
Using Partial Evaluation in Support of
Portability, Reusability, and Maintainability

Daniel J. Salomon

Dept. of Computer Science, University of Manitoba, Winnipeg, Manitoba,
Canada R3T 2N2, E-mail: salomon~cs.UManitoba.CA

Abs t rac t . Partial evaluation is ordinarily intended to be used to in-
crease program efficiency. This paper shows how partial evaluation can
be used in place of a preprocessor phase and of source-code templates
(e.g. C++ templates or Ada generics). In this way it can be used to sup-
port portability features provided by a preprocessor, and the reusability
provided by code templates, but with higher maintainability due to the
simpler syntax required. The important mechanisms needed are: annotat-
ing variables and functions with an evaluation time, treating declarations
as translation-time "executable" statements, treating user-defined types
as translation-time variables, giving programmers control over the scope
of symbols, and providing translation-time name binding. The effects of
these changes on the size and complexity of a compiler are estimated.
A translator for a language called "Safer_C" which supports these tech-
niques has been implemented. Important existing C software is analyzed
to evaluate the applicability of these techniques in replacing the prepro-
cessor.

1 I n t r o d u c t i o n

Partial evaluation [2, 5] is a program transformation technique whereby program
constants and input whose values are known in advance of execution are used to
specialize the program for those specific values and thus obtain a faster and/or
smaller program. In this paper, we show that partial evaluation can also be used
in support of portability, reusability, and maintainability of programs.

One of the reasons that the languages C & C + + have been popular for
p o r t a b l e programming is that their preprocessors allows the automatic tailor-
ing of programs to particular platforms. We show how the techniques of partial
evaluation can be used to eliminate the need for a preprocessor phase by pro-
viding much of the same functionality.

A motivation for the development of templates in C + + and generic proce-
dures in Ada has been to facilitate the coding of r e u s a b l e procedures. We also
show how partial evaluation can be used to duplicate the functionality of C + +
templates.

The functionality of these two features is provided with minimal changes to
the syntax and semantics of the original language, and certainly with less addi-
tional syntax than is ordinarily needed to support preprocessors and templates.

209

The simplicity and orthogonality with which partial evaluation can replace pre-
processing and templates, makes the programs more readable, and easier to
manipulate with program processors such as pretty printers, structured editors,
and language version updaters, thus making programs more mainta inable . At
the same time the programmer is gaining the usual efficiency benefits of partial
evaluation.

This work does not attempt to present new functionality for programming
languages, but rather shows how partial evaluation can provide well recognized
functionality in a simpler and more consistent way.

1.1 Replacing Preprocessors

The standardization and availability of the C preprocessor, cpp, is one of the
principal reasons that the C language has become so popular for the program-
ming of portable systems. With a preprocessor, the same source program can be
customized down to fine details for different target architectures and operating
systems.

Despite this advantage, preprocessors have fallen into disrepute. The princi-
pal complaints against them are that:

1. They add another level to the syntax and semantics of a programming lan-
guage. This causes difficulties in the description, implementation, and use of
the language.

2. They usually have a different syntax and semantics from the languages they
are modifying.

3. Preprocessor statements can be misused to violate the structuredness of
programs by overlapping instead of nesting control constructs.

The preprocessors for the C & C++ languages have all of the above faults,
but because of their advantages and widespread use, they cannot simply be
discarded.

In this paper, the author proposes that the principal functionality of prepro-
cessors can be replaced by compile-time processing. Thus the number of program
processing phases will be reduced by one. This equivalent functionality is pro-
vided within a single level of syntax, and with minimal changes to the syntax of
the existing language.

Although we have focused on the C & C++ languages, our belief is that other
languages too would benefit from these techniques by gaining the advantages of
a preprocessor phase and of templates without the disadvantages.

1.2 Replacing Templates & Generic Packages

Templates in C++ and generic packages in Ada allow a generalized version of an
algorithm to be coded, and translation-time parameters to be provided that cus-
tomize the source code to a specific problem. The principal reason for introducing
these language features was to increase the reusability of code. The translation-
time specialization of functions, however, is the trademark of partial evaluation.

