
Code Generation = A* + BURS

Albert Nymeyer*, Joost-Pieter Katoen, Ymte Westra, Henk Alblas

University of Twente, Department of Computer Science,
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. A system called BURS that is based on term rewrite systems and a
search algorithm A* are combined to produce a code generator that generates opti-
mal code. The theory underlying BURS is re-developed, formalised and explained
in this work. The search algorithm uses a cost heuristic that is derived from the
term rewrite system to direct the search. The advantage of using a search algorithm
is that we need to compute only those costs that may be part of an optimal rewrite
sequence.

Key words: compiler generators, code generation, term rewrite systems, search
algorithms, formal techniques

Compiler building is a time-consuming and error-prone activity. Building the front-
end (i.e. scanner, parser and intermediate-code generator) is straightforward--the theory
is well established, and there is ample tool support. The main problem lies with the
back-end, namely the code generator and optimiser there is little theory and even less
tool support. Generating a code generator from an abstract specification, also called
automatic code generation, remains a very difficult problem.

Pattern matching and selection is a general class of code-generation technique that
has been studied in many forms. The most successful form uses a code generator that
works predominantly bottom-up; a so-called bottom-up pattern matcher (BUPM). A
variation of this technique is based on term rewrite systems. This technique, popularised
under the name BURS, and developed by Pelegrf-Llopart and Graham [30], has arguably
been considered the state of the art in automatic code generation. BURS, which stands
for bottom-up rewrite system, has an underlying theory that is poorly understood. The
theory has received virtually no attention in the literature since its initial publication [29].
The only research that has been carried out in this technique has been on improved table-
compression methods. Many researchers who claim to use BURS theory (e.g. [31, 14])
generally use 'weaker ' tree grammars instead of term rewrite systems, or equate BURS
with a system that does a static cost analysis (e.g. [13]). We argue that a static cost
analysis is neither necessary nor sufficient to warrant a BURS label, and that a system
that is based on tree grammars cannot be a BURS.

In this work we present an outline of formal BURS theory. Due to space restrictions,
we present the full theory in [28]. This formalisation of BURS contrasts with the semi-
formal work of Pelegri-Llopart and Graham. But there are other important differences
in our work. We do not, for example, use instruction costs to do static pattern selection,
and we do not use dynamic programming. Instead we use a heuristic search algorithm
that only needs to dynamically compute costs for those patterns that may contribute to

* Contact author: e-mail address is nymeyer@cs.utwente.nl

161

optimal code. A result of this dynamic approach is that we do not require invoNed table-
compression techniques. Note that we do not address register allocation in this work; we
are only interested in pattern matching and selection, and optimal code generation.

We begin in the following section with a brief survey of the literature. In Section 2
we derive the input and output sets of an expression tree. These sets contain the patterns
that match the given expression tree. The patterns are selected by the heuristic search
algorithm A*. This algorithm, described in Section 3, is all-purpose--it can be used to
solve all kinds of 'shortest-path' problems. In our case the search graph consists of all
possible reductions of an expression tree, and we wish to find the least expensive. The
A* algorithm uses a successor function (algorithm) to select patterns and apply rewrite
rules. In this sense, the successor function marries A* to BURS. The successor function
is presented in Section 4. In the implementation, the algorithm that generates input and
output sets, and the successor function, are modules that can be simply 'plugged' into A*
to produce a code generator. The implementation is also briefly described in Section 4.
Finally, in Section 5, we present our conclusions.

I Other work

Kron [25], Hoffmann and O'Donnell [23], and Chase [7] have laid the foundations of
the BUPM technique. Chase [7] implemented a BUPM by specifying patterns using a
regular tree grammar (RTG). An RTG is a context-free grammar with prefix notation
on the right-hand sides of the productions representing trees. Chase found that the
tables generated by the pattern matcher were enormous, requiring extensive use of
compression techniques. A formalisation of Chase's table-compression technique can be
found in Hemerik and Katoen [18]. An asymptotic improvement in both space and time
to Chase's algorithm is given by Cai et al [3].

Hatcher and Christopher [17] went further than Chase and built a complete BUPM
for a VAX-11. Their work was a milestone in that they carried out static cost analysis,
which is a cost analysis carried out at code-generator generation time. In a dynamic
cost analysis, the code generator itself performs the cost analysis. This is a space-time
trade-off. Static cost-analysis makes the code-generator generator more complex and
requires a lot of space for tables. In effect, pattern selection is encoded into the tables.
The resulting code generator, however, is simple and fast. In both the static and dynamic
BUPMs, the cost analysis is usually carried out using dynamic programming [1, 8, 32].
For a comparison of the performance of static and dynamic BUPMs, see Henry and
Damron [22, 21] and Henry [19, 20]. Two notable attempts to improve the efficiency of
the dynamic (BUPM) code generator have been Emmelmann et al [11], who developed
the BEG system, and more recently Fraser et al [13] with the IBURG system.

In 1990, Balachandran et al [2] used a RTG and techniques based on the work
of Chase, Hatcher and Christopher to build a static BUPM. Very recently, Ferdinand et
al [12] reformulated the (static) bottom-up pattern-matching algorithms (based on RTGs)
in terms of finite tree automata. A subset-construction algorithm is developed that does
a static cost analysis, and generalises the table-compression technique of Chase.

Pelegri-Llopart and Graham [29, 30] combined the static cost analysis concept from
Hatcher and Christopher, the pattern-matching and table-compression techniques from

162

Chase, and, most importantly, term rewrite systems (rather than tree grammars) to develop
a system called BURS. A BURS is, in fact, a generalisation of a BUPM, and is more
powerful. The term rewrite system in a BURS consists of rewrite rules that define
transformations between terms. A term, which is represented by a tree, consists of
operators and operands (which are analogous to nonterminals and terminals in context-
free grammars). However, variables that can match any tree are also allowed. The
advantage of using a term rewrite system is that, as well as the usual rewrite rules that
reduce the expression tree, we can use rules that transform the expression tree. Algebraic
properties of terms can therefore be incorporated into the code-generation process. The
'theory' that Pelegr/-Llopart and Graham develop is quite complex, however. They also
compare the performance of a BURS with other techniques. They find that the tables are
smaller and the code generator much faster.

