evalua-
tots," Universit/~t-GH Paderborn, Bericht der Reihe Informatik Nr. 63, Paderborn,
FRG, 1989.

16. Kleene, S. C., Introduction to Metamathematics, D. Van Nostrand Company, NYC,
1952.

17. Krueger, C. W., "Software Reuse," ACM Computing Surveys 24 (June 1992), 131-
184.

18. Lesk, M. E., "LEX - A Lexical Analyzer Generator," Bell Telephone Laboratories,
Computing Science Technical Report 39, Murray Hill, N J, 1975.

19. Levy, L. S., "A Metaprogramming Method and its Economic Justification," IEEE
Transactions on Software Engineering SE-12 (February 1986), 272-277.

20. Naur, P. & Randell, B., eds., Software Engineering, NATO Science Committee,
January 1969.

21. Prieto-D~az, R'en, "Status Report: Software Reusability," IEEE Software 10 (May
1993), 61-66.

22. Proebsting, T. A., "Simple and Efficient BURS Table Generation," SIGPLAN
Notices 27 (July 1992), 331-340.

23. Shaw, M., "Larger Scale Systems Require Higher-Level Abstractions," in Proceed-
ings Fifth INTL Workshop on Software Specification and Design, IEEE Computer
Society, 1989, 143-146.

24. Sheridan, P. B., "The FORTRAN Arithmetic-Compiler of the IBM FORTRAN
Automatic Coding System," Communications of the ACM 2 (February 1959), 9-.

25. Sloane, A. M., "An Evaluation of an Automatically Generated Compiler," ACM
Transactions on Programming Languages and Systems 17 (September 1995), 691-
703.

26. Stone, H. S., Discrete MathematicM Structures and Their Applications, Science
Research Associates, Chicago, 1973.

27. Waite, W. M., Heuring, V. P. & Kastens, U., "Configuration Control in Compiler
Construction," in Proceedings of the International Workshop on Software Version
and Configuration Control, Teubner, Stuttgart, FRG, 1988.

28. Zimmermann, E., Kastens, U. & Hurt, B., GAG: A PracticM Compiler Generator,
Lecture Notes in Computer Science #141, Springer Verlag, Heidelberg, 1982.