210

By treating user-defined types as translation-time variables, partial evaluation
can be extended to provide the functionality of templates and generics, while
hardly increasing the size of the grammar of a carefully designed language.

1.3 T h e M e t h o d

In this section, we summarize the changes to the syntax and processing of a C-
like language that can give the compilation phase enough computational power
to allow the elimination of the preprocessor phase and provide the functionality
of templates. The changes are:

1. Program entities such as variables, functions and formal parameters, can be
annotated at their declaration with a designation of their evaluation time.

2. The evaluation time of program entities is propagated through a program
to determine the evaluation time of expressions, and where possible, control
structures.

3. Predefined types are translation-time type constants, and user-defined type
names are treated as translation-time variables.

4. Control structures can be annotated with an evaluation time to assist the
compiler, or to clarify the programmer's intentions.

5. Declarations are treated as compile-time "executable" statements. Thus a
programmer can gain control over not only what computations are to be
performed, but also over what variables and functions are to be declared.
This is an essential feature if partial evaluation is to be used to replace
preprocessors and templates.

6. The programmer is provided with additional control over the scope of pro-
gram entities.

7. Control structures are allowed outside of any function, where only declara-
tions are normally allowed, provided that those control structures can be
evaluated at compile time and that only declarations are left as residual
code.

8. A boolean operator dec l can be used to test whether an identifier has been
declared. This operator is used to provide the functionality of the C prepro-
cessor statements # i f d e f and # i f n d e f .

9. Translation-time name binding is provided, so that the programmer can gain
control over the final names of exported program entities. Normally names
for program entities are bound at coding time.

These changes are described in greater detail in subsequent sections.

1.4 Origins of This Project

The work described in this paper originated from a project to design a language
called Safer_C [10], which is a modern descendant of the C language. The primary
objective of the design is to produce a language that is more error-resistant than
C without sacrificing any expressiveness or computational power. The plan is to

211

continue enhancing Safer_C until it matches C++ in expressive power, but with
less of the tattered syntactic baggage that C++ inherited from C.

Due mostly to the fact that it was designed over 20 years ago, the C lan-
guage has many syntactic deficiencies that lead to common programming errors.
Some of the best known of these errors are: using the operator -- for comparison
instead of --=, forgetting the closing delimiters on comments, forgetting break
statements at the end of switch cases, missing or adding erroneous semicolons,
erroneous type declarations, and erroneous preprocessor statements. Some of
these errors can persist in a program until run time, even though they originate
strictly from deficient syntax. Koenig [6] gives a readable and valuable descrip-
tion of most of the syntactic deficiencies of C, along with tips on how to avoid
them, and they are also summarized by Salomon [10].

Except for its added compile-time functionality, Safer_C is semantically iden-
tical to C, but has most of the syntactic deficiencies eliminated by using modern
conventions. The C language was chosen for modernization because, despite its
flaws, it is a popular language, and is used in many important systems that
would benefit substantially from greater reliability. The intention was to de-
sign Safer_C such that all existing C programs could be machine translated to
Safer_C, and further maintenance of those programs could be carried out in the
more-error-resistant, modern syntax.

The greatest obstacle to modernizing C that was encountered is its prepro-
cessor phase. Since preprocessors are used to change source text, the machine
translation of C programs into a new version or a different form can be blocked
by even tame preprocessor statements. Sometimes the actual C program that is
being manipulated cannot be known until specific values are assumed for some
of the preprocessor variables, and then only the program generated by those
specific values can be manipulated, not the general form of the program.

Since the existence of a preprocessor phase impedes even simple source-to-
source code manipulation, it was decided that the preprocessor should be re-
placed early in the evolution of Safer_C so that even though the transformation
of existing C programs to Safer_C would still be hard, further transformation to
later versions of Safer_C would be considerably simplified.