Mainly theoretical research into the role of term rewrite systems in code generation
has been carried out by Emmelmann [10] and Giegerich [16, 15].

In 1992, Fraser, Henry and Proebsting [14] presented a new implementation of
'BURS technology'. Their system, called BURG, accepts a tree grammar (and not a
term rewrite system) and generates a 'BURS'. The algorithm for generating the 'BURS'
tables is described by Proebsting in [31].

The only serious application of heuristic search techniques to code generation has
been the PQCC (Production-Quality Compiler-Compiler) Project [33]. The construction
of the code generator and the code-generator generator in PQCC are reported by Cattell
in [4, 5, 6]. Cattell uses a means-ends analysis to determine an optimal code match. This
involves selecting a set of instruction templates that are semantically close to a given
pattern in the input expression tree. The heuristic semantic closeness means that either
the root operators of the pattern and a particular template match, or that there is a rewrite
rule that rewrites the root operator of the template into the root operator of the pattern.
For performance reasons, the search procedure is done mostly statically, using a set of
heuristically generated pattern trees.

2 An Outline of BURS Theory

In this section we describe how the sets of patterns that match a given expression tree
are computed. We will only outline the formal approach that has been used--for a full
treatment, the reader is referred to [28]. For more information on term rewrite systems
see [9].

A ranked alphabet 22 is a pair (S, r) with S a finite set of symbols and r E S ~ IN,
where g~l denotes the set of natural numbers. If a is a symbol in S, then r(a) is its rank.
Symbols with rank 0 are called constants. The set of symbols with rank n, denoted 22n,
is {a E S Ir(a) = n}.

For ,~ a ranked alphabet and V a set of variable symbols, the set of terms T~(V)
consists of constants, variables and a(t l , . . . ,tn), where a E 22n, and t l , . . . ,tn E
Try(V), n > 1. For term t, Vat(t) denotes the set of variables in t. The terms t for which
Vat(t) = 0 are called ground terms.

The position of a sub-term of a term t can be indicated by a path from the root of
t to the root of the sub-term. A position is represented as a string of positive naturals,

163

separated by dots. For example, the position of the first child of the root is 1, and the
second child 2. The position of the first grandchild of the root is 1.1. The root is at
position e. We define Pos(t) as the set of positions of all nodes in 4. The sub-term of a
term t at position p E Pos(t) is denoted tip. We are now able to define a term rewrite
system with costs.

Definition 2.1 Costed term rewrite system

A costed term rewrite system (CTRS) is a triple ((27, V), R, C) with
- 27, a non-empty ranked alphabet
- V, a finite set of variables
- R, a non-empty, finite subset o f T ~ (V) • TE(V)
- C E R ~ R + U {0}, a cost function

such that, for all (4, t ') �9 R, t ' 5~ 4, 4 r V and Var(4') C_ Vat(t). []

Note that R denotes the set of real numbers. Elements of R, identified as r t , r2, and
so on, are called rewrite rules. An element (t, t ') E R is usually written as t , t ' . The
cost function C assigns to each rewrite rule a non-negative cost. This cost reflects the
cost of the instruction associated with the rewrite rule and may take into account, for
instance, the number of instruction cycles, or the number of memory accesses. When C
is irrelevant it is omitted from the CTRS. A term rewrite system (TRS) is in that case a
tuple ((27, V), R).

The CTRS defined in the following example is a modified version of an example
taken from Pelegri-Llopart and Graham [30], and will be used as a running example
throughout this section.

E x a m p l e 2.2 Let ((27, V) , R, C) be a CTRS, where 27 = (S, r) , S = { + , e, a, r, 0 },
r (+) = 2, r (c) = r (r) = r (a) = r (0) = 0, V = { x, y }, and R defined as follows:

R = { (r l) q - (x , y)) ~-(y ,x) , (r2) -I-(z, 0) , • x, (r3) J t - (a ,a) ---~ r ,
(r ,) + (e , r) , a, 0 , c, c a ,

("r) a - - - , , ' , (r s) r , a }

The cost function C is defined by C (r l) = C(r2) = C(rs) = O, C(ra) = C(rs) = 3,
C(r4) = 5 and C (r r) = C(r s) = 1. Some example terms are +(0 , + (c , c)), a, and
+ (x , +(0 , +(c , y))) . For t = + (x , +(0 , +(c , y))) we have that Pos(t) = { e, 1, 2, 2 .
1 , 2 . 2 , 2 . 2 . 1 , 2 . 2 . 2 }. Some sub-terms of t are 4[,= 4,411= x, and 412.2= + (c , y) . []

Variables in a term t can be substituted by some term. The substitution a E V
Ts in a term t is written 4 a. Rewrite rules r l : ta ~ t~ and r2 : t2 ~ t~ are
equivalent if and only if there is a bijection a E Var(ta) ~ Vat(t2) such that t~ = t2
and t~ a = t~. Thus, rewrite rules that are identical, except for variable symbols, are
considered equivalent.

A rewrite rule and substitution are used to define a rewrite step. In a rewrite step

41 (r,p), 42, where41,42 E T,~(V), r : t ~ t' E R a n d p E Pos(tl) , theresulttermt2

is obtained from t l by replacing 411p by t 'a in t l and using substitution a with 4 ~ = 4~1~,.
We can also write (r, p) t l = t2. A rewrite rule r that is applied at the root position, i.e.
(r, e), is usually abbreviated to r.

164

A sequence of rewrite steps that are applied one after another is called a rewrite

sequence. A rewrite step is a rewrite sequence of length 1. We write t (rl,pl)...(r,,p,)~ t '

if and only if 3 t l , . . . , t , ~ - i : t (ra,vl)?. t l (rz,p2),. tn-1 (r , , p ,) , t ' . We can also

let S(t) = (r l , p l) . . . (rn,Pn), and write S(t)t = t ' . We sometimes denote a rewrite
sequence S(t) by 7".