2 R e l a t e d W o r k

Stroustrup [11], in the design of C++, has tried to eliminate the preprocessor
phase as much as possible by allowing the compiler access to the values of const
variables, and by providing in-line functions. These mechanisms, however, do not
provide any support for conditional declarations, and #include preprocessor
statements are still acknowledged as necessary.

The PL/I language [4] provides a preprocessor language with syntax and
power that is quite similar to the run-time language. The many restrictions on
the preprocessor language, a few extensions over the run-time language, and
scope-rule differences, however, mean that the level of evaluation-time indepen-
dence is actually quite limited. Since run-time code is always treated as text by

212

the preprocessor, the readability and maintainability of programs is impaired.
PL/ I also provides a separate and powerful translation-time computation ability,
which results in the duplication of implementation effort for preprocessing time
and translation time.

The templates of C++ and the generic packages and procedures of Ada do
provide reusability of code, but do so by providing an added level of function
invocation with its own fully separate syntax and semantics.

A number of other researchers have studied the applicability of partial eval-
uation to imperative programs. Some recent examples are: Meyer [7], Nirkhe &
Pugh [8], and Baier, Gl/ick, & ZSchling [1]. Their methods are more extensive
than the ones described here in that they try to maximize the amount of compu-
tation performed before run time. The work described here relies more heavily
on programmer annotations. In Safer_C, more emphasis is placed on the pro-
grammer being able to predict what computations will be done at compile time,
and being able to control when computations will be performed. We concentrate
on how to use partial evaluation to replace the functionality of a preprocessor
and templates.

The work of Weise and Crew [12] on programmable syntax macros may seem
to be similar to ours. Their method adds more programming power than text
macros, but also adds a meta level of syntax, and still poses an obstacle to
automatic source-to-source manipulations.

The idea of explicit control over the scope of program entities is due to
Cormack [3], who also gives the benefits of such control for ordinary run-time
variables.

3 D e c l a r i n g t h e E v a l u a t i o n T i m e o f P r o g r a m E n t i t i e s

The mechanism used by Safer_C to replace the preprocessor phase is to provide
program entities, such as types, variables, functions, and formal parameters,
with an evaluation-time attribute. For brevity and readability in this discussion,
the term "variable" will often be used to refer to all such program entities. A
variable can be specified as having a translation-time evaluation by preceding
its type specification with the keyword "tran," otherwise it is assumed to have
run-time evaluation 1.

Sample declarations might be:

SIZE :: tran int := i0

table : : [0..SIZE-l] int

WIDTH :: tran float := SIZE/14.0

1 Actually Safer-C allows the specification of one of five evaluation times: translation,
linking, loading, frame allocation, and run time, and it attempts to provide the same
computation power in each of those five phases. This corresponds to the principle of
evaluation-time independence described by Salomon [9]. Since translation time and
run time are the only phases currently operational in Safer_C, they are the only ones
discussed in this paper.

213

In these declarations, SIZE and WIDTH are translation-time variables, and t a b l e
is a run-time variable.

4 T h e E v a l u a t i o n T i m e o f E x p r e s s i o n s a n d S t a t e m e n t s

Methods for propagating evaluation time through a program appear in the liter-
ature (See for instance Meyer [7] or Nirkhe and Pugh [8]), so only the elements
unique to Safer_C are emphasized here.

- Arithmetic Expressions (el op e2, p r e_op el, or el p o s t _ o p) - The eval-
uation time of an arithmetic expression is the latest evaluation t ime of any
of the subexpressions or variables that comprise it.
Referencing is an exception to this rule. A reference operation takes the
evaluation time of the address of the object referenced, not of the object.
Short-circuit boolean operators are also treated specially. Consider the ex-
pression el && e2, where "&&" is the short-circuit a n d operator in C. If el
has an evaluation time tl that is earlier than t2 the evaluation time of e2 then
if el evaluates to t r u e the expression takes the evaluation time and value
of the second operand, whereas if el evaluates to false then the expression
takes the value and evaluation time of el. A corresponding calculation of
evaluation time is used for the the short-circuit o r operator.

- Assignment (Dest_Var := Source_Expr) - The expression Source_Expr must
have an evaluation time earlier or equal to that of the variable Dest_Var, oth-
erwise an error is reported. The assignment is carried out at the evaluation
time of the variable Dest_Var.

- Boolean Selection (if (Bool_Expr) t h e n Then_Strut else Else_Strut) -
The selection is carried out at the evaluation time of the boolean expres-
sion Bool_expr. Only the selected statement is processed, the other state-
ment is ignored. The ignored statement must be syntactically correct, but
need not necessarily be semantically correct. In particular, if Bool..Expr is a
translation-time expression, since declarations are "executed" at translation
time, the effect is that no type checking is performed on the ignored state-
ment, and any subprograms invoked need not be made available for any of
the processing phases. The selected statement may have an evaluation time
later than Bool_Expr, and then would be processed as residual code.

- Case Selection (swi tch (Ord_Expr) Case_List) - The execution of case
selection statements is analogous to boolean selection. There is an added
provision that , for efficiency reasons, the evaluation times of the case-label
expressions must be translation-time.

- While Loops (whi le (Bool._Expr) Loop_Body) - If Bool_Expr evaluates to
f a l s e at translation time, then the body of the loop is ignored. Otherwise,
the loop is considered to be a run-time loop, unless it is explicitly annotated
as a translation-time loop. To mark a whi le loop as a translation-time loop
it is preceded by the marker # t ran# . This method of determining evaluation
times is used because unbounded run-time loops are a common mechanism

214

in C programs, and it is not always possible to determine whether or not they
can be replaced by unrolled code at translation time. Rather than attempting
to make such a prediction, Safer_C unrolls while loops only if explicitly
requested to do so by the programmer.
If Bool_Expr is a non-false translation-time expression, and the program-
mer requests translation-time evaluation, then the loop is unrolled until
Bool_Expr becomes false at or until a break statement is executed.

- For loops (for (Init_Stmt; Test_Expr; Inc_Stmt) Loop_Body) - Safer_C for
loops have a standard mapping into while loops, and that mapping holds
for determining the evaluation time of the for loop as well. The mapping
is the same as for the C language: the statement Init_Stmt precedes the
loop, the expression Test_Expr is used as the boolean control expression of
the generated while loop, and the statement Inc_Stmt is inserted as the last
statement of the loop body.

- Do Loops (do Loop_Body while (Bool_Expr)) - Safer_C do is a post-test
loop that is handled in a fashion closely analogous to the pretest while loop.

- Goto statements are currently allowed only for run-time evaluation.

5 T h e E v a l u a t i o n T i m e o f F u n c t i o n I n v o c a t i o n s

In Safer_C, as in C, functions returning void are equivalent to procedures, and
hence this discussion of function invocation applies equally well to procedure
invocation. The number of possible strategies for partial evaluation of function
invocations is large. In keeping with the overall simple implementation philoso-
phy of the C language, Safer_C also has a fairly simple strategy. Safer_C t~rovides
three kinds of partial evaluation of functions, each described in one of the follow-
ing subsections. Function invocations not processed in one of these three ways
are left as ordinary run-time function invocations.

5.1 Replacement by a Result

In some situations, it is possible to replace a function invocation by a function
result even if the function is declared as having run-time evaluation. This kind
of partial evaluation is done if:

1. The values of all of the actual arguments and external variables accessed by
the function are known at translation time,

2. Either the source code for the function is available at translation time, or the
object code for the function is available and a dynamic loader is provided to
the translator, and

3. The function has no side effects.

Since a programmer may want to invoke the version of a function provided on the
target machine, rather than the version provided on the compilation machine,
a "time-warp" notation is available to delay the execution of functions until
run-time.