The cost of a rewrite sequence -r is defined as the sum of the costs of the rewrite rules
in 7". The length of r is denoted I r] and indicates the number of rewrite rules in r . If a
rewrite rule r occurs in a rewrite sequence r , then we write r E r . We assume that all
rewrite sequences are acyclic.

Two rewrite sequences may also be permutations of each other. Permuted rewrite
sequences will, of course, have the same cost, but note that corresponding rules in the
two sequences may not be applied at the same positions.

E x a m p l e 2.3 Consider the CTRS shown in Example 2.2, and let t = +(0, +(r , c)).

We can write t !r~,2)~. t ' , with t ' = +(0 , +(e , r)) . We can also write (r l , 2) t = t ' . The

term t ' is obtained from t by replacing t12 by + (y , x)" in t, using substitution tr with
~r(x) = r and tr(y) = e such that (z, y)~ = t12. Two derivations starting with t ' are:

1. +(0, +(c,r)) <~,,2>~. +(O,a) <~,,2>~. +(O,r) (~'">~- +(r,O) (~">:- r

2. +(O, +(c,r)) <r"~>'.-+(O,a)(~'~>:-+(a,O) (~"~>'.-+(r,O)<~">:- r

These rewrite sequences are permutations of each other and both have cost 6. []
Given a CTRS ((~2, V) , R, C) and 2 ground terms t, t ' E T~ , we now wish to

determine a rewrite sequence ~- such that t ~ '.- t ' with minimal cost. In practice,

term rewrite systems in code generation will allow many different rewrite sequences
to transform t into t ' . Fortunately, optimisations are possible so that we only need to
consider relatively few of these rewrite sequences.

The first optimisation is based on an equivalence relation on rewrite sequences.
The equivalence relation is based on the observation that rewrite sequences can be
transformed into permuted sequences of a certain form, called normal form. Permuted
rewrite sequences yield the same result for all terms t. Hence we only need to consider
rewrite sequences in normal form. It is a stipulation for our approach, and a property
of a BURS, that permuted sequences also have the same cost. I f a cost function does
not satisfy this property (for example, if the cost of an instruction includes the number
of registers that are free at a given moment), then the reduction that we obtain by only
considering the normal form will lead to legal rewrite sequences being discarded.

We can label, or decorate, each node in a term with a rewrite sequence. Such a rewrite
sequence is called a local rewrite sequence, and is denoted by L(tlp), where tip is the
sub-term of t at position p at which the local rewrite sequence occurs. Of course, p may
be e (denoting the root). A term t in which each sub-term is labelled by a (possibly
empty) local rewrite sequence is called a decorated term, or decoration, and is denoted
by D(t). We can usually decorate a given term in many ways. I f we wish to differentiate
between the rewrite sequences in different decorations, then we use the notation LD(tlp).

Given a decoration D(t) of a term t, the corresponding rewrite sequence SD (t) can

t65

be obtained by a post-order traversal of t. The rewrite sequence SD(t) corresponding to
a decoration D(t) is defined as:

SD(t) = { Lo(tl,), i f t E ,Co
(1. So(tl).. .n. So(t,)) Lo(tl,), ift = a(t l , . . . , t ,)

Here, n . 7- for rewrite sequence 7- and (positive) natural number n denotes 7- where each
position Pi in 7- is prefixed with n.. Decorations are considered to be equivalent if and
only if their corresponding rewrite sequences are permutations of each other.

0 r l r 4 r 7 + ~ 0 r17"4 +

/ \ /
~6"f7 C �9 C 'P6"~7 C

Fig. 1. Equivalent decorations D(t) and D' (t) of a term t

\
c

Example 2.4 Consider the CTRS shown in Example 2.2 and let t = +(0, +(c, c)).
Two decorations D(t) and D'(t) of t are depicted in Figure 1, on the left and right,
respectively. The corresponding rewrite sequences are:

sv(t) = (r6, 2.1)(rr, 2 .1) (r l , 2)(r4, 2)(~r, 2)(rl, ~)(~2, ~>
SD, (t) = (re, 2 . 1) (r r , 2 . 1) (r l , 2)(r4, 2)(rl , f)(rT, 1)(r2, e)

The decorations D (t) and D ' (t) are equivalent because SD (t) is a permutation of SD, (t).
[]

We can define an ordering relation -~ on equivalent decorations. The intuitive idea
behind this ordering is that D(t) -~ D'(t) for equivalent decorations D(t) and D'(t) if
their associated local rewrite sequences for t are identical, except for one rewrite rule r
that can be moved from a higher position q in D'(t) to a lower position p in D(t).

The transitive closure of -.~ is denoted 4 +. The minimal decorations under -~+ are
said to be in normal form. Normal forms need not be unique as --<+ does not need to
have a least element. We let NF(t) denote the set of decorations of t that are in normal

form. In [28] we prove that, given a term t and a rewrite sequence 7- such that t ~ .'. t ' ,

a normal-form decoration of t always exists.

Example 2.S In Example 2.4 we have D(t) -< D' (t) because rewrite rule r7 associated
with the root position of t in D ' (t) can be moved to a lower position of t in D(t). As
all local rewrite rules in D(t) are applied to the root position of the sub-term with which
they are associated, they cannot be moved any lower, hence D(t) is in normal form. []

In a second optimisation, we reduce the number of decorations that we need to
consider still further by restricting the class of normal-form decorations to strong normal

166

form. Local rewrite sequences in this restricted class contain rewrite rules that are only
applied to positions that have not previously been substituted for a variable. We say that
each position in a term is either rewriteable or non-rewriteable. If a term is rewritten
using a rewrite rule that does not contain a variable, then the writeability of the positions
in the rewritten term do not change. If the rewrite rule does contain a variable, then the
positions in the term substituted for the variable become non-rewriteable.