215

5.2 In-Line Expans ion

A function is expanded in-line, such that the function invocation is replaced
by any computations specified by the function that cannot be carried out at
translation time, if:

1. The source code for the function is available at translation time, and
2. The function is declared to have translation-time evaluation.

This is the kind of partial evaluation that is normally used to replace C-prepro-
cessor macro invocations. Care must be taken to observe the normal scope rules
of function variables expanded in-line. In source-to-source translators, scope rules
can be enforced by variable renaming.

5.3 Function Specialization

A specialized version of a function that assumes specific values of its formal
parameters is generated if:

1. The source code for the function is available at translation time,
2. The function is declared to have run-time evaluation, and
3. Some of the formal parameters of the function are declared to have transla-

tion-time evaluation.

An aggressively optimizing partial evaluator could apply this transformation
even for functions with only run-time formal parameters.

This kind of partial evaluation can be used in place of C + + templates, or
Ada generics. The translation-time formal parameters play the part of transla-
tion-time template parameters. Since, in Safer_C, user-defined types are treated
as translation-time variables, functions can be specialized for specific type argu-
ments.

The Impl ica t ions for Reusabil i ty. When a function is coded to be as general
as possible, in order to maximize the number of applications for which it can
be reused, a common result is that some part of the function will be useless for
some applications. The superfluous code is often marked by superfluous formal
parameters that will always take the same value for any particular application.
This kind of partial evaluation permits a specialized version of the function to
be instantiated with the superfluous code eliminated.

A common indicator of superfluous parameters is default values for formal
parameters, which are allowed by some languages. The default values are the ones
unlikely to be changed by the programmer, and hence usually add redundant
generality.

Many programmers resist reusing general code written for other projects
because they fear it will slow down their application. For the same reason they
may resist writing reusable code themselves. Translation-time specialization can
increase efficiency, thus increasing the likelihood of coding and reusing more-
general code.

216

Implementation Strategy. When a function with translation-time formal pa-
rameters is invoked, a record is kept of the particular values used for the cor-
responding actual arguments, and a new name is assigned to that forthcoming
instantiation of the function. Repeated use of the same values for the same
translation-time parameters does not increase the size of the list of specialized
functions, since functions are instantiated only once for each combination of the
specializing arguments. This method is called "polyvariant" specialization [2].

Ideally the compiler should have a way of communicating the particular val-
ues of formal parameters used for each instantiation of a function to the linker, so
that the same instantiation could serve even separately compiled invocations of
the function. This can be done by name mangling: coding the fixed parameters
values into the name of the specialized function.

6 P r o v i d i n g T r a n s l a t i o n - T i m e I n p u t a n d O u t p u t

Safer_C strives to achieve evaluation-time independence [9], which means that
the same level of computational power should be provided for calculations per-
formed at translation-time as is provided at run time. This principle includes I/O
facilities. To meet this goal, Safer_C provides I/O streams that have translation-
time evaluation. In particular, the input stream "tranin" is an input stream
corresponding to "stdin" that is open for input at translation time, and "tra-
nout" is the translation-time standard output stream corresponding to "stdout"
at run-time.

By allowing explicit translation-time input, Safer_C source code can be cus-
tomized at translation time for a particular application, without having to edit
source code. The system tailoring parameters can be input interactively at
translation time, or prepared in an independent specification file. Similarly,
translation-time output can be used to prompt an installer for input, and re-
port on the progress of compilation. If installers were instead required to edit
system constants directly into source code then they would need a good under-
standing of the implementation language, and the possibilities for installation
errors would be increased. Translation-time I/O is not a new idea. It has been
used for decades in operating-system generation on minicomputer systems, such
as RSX-11M for the DEC PDP-11 processor.

7 T r a n s l a t i o n - T i m e " E x e c u t a b l e " D e c l a r a t i o n s

In C, declarations can be included or excluded from the source program under
preprocessor control. This facility provides significant programmer control over
the size of task-images, and the ability to perform substantial customization of
programs for specific target systems. In order to duplicate this level of program
control, Safer_C treats declarations as translation-time executable statements.
The "execution" of a declaration consists of inserting a new entry into the symbol
table. This treatment of declarations might seem peculiar, but it is actually

217

not much different from the way that declarations are actually implemented in
existing C compilers.