LetRPt(7-) be the set ofrewriteable positions in the term resulting from applying 7- to
t. Initially, all positions in t are rewriteable, so RPt(e) = Pos(tl,). For rewrite sequence
7-(tl ' t2,p) we define:

RPt(r(tt , t2,p)) = (RPt(T) --Pos(t'lp))U Pos(t"lp)- {Pos(t"lp.q) l q E VP(t2)}

where t 5 :. t' (tl--~t2,p), t" , and VP(t) is the set of positions in t at which a variable

occurs. In the definition above, we see that the set of rewriteable positions in t" consists
of the rewriteable positions in t ' (i.e. RPt(7-)), minus the positions in the sub-term that
has been matched by tt (Pos(t'lp)), plus the positions in the sub-term t2 that replaced tt
(Pos(t"lp)), and minus the positions in the sub-terms that are substituted for the variables
(if any) in t2 ({Pos(t"[p.q) [q E VP(t2)}). Given a normal-form decoration, we prove
in [28] that a strong-normal form always exists.

Example 2.6 We are given a TRS with S = { *, +, c, r, 2 }, corresponding ranks
{ 2, 2, 0, 0, 0 }, V = { x } and R defined as follows:

Rf{(rl) ,(2,x) (r2) + (c, c) ----, ;?}

Assume that we have some term t = *(2, +(c, c)). Initially, the rewriteable positions in
t are given by RPt(e) = {e, 1, 2, 2.1, 2.2}. If we now apply the rewrite rule (r2, 2)
(note that this rule does not contain a variable), then we generate the term t" = .(2, r)
with rewriteable positions:

Ret((r2, 2)) = (RPt(e) - Pos(tl2)) U Pos(t"12) - 0
= {e, 1,2,2.1,2.2}- {2,2.1,2.2}U {2}
= I, 2}

We now apply the rewrite rule (rl,e) and generate t" = +(r, r). We are allowed to do
this because the position e is rewritcable. The rewriteable positions in this new term are:

RPt((r2, 2)(rl , e)) = (RPt ((r2, 2)) - Pos(t'l,)) U Pos(t"l,)
-{eos(t"lg) lq = 1, 2}

= 1,2} - I, 2} u {e, 1, 2} - {1,2}
= {d

Because the root position in the term +(r, r) is rcwriteable, we can now apply the rewrite
rule (?3, ~) and generate the goal term r. []

A normal-form decoration D(t) is in strong normal form if all rewrite rules r in local
rewrite sequences LD(tlp) are applied at rewriteable positions p, for all p E Pos(t). We
let SNF(t) denote the set of decorations of t that are in strong normal form.

Example 2.7 Let ((,~, V), R) be a TRS with S = { *, a, b, c, d, e, f }, r(*) = 2 and
all others with rank 0, V = { x }, and R defined as follows:

n '{ (~ ' l) *(a,b) ,*(c,d), (?'2) *(c,~g))*(e,x), (r3) d------*f}

167

Let t = *(a,b), and define a decoration D(t) by local rewrite sequences LD(t) =
r l r2 (r3,2) and L/9(tll) = L/9(t12) = e. The decoration D(t) is in normal form, but
not in strong normal form, because r2 makes position 2 non-rewriteable (ra may therefore
not be applied to this position). The decoration D'(t) defined by LD, (t) = ra (r3, 2) r2
and L/9,(tl~) = LD,(tl2) = e is, however, in strong normal form. Note that the rewrite
step (ra, 2) is applied at the root in both decorations. []

We now use the strong normal-form decorations of a term to compute the input
and output sets. These sets define the patterns that match the expression tree. Given the

strong-normal-form decoration D(t) such that t So(O,.. g for some given goal term 9,

then we define the possible inputs for each sub-term t' o f t , denoted ID(F), and outputs,
denoted 0/9 (t'), as follows:

t, if t E 270
I/9(t) = a(t l , . . . , t ,n) ' i f t = a (t l , . . . , t n)

where I/9(ti) LD(*~)~. t~ for 1 < i < n

/~D(t). t ' O19 (t) = t ' where ID (t) : '

Using the inputs and outputs, we can now define the input set and output set of a
term t for some goal term 9. The input set IS~(t) is the union of all possible inputs for
all strong normal-form decorations of t. Similarly for the output set OSg (t).

ISg(t) = { I/9(t) [D(t) E SNF(t) A t SD(t)> 9}

OSg(t) = { OD(t) l D(t) E SNF(t) A t SD(*),..g}

Note that the sets are computed for a specific goal term 9.

Example 2.8 Consider again our running example and the term t given by + (0, + (c, c)).
A normal-form decoration D(t) for this term is shown on the left in Figure 1. This
decoration is also in strong normal form. The inputs Io(t) and outputs O/9(t) of this
decoration for goal term r are depicted on the left in Figure 2, where the inputs and
outputs are given on the left and right side (resp.) of each node. The input sets ISr (t)
and output sets OSr(t) of this term t for goal term r are shown on the right in Figure 2.
[]

An algorithm to calculate input and output sets for terms t and 9, and the corre-
sponding local rewrite sequences, consists of 2 passes. In the first, bottom-up pass, sets
of triples are computed for all possible goal terms. A triple, written (t, r, t'), consists of
an input t, rewrite sequence 1-, and output t' such that t r ;. F. In the second, top-down

pass, these sets of triples are 'trimmed' using the given goal term 9. These trimmed sets
of triples, denoted by V(t), consist of the input and output sets, and the associated local
rewrite sequences. For space reasons, the algorithm to compute V(t) is not shown, but
can be found in [28].

Example 2.9 Below we show the set of triples V(t) for our running example with
expression tree t = +(0, +(c, c)).

168

+(O,r) + r {+(a,a),+(O,r),+(e,r)} + {r}

0 O (+ (r , c) + r {o} o {o,c,a}

J ~ {+(a,a),+(r,e),+(c,r)} .