Safer_C's parent, the C language, provided an unexpected advantage in this
respect. In C, there are no delimiters between declaration sections and executable
sections of code, and Safer_C keeps this characteristic. As a result, declarations
can be enclosed and controlled by control structures as easily as other statements.

The form of a Safer_C declaration is:

dec lara t ion --. symbol_ l i s t :: [eval_time] type_expr [: = ini t ia l_value]

This notation is like Ada's declaration syntax except that Ada's colon has been
replaced by a double colon, and an optional evaluation time can be specified.

As an example, a programmer may wish to select between two declarations,
based on the operating system used by the target machine, by using statements
similar to the following:

if (Target == System_l)
Field :: int
process (&Field, 5124)

else
Field :: float

process(~Field, 5. 124)
endif

8 R e p l a c i n g ~ : i n c l u d e S t a t e m e n t s

One of the important uses of the C preprocessor is to insert declaration header
files into a source program as requested by an # inc lude statement. For instance,
a common preprocessor statement in C programs is:

#include <stdio.h>

which inserts standard I/O declarations, macros, and function headers into the
program. The concept of the # include statement---escaping to separately spec-
ified code is similar to that of procedure invocation, and in Safer_C translation-
time procedure invocation is used to take its place. The above include statement
would be coded as:

stdio_h()

Both declarations and executable statements can be placed in a translation-time
procedure, and it can be invoked at translation time to have the effect of inserting
those statements into a program at the invocation site.

This mechanism may seem to be an extreme way of handling standard dec-
larations as compared to the methods used by other programming languages,
such as Ada or Modula-3, but few other languages allow executable statements
in their declaration files.

218

9 A d d i t i o n a l C o n t r o l o v e r t h e S c o p e o f P r o g r a m E n t i t i e s

One problem with using compile-time procedures to replace #• state-
ments is that normally each procedure starts a new scope, and the usual implicit
scope rules will result in all the declarations within the procedure becoming in-
accessible outside of the procedure. Normally the body of a function in Safer_C
is enclosed between the keywords block and end, which correspond to braces {}
in the C language. If, instead, the body of a function is enclosed by the keywords
body and end then no new scope will be started for the body of the function.
Thus any declarations made in the function will effectively be made at the point
where the function is invoked. A new distinct lexical scope still exists for the
formal parameters of the function.

10 T r a n s l a t i o n - T i m e N a m e B i n d i n g

An important use of the C preprocessor is to create new distinct identifiers for
external symbols. In code being ported to different operating systems, different
architectures, or different peripheral-device environments, the names of external
symbols may need to change to reflect the particular environment.

Even mathematical functions can benefit from translation-time name bind-
ing. For instance, the computation of the trigonometric functions s in and cos

could be generated from the same source with parameter rotation inserted at
translation time, and renaming of the residual function.

Safer_C supports translation-time name binding by allowing the name of a
variable or function to be taken indirectly from a translation-time string variable.
Using the notation # (i t _ s t r i n g) # will cause the value of the variable tt_string
to be used as an identifier. Without this feature, only coding-time name binding
and code duplication would be available.

11 E f f e c t s o n C o m p i l e r S i z e a n d C o m p l e x i t y

Providing Safer_C with evaluation-time annotations takes up 8% of the rules of
the grammar. (The full grammar for Safer_C has only 91% of the number of rules
in the grammar for C; the decrease being mostly due to a simplification of C's
arcane declaration syntax and precedence rules.) Remember also that a grammar
for the preprocessor (not included in this comparison) has been dispensed with.

Most of the code for evaluating expressions at compile time is already present
in most C compilers, since the optimization phase usually makes provisions for
some compile-time computation and constant folding. Code added to the com-
piler for boolean selection is similar in size and nature to the code that exists in
the C preprocessor for the same purposes.

The translation-time evaluation of functions is not usually part of constant
folding. It is similar in nature to macro expansion done by the preprocessor,
but since the formal parameters can have types other than text strings, it is
somewhat more complex.

219

New code must be added for compile-time case selection and loops, but it
is slightly smaller than the code for expression evaluation needed by a prepro-
cessor. All in all, the size of the translator grows little considering the added
functionality of the method.

12 T h e S t a t u s o f t h e S a f e r _ C P r o j e c t

The Safer_C language has been implemented as a translator to the C language.
The translation-time computations are performed and the residual code is output
in C. Since the translator is written in ANSI C and generates ANSI C output,
its portability between systems should be good. All the run-time functionality
of C is has been implemented. Translation-time loops and arrays are not yet
fully supported, but, since these are not available in the C preprocessor either,
enough of the Safer_C language has been implemented to allow the translation
of all the ANSI C standard header files, such as < s t d i o . h > , <math.h>, and
< s t d l i b . h>, into Safer_C translation-time functions. Since the dynamic loading
of object modules at translation time is not yet supported, the source code for
all translation-time function evaluations must be available at translation time.

13 A p p l i c a b i l i t y o f t h e s e T e c h n i q u e s

An attempt was made to judge the applicability of the techniques of this paper
to real programs written by other programmers. For our analysis we chose code
from three different projects:

1. Source code for the Xl l library of the X Window System, release 5.
2. Source code for the kernel and SCSI device drivers of the LINUX operating

system, version 1.1.59.
3. Source code for the Gnu C and C++ compilers (gcc and g++) version 2.5.8.

Because these freeware programs are designed to be portable across many oper-
ating systems and architectures, they make heavy use of preprocessor customiza-
tion of source code. Since the sources were merely inspected for translatability to
Safer_C, and not actually translated, some surprises may still arise. Nevertheless
every attempt was made to do an accurate analysis.

By far the largest part of preprocessor usage in the code examined is plain
and well behaved statements that can be easily and automatically translated into
Safer_C: the simple definition of preprocessor constants with #define, the ordi-
nary inclusion of header files with #include, and straightforward conditionally
compiled source code using # i f constructs.

Several instances of unusual code were found for which no direct translation
would be advisable, since that would be duplicating the undesirable character-
istic of preprocessors too. Recoding in a totally different style would be the best
solution. In some cases, considerable thought had to be given as to how to use
Safer_C constructs to provide the same effect as the preprocessor statements.

220

Usually the same problem recurs in the same form several times in the same
source files, so once a translation scheme is found for one problem, it can be
reapplied many times.

Ultimately, some of the translation problems encountered indicate tha t con-
tinued evolution of Safer_C is needed to provide for some of the uses of prepro-
cessors. The two most important of these uses are:

1. Providing detailed control over declarations where control s tatements are
currently not allowed in Safer_C, such as in formal parameter lists, and
record s tructure declarations.

2. The stringizing of macro parameters , where the name of a formal parameter
can be used as a string, has no equivalent in Safer_C, but is an especially
useful feature for debugging and error reporting.

14 Sample Code

The following short Safer_C program is included to give the flavour of the lan-
guage. Comments are delimited by an exclamation mark and the end of the line.
In a style similar to CLU, semicolons are not required to end statements. Decla-
rations and definitions are identified by a double colon. The name of a function is
enclosed in French quotation marks (i.e. between < < and > >) when it is being
defined, but not when it is merely being declared. Most other constructs and
operators that are not explained by comments follow C conventions.

!! Sample Safer_C/1 program.
!!

!! Explicitly specify source language version.

Safer_C version 1.5

stdio_h()

math_h()

!! Instead of "#include <stdio.h>".

!! Instead of "#include <math.h>".

!! Pi is declared as a translation-time constant and

!! SIZE as a translation-time variable.