C C 7" C C C J

Fig. 2. The inputs, outputs, input sets and output sets of the term +(0, +(c, c))

tZ,P}

\

tt, - { (+(a, a), r3, r), (+(0, r), rxr2, r), (+(c, r), r4rT, r) }
tlz = { (0, c, 0), (0, rs, c), (0, r~r6, a) }
tlz = { (+(a, a), ra, r), (+(a, a), r3rs, a), (+(r, e), f ir4, a), (-t-(r, c), rlr4rr, r),

(+(~, ~), ~,, a), (+(c, ~), ~,~,, ~) }
tlm.t " { {e, +, c), {e, re, a), {e, ror, , r))
"t12.2 - { (c, ~:, c), (c, re, a) , (c, ror,.t, r) }

Note that all rewrite rules are applied at the root. []
To guarantee termination of this algorithm the length of each local rewrite sequence

must be bounded. That is, for all t E Tz(V) and D(t) E SNF(t) there exists some
natural number k such that Vp E Pos(t) : I LD(tIp) [< k. This is referred to as the
BURS property. The BURS property is necessary because we can have terms that contain
variables on the right-hand side of rewrite rules in our rewrite system. Rewrite sequences
can therefore continue indefinitely, and terms can 'explode' if the property does not hold.
Our running example, by the way, is BURS with k = 3.

The work of Pelegrf-Llopart and Graham

Pelegri-Llopart and Graham[30] (PLG) first define a normal-form rewrite sequence,
and then a local rewrite sequence and assignment. We have reversed this order, and we
have been more formal. For example, we characterise normal-form decorations by using
the ordering relation 4. Our rewriteable positions are related to PLG's touched positions,
which PLG define only informally and unclearly. PLG do not explicitly define a strong
normal form. While we directly encode the inputs, outputs and local rewrite sequences
into the expression tree, PLG use local rewrite graphs for each sub-term of the given
expression tree. These graphs represent the local rewrite sequences of all 'normal-form
rewrite sequences' that are applicable.

3 Heuris t ic -Search Methods

Search techniques are used extensively in artificial intelligence [24, 27] where data is
dynamically generated. In a search technique, we represent a given state in a system by a
node. The system begins in an initial state. Under some action, the state can change--this

169

is represented by an edge. Associated with an action (or edge) is a cost. By carrying
out a sequence of actions, the system will eventually reach a certain goal state. The aim
of the search technique is to find the least-cost series of actions from the initial state to
one of the goal states. In most problems of practical interest, the number of states in the
system is very large. The representation of the system in terms of nodes, edges and costs
is called the search graph. A search graph G is a quadruple (N, E, no, Ng) with a set of
nodes N, a set of directed edges E C_ N x N, each labelled with a cost C(n, m) E R,
(n, m) E E, an initial node no E N, and a set of goal nodes N 9 _C N. Furthermore, G
is connected, Ng ~ 13 and V(n, m) E E : n ~ Ng.

One of the best known search techniques is the A* algorithm ([26, 27]). The letter
'A' here stands for 'additive' (an additive cost function is used), and the asterisk signifies
that a heuristic is used in the algorithm. The A* algorithm computes the least-cost path
from the initial node to a goal node. The algorithm begins by initialising sets of open
nodes No C N to {no}, closed nodes Nc C_ N to 13, and the path and cost of the initial
node no. As long as we have not found a goal node, we carry out the following procedure.
We use a cost function to compute Ns, which is the set of nodes in No with lowest cost.
I f this set contains a goal node, then we are finished, and we return the path of this node.
Otherwise we choose a node out of Ns, remove it from No, add it to No, and compute its
successors. The successor nodes of a given node are those nodes that can be reached with
a path of length 1 from the node. If a successor, m say, is neither in No nor No, then we
add m to No, and compute its path and cost. If we have visited m before, and the 'new'
cost of m is less than the cost on the previous visit, then we will need to 'propagate' the
new cost. This involves visiting all nodes on paths emanating from m and recomputing
the cost. The algorithm terminates when we find a successor node that is a goal node.

The cost of a node n, denoted f*(n), is the sum of the minimum cost of a path from
no to n, denoted g(n), and the estimated cost from n to a goal node, denoted h*(n).
The estimated cost is obtained by using heuristic domain knowledge. This heuristic
knowledge allows us to avoid searching some unnecessary parts of the search graph. The
search technique therefore needs to try fewer paths in an attempt to find a goal node. Note
that the actual cost of reaching a goal node from n is denoted h(n). The relationship
between h* (n) and h(n) is important. We consider the following cases:

1. h*(n) = 0 I f we do not use a heuristic, then the search will only be directed by
the costs on the edges. This is called a best-first search.

2. 0 < h*(n) < h(n) If we always underestimate the actual cost, then the algorithm
will always find a minimal path (if there is one). A search algorithm with this property
is said to be admissible.

3. h* (n) = h(n) I f the actual and estimated costs are the same, then the algorithm
will always choose correctly. As we do not need to choose between nodes, no search
is necessary.

4. h*(n) > h(n) If the heuristic can overestimate the actual cost to a goal node, then
the A* algorithm may settle on a path that is not minimal.

In some applications (code generation, for example), it may not be important that we
find a path that is not (quite) minimal. It may be the case, for example, that a heuristic
that occasionally overestimates the actual cost has superior performance than a heuristic

170

that always plays safe. Furthermore, a heuristic that occasionally overestimates may only
generate a non-minimum path in a very small number of cases.

In our description of the A* algorithm we have used successor nodes and paths. Given
a search graph G = (N, E, no, Ng), the set of successor nodes Successor(n) E "P(N)
of a node n E N, where 7~(N) is the power set of N, can be defined as Successor(n) =
{m E N [(n, m) G E}. Note that if n E Ng then Successor(n) = O. Furthermore, the
path Path(n) E N* to a node n E N, where N* denotes sequences of elements from N,
is a string of nodes non1 . . . n k such that V1 < i < k : ni E Successor(hi_l) A nk =
n, k > 0. Note that there may be more than 1 path that leads to a node. If Path(n) =
nonx . . . nk and m E Successor(n) then we can append the node m to the path Path(n)
using the append operator ~. We write Path(m) = Path(n) ~ m = non1 . . , nkm.

Conceptually the A* algorithm can be quite straightforwardly applied to code gen-
eration. The transformations in code generation are specified by rewrite rules. Each rule
consists of a match pattern, result pattern, cost and an associated machine instruction. A
node n is an expression tree. The initial node is the given expression tree. From a given
node, we can compute successor nodes by transforming sub-trees that are matched by
match patterns. If a match occurs, we rewrite the matched sub-tree by the corresponding
result pattern. The aim is to rewrite the expression tree (node) into a goal using the least-
expensive sequence of rules. The associated sequence of machine instructions forms the
code that corresponds to the expression tree.

4 Coupling A* to BURS

In practice, the major problem in coupling A* and BURS is determining the successor
nodes of a given node (in the search graph). In other words, given some term (expression
tree), at what positions may we apply rewrite rules? We note that all rewrite rules that we
apply must be correct, of course. A rewrite rule is correct if there is a path in the search
graph from the resulting term (node) to a goal term (node). In this section we describe
how a search graph for a BURS is initialised, and how successor nodes are computed.

The search graph G = (N, E, no, N 9) consists of a set of nodes N, edges E and
goal nodes Ng, and an initial node no. A node represents a state of the system, and is
denoted by a quadruple (t, p, % t') where t is the current term, p is the current position
in that term, r the local rewrite sequence applied at p, and t' the (chosen) input tree at p.

The initial node no is given by the quadruple (t I ,po,e , tzlpo). The term tl is the
input expression tree for which we want to generate code. The initial position P0 is the
lowest left-most position in this tree, and is of the form 1 �9 1 �9 . . .

Example 4.1 Consider our running example (Example 2.2). The initial node is the
quadruple (+(0, +(c, c)), 1, e, 0). The lowest left-most position in tx = +(0, +(c, c)) is
1, and tzll is 0. The set of goal terms is the singleton set {r}. []

To determine the search graph, we need to compute the successor nodes of a given
node. This is carried out by the function Successor, which is shown in Figure 3. In this
function we use the functions Next, Parent and Child to position ourselves in the search
graph. Given a position p E Pos(t) \ {e} in a term t, Next(p, t) E ~I*+ is the next position
in a post-order traversal of t. Note ~1+ is lq\{0}. The function Parent(p, t) E g,l*+ is the
position of the parent o fp in t, and Child(p, t) E [q+ is the child-number o f p in t. If a

171

pos i t ion p in tree t has ch i ldren p- 1 , . . . , p .n then the chiM-number of pos i t ion p . i is i .
Fur ther , Parent(e,t) ffi ChiM(e,t) ,- e, but Next(e,t) is undefined, for any t. No te that p =
P arent(2,t).Child(p,t).

E x a m p l e 4.2 In the term t = + (0, + (c, c)) , we have Next(1,t) ~ 2.1, Next(2.1 ,t) ~ 2.2,
Next(2.2,0 ffi 2 and Next(2,t) ffi e. Fur the rmore , Parent(2.1,t) ffi 2 and ChiM(2.1 ,t) = 1. []

J[con ((z , v) , - ~) : m s ;
t, g : T~;
v (t) : P(T~ x (R x IN;)* • T~);

fune Successor (t :Tz , p : IN~., 7" : (R x IN~_)*, it: T~)
: "P(Tz x IN~. x (n x IN~_)* x Tz)

[[var S : T'(T~: x IN; x (R x IN;)* x T~;);

rune Match(p' ." N+,* t' : T~) : boolean
l[var Z : P (T z) ;

it' : Tz;
b : boolean ;

b := (p' = e);
Z(t) := {it [(it, 7",ot) 6 V(tlearem(p,)) A it[Child(p,)= t' };
d o Z # O A "~b: 4[[choose i t ' 6 Z ;

Z := Z \ {it'};
b :-- (V 1 _< i < Child(p') : tt 1,- tlparen,(p'). ~)

11
od;
return b

]1;
ie(p = ~) v ~iatch@, tip) ----* S := 0

(p # e) A Match(p, tip) -----, S := Successor(t, Next(p), e, tl~gext(p))
f l ;
for all r 6 R
do for all p' 6 Pos(it)

do for all (it, v(r ,p ')7 . ' , or) 6 V(t[p) (, this is a loop over 7.' and ot .)
do if -~Match(p, ot) - -~ skip

J Match(v, or) -----, S := S U { (<~,v')t, p, 7.0",V'), it) }
It

off
od

od;
return S

]l
]1.

Fig. 3. The successor function that computes a set of new search nodes.

172

The basic idea behind the successor function is the following. If we can add a rewrite
step ((r,p') in the algorithm) to a local rewrite sequence (r) at the current position
(p), and there exists a rewrite sequence (~'(r, p')T') whose output tree (ot) matches a
corresponding child of an input tree (it') of the parent (of p), and all the 'younger'
siblings of the current position also match corresponding children of the same input tree,
then we have found a successor node. The function Successor is called recursively, using
the next post-order position, for as long as the sub-term at the current position, and all
the 'younger' siblings of the current position, match corresponding children of an input
tree of the parent. The function Match carries out the task of matching a node (sub-tree)
and its siblings with the children of an input tree of the parent.

When the algorithm reaches the root position, p -- e, the recursion will stop, and
the function Match will always yield true. The algorithm will return with the empty set
when it reaches the root position and the term t ENg.