Pi :: tran const float := 3.141592654

SIZE :: tran int !! Size of problem.

work :: extern func (x :: float) float

!! This translation-time function will be unfolded (in-lined).

<<map>> :: tran func (x :: float) int

body
return (::int) (x/SIZE) !! Cast Result to type int.

end

221

I! This run-time function will be specialized.
!! The type expression "-> T" means "pointer to type T".
<<swap>> :: run func (T :: type; a, b :: -> T) void
block

temp :: T

end

temp := a@

a@ := b@

b@ := temp

!! D e r e f e r e n c e a and copy t o t emp .

!! Define the function "main".
<<main>> :: func () int
block

!! Declare some translation-time symbols.

IDX :: tran int !! Loop index.
PHI :: tran int

!! D e c l a r e some r u n - t i m e s y m b o l s .

p o i n t , r e s u l t : : f l o a t

i : : i n t

!! Translation-time I/0.
fprintf (tranout, "Maximum size of problem? ")
fscanf (tranin, "~d", &SIZE)

!! Allocate enough zones for specified size.
zones :: static [O..(2*SIZE)] float
PHI := Pi/SIZE

!! Translation-time initialization loop.
#tran# for (IDX:=I; IDX < 2*SIZE; IDX++)

zones[IDX] := sin(IDX*PHI)
endfor

!! A run-time, bottom-test loop.
do

printf ("Enter problem point: ")
scanf ("~f", &point)
result := work (point)
printf (" Result is: ~g\en", result)
i := map(point)

end

222

swap (float, ~result, zones+i)
swap (float, ~point, zones+i+l)

while (result > 0.0)
enddo
return 0

R e f e r e n c e s

1. Baier, R., Gliick, R., Z6chling, R.: Partial evaluation of numerical programs in
FORTRAN. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation PEPM'94, Orlando, Florida, June 25, 1994. Tech-
nical Report 94/9, Dept. of Comp. Sci., Univ. of Melbourne. (1994) 119-132

2. Consel, C., Danvy~ O.: Tutorial notes on partial evaluation. PO-th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL '93, Charleston, SC. (1993) 493-501

3. Cormack, G. V.: Extensions to static scoping. ACM SIGPLAN Notices 18, 6 (1983)
187-191

4. IBM: OS and DOS PL / I Language Reference Manual. Reference No. GC26-3977-1,
File No. $370-29, IBM Corp., San Jose, CA (1984)

5. Jones, N. D., Gomard, C. K., Sestoft, Peter: Partial evaluation and automatic
program generation. Prentice Hall Int ' l , Hemel Hempstead, UK (1993)

6. Koenig, A.: C Traps and Pitfalls. Addison-Wesley, Reading, MA (1989)
7. Meyer, U.: Techniques for partial evaluation of imperative languages. Symposium

on Partial Evaluation and Semantics-Based Program Manipulation PEPM'91. Yale
Univ., New Haven, CT, June 17-19, 1991. ACM SIGPLAN Notices 26, 9 (Sept.
1991) 94-105

8. Nirkhe, V., Pugh, W.: A partial evaluator for the Maruti hard real-time system.
Twelfth Real-Time Systems Symposium. IEEE Computer Society Press, Los Alami-
tos, CA, USA (1991) 64-73

9. Salomon, D. J.: Four dimensions of programming-language independence. SIG-
PLAN Notices 27, 3 (March 1992) 35-53

10. Salomon, D. J.: Safer_C: syntactically improving the C language for error resis-
tance. Tech. Rep. 95/07, Dept. of Comp. Sci., Univ. of Manitoba (1995)

11. Stroustrup, B.: The C++ Programming Language, P-nd Ed. Addison Wesley, Read-
ing, MA. (1991)

12. Weise, D., Crew, R.: Programmable syntax macros. ACM SIGPLAN Conference on
Programming Language Design and Implementation PLDI'93. Albuquerque, NM,
June 23-25, 1993. ACM SIGPLAN Notices 28, 6 (June 1993) 156-165