Example 4.3 Consider our running example again. Let us compute the successor nodes
of the initial node, i.e. we compute Successor(+(O, +(e, c)), 1, e, 0). Because p # e and
Match(l, t I1) - true, we recursively call the function again with the next position,
p = 2.1. That is, we call Successor(+(O, +(c, c)), 2.1, ~, c). Again, because p #
and Match(2.1, t 12.1) - true, we recursively call Successor(+(O, +(c, c)), 2.2, e, c).
The recursion now stops because Match(2.2, tl2.2) -false. We therefore let S := 0,
and inspect all the triples of V(t [z.2) (see Example 2.9). The triple (c, rerr, r) satis-
fies the loop condition, and since Match(2.2, r) = true, we generate the search node
(+(0, +(c, a)), 2.2, r6, c). The call of Successor for p = 2.2 is now complete, so we
need to inspect the triples associated with the previous position, V(t I~.1). The triple
(c, r6rr, r) (again) satisfies the loop condition, Match(2.1, r) .. true, and we generate
the search node (+ (0, + (a, c)), 2.1, r6, c). The call o f Successor for p = 2-1 is also now
complete. Inspecting the triples associated with the initial position, V(tll), we find that
triple (0, rsr6, a/satisfies the loop condition, and that Match(l, a) - true. We therefore
generate the search node (+(c, +(c, c)), 1, rs, 0). The result of the above computations
is that we have generated 3 new search nodes from the initial node, namely:

{(+(0, +(c, a)), 2.2, re, c), (+(0, +(a, c)), 2.1, r6, c), (+(c, +(c, c)), 1, rs, 0)}

We can continue computing successors until all the goal nodes have been found. In
Figure 4 we see the search graph for the expression tree +(0, +(c, c)). The nodes in the
graph are the expression trees, and the edges are labelled with the rewrite steps and the
positions at which they are applied. Note that there are a total of 11 paths leading from
the initial node (the root node) to a goal node in Figure 4. []

In the example above, we have shown how the successor function shown in Figure 3
can be used to compute the complete search graph. However, calling the successor
function for each and every newly created node can result in a very large tree, and is
wasteful as we only wish to find one least-cost path. The A* algorithm will compute
successors of only those nodes that potentially lie on a least-cost path from the initial
node to a goal node. The cost g(n) of a node n is simply the sum of the costs of the
rewrite rules applied along the path to n. But what is the value of the heuristic cost
h* (n)? In principle, of course, we cannot predict how much it will cost to rewrite a given
node to a goal node. However, we can provide an (under) estimate of the cost.

173

~ . 2 >

+a+ac + a ~ ~ a a +c~r +O-~cr _ (~ _-~a

+a+rc +a+aa +a'+cr +c4cr +br +~a +0a C~-dI)~+0r -i-a0

<rx,2> <rs,2> <r4 2> <r4 2> r4<rT,2> <rr,2 rl r2 r~ r2 I [,2> 1<r4,2> I<r4,2>lr,<rT,2> I < r r , 2 ~ _ ~ r~[[J
+a+cr +at +aa +ca a +cr +or +aO +rO a

I I..
+aa +aa r +cr r a

r r a r r r

Jr,
r

Fig. 4. A complete search graph, and heuristic search graph (in shaded boxes)

Example 4.4 The heuristic function that we use to 'predict' the cost for our running
example is:

h*(n)=3,(]+(x,y)]t+Jch), x r y r

where n = (t,p, v, t~), and I s It denotes the number of sub-terms in t that match s. This
heuristic function, which we obtain by inspection, predicts a cost that under-estimates, or
is equal to, the actual cost. For example, h* = 0 for t -- a (the actual cost is 1), h* -- 3
for t = +(0, c) (actual cost 4) and h* = 6 for t = +(c, a) (actual cost 6). []

Example 4.5 We now apply the A* search algorithm with the cost function f*(n) =
g(n) + h* (n) to our running example. We begin by generating the (3) successors of the
initial node, as shown in Example 4.3. The costs of these nodes are 0 + 15, 3 + 6 and
3 + 6 (resp.). The second and third nodes are the cheapest; we choose the second, and
compute its successors using the successor function. This results in +(0, +(r , c)) and
+(0, +(a , a)), using rewrite steps (rr, 2.1) and (r6, 2.2). These nodes have costs 4 + 6
and 6 + 3. Continuing on in this way we find a goal node in just 6 steps, having visited
(computed) just 10 nodes in total. The resulting heuristic search graph is shown using
shaded boxes in Figure 4. The cost of the path to the goal node is 9. []

Implementation
The A* algorithm was straightforward to implement. The pattern-matching and

174

successor-function algorithms proved more difficult, requiring many intricate tree-
manipulation routines to be written. In total, the system comprises approximately 3000
lines of C code. The implementation has revealed the 'strength' of the theory. For exam-
ple, we saw in Example 2.9 that there are only 3 local rewrite sequences at the root of
the term +(0, +(c, c)). Before trimming, there are in fact 101 sequences. If we remove
the restriction that sequences must be in strong normal form (in other words, we allow
rewrite rules to be applied at all positions, not just rewriteable ones), then the number
of (untrimmed) sequences is too large (>> 106) to be computed. The strong-normal-form
restriction is therefore extremely powerful. TRSs for real machines have not yet been
developed.

5 Conclusions

In this work we have reformulated BURS theory, and we have shown how this theory can
be used to solve the pattern-matching problem in code generation. This is our first major
result. The task of selecting optimal patterns is carried out by the A* algorithm. The
interface between the BURS algorithm that generates patterns, and the A* algorithm that
selects them, is provided by the successor algorithm. This important algorithm builds
the search space. Combining BURS theory A* is our second major result.

Term rewrite systems are a more powerful formalism than the popular regular tree
grammars on which most code-generator-generator systems are based. The term rewrite
system that underlies the BURS system is used to deduce a heuristic cost function. This
cost function speeds up the search process. Optimality is guaranteed if the cost heuristic
never over-estimates the actual cost of generating code.

Future work will be mainly concerned with the development of term rewrite systems
that describe real machines, and a systematic technique to construct the heuristic cost
function.
Acknowledgements: Gert Veldhuyzen van Zanten contributed many formative ideas.

References

1. A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code generation using tree matching
and dynamic programming. ACM Transactions on Programming Languages and Systems,
11(4):491-516, October 1989.

2. A. Balachandran, D. M. Dhamdhere, and S. Biswas. Efficient retargetable code generation
using bottom-up tree pattern matching. Computer Languages, 15(3): 127-140, 1990.

3. J. Cai, R. Paige, and R. Tarjan. More efficient bottom-up multi-pattern matching in trees.
Theoretical Computer Science, 106:21-60, 1992.

4. R. G. G. Cattell. Code generation in a machine-independent compiler. Proceedings of
the ACM SIGPLAN 1979 Symposium on Compiler Construction, ACM SIGPLAN Notices,
14(8):65-75, August 1979.

5. R. G. G. Cattell. Automatic derivation of code generators from machine descriptions. ACM
Transactions on Programming Languages and Systems, 2(2): 173-190, April 1980.

6. R. G. G. Cattell. Formalization and Automatic Derivation of Code Generators. UMI Re-
search Press, Ann Arbor, Michigan, 1982.

175

7. D. R. Chase. An improvement to bottom-up tree pattern matching. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Programming Languages, pages 168-
177, Munich, Germany, January 1987.

8. T. W. Christopher, P. J. Hatcher, and R. C. Kukuk. Using dynamic programming to generate
optimised code in a Graham-Glanville style code generator. Proceedings of the ACM SIG-
PLAN 1984 Symposium on Compiler Construction, ACM SIGPLAN Notices, 19(6):25-36,
June 1984.

9. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science (Vol. B: Formal Models and Semantics), chapter 6, pages
245-320. Elsevier Science Publishers B.V., 1990.

10. H. Emmelmann. Code selection by regularly controlled term rewriting. In R. Giegerich and
S. L. Graham, editors, Code generation---concepts, tools, techniques, Workshops in Comput-
ing Series, pages 3-29. Springer-Verlag, New York-Heidelberg-Berlin, 1991.

11. H. Emmelmann, F. W. Schr~Ser, and R. Landwehr. BEG--a generator for efficient back ends.
ACM SIGPLANNotices, 24(7):246-257, July 1989.

12. C. Ferdinand, H. Seidl, and R. Wilhelm. Tree automata for code selection. Acta Informatica,
31(8):741-760, 1994.

13. C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a simple, efficient code-
generator generator. ACM Letters on Programming Languages and Systems, 1(3):213-226,
September 1992.

14. C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG--fast optimal instruction selection
and tree parsing. ACM SIGPLANNotices, 27(4):68-76, July 1992.

15. R. Giegerich. Code selection by inversion of order-sorted derivors. Theoretical Computer
Science, 73:177-211, 1990.

16. R. Giegerich and K. Schmal. Code selection techniques: pattern matching, tree parsing, and
inversion of derivors. In H. Ganzinger, editor, Proc. 2nd European Syrup. on Programming,
volume 300 of Lecture Notes in Computer Science, pages 247-268. Springer-Verlag, New
York-Heidelberg-Berlin, 1988.

17. P. J. Hatcher and T. W. Christopher. High-quality code generation via bottom-up tree pat-
tern matching. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of
Programming Languages, pages 119-130, Tampa Bay, Florida, January 1986.

18. C. Hemerik and J.-P. Katoen. Bottom-up tree acceptors. Science of Computer Programming,
13:51-72, January 1990.

19. R. R. Henry. The codegen user's manual. Technical report 87-08-04, Computer Science
Department, University of Washington, Seattle, Washington, October 1988.

20. R. R. Henry. Encoding optimal pattern selection in a table-driven bottom-up tree-pattern
matcher. Technical report 89-02-04, Computer Science Department, University of Washing-
ton, Seattle, Washington, February 1989.

21. R. R. Henry and E C. Damron. Algorithms for table-driven generators using tree-pattern
matching. Technical report 89-02-03, Computer Science Department, University of Wash-
ington, Seattle, Washington, February 1989.

22. R.R. Henry and P. C. Damron. Performance of table-driven code generators using tree-
pattern matching. Technical report 89-02-02, Computer Science Department, University of
Washington, Seattle, Washington, February 1989.

23. C. M. Hoffmann and M. J. O'Donnell. Pattern matching in trees. Journal of the ACM,
29(I):68-95, January 1982.

24. L. Kanal and V. Kumar, editors. Search in Artificial Intelligence. Springer, 1988.
25. H. Kron. Tree Templates and Subtree Transformational Grammars. PhD thesis, Information

Sciences Department, University of California, Santa Cruz, CA, 1975.

176

26. N. J. Nilsson. Problem-solving methods in artificial intelligence. McGraw-Hill, New York,
1971.

27. N. J. Nilsson. Principles of artificial intelligence. Morgan Kaufmann Publishers, Palo Alto,
CA, 1980.

28. A. Nymeyer and J.-P. Katoen. Code generation based on formal BURS theory and heuristic
search. Technical report 95-42, Department of Computer Science, University of Twente,
Enschede, The Netherlands, November 1995.

29. E. Pelegrf-Llopart. Rewrite systems, pattern matching, and code generation. PhD thesis,
University of California, Berkeley, December 1987. (Also as Technical Report CSD-88-423).

30. E. Pelegrf-Llopart and S. L. Graham. Optimal code generation for expression trees: An
application of BURS theory. In Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, pages 294--308, San Diego, CA, January 1988.

31. T. A. Proebsting. BURS automata generation. ACM Transactions on Programming Lan-
guages and Systems, 3(17):461-486, 1995.

32. B. Weisgerber and R. Wilhelm. Two tree pattern matchers for code selection. In D. Hammer,
editor, Compiler compilers and high speed compilation, volume 371 of Lecture Notes in
Computer Science, pages 215-229. Springer-Verlag, New York-Heidelberg-Berlin, October
1989.

33. W. A. Wulf, B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. M. Newcomer, A. H. Reiner,
and B. R. Schatz. An overview of the production-quality compiler compiler project. IEEE
Computer, 13(8):38-49, August 1980.

