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Abs t r ac t .  The storage reuse of aggregates is a key problem in imple- 
menting single assignment languages. In this paper, on the basis of a 
typical subset of the single assignment language SISAL, we analyze the 
inherent limits of storage reuse and define what the maximal storage 
reuse is. We propose an efficient method of achieving storage reuse, which 
is of polynomial complexity and linear in common cases. It achieves the 
maximal storage reuse for an extensive program class into which all com- 
mon benchmark programs fall. We also show that no general method can 
guarantee the maximal storage reuse for programs outside the class. In 
this case, our method can choose the most likely operation to reuse the 
storage of an aggregate or a set of shared aggregates. 

1 I n t r o d u c t i o n  

The demand for higher speed from computat ional  users continues to increase. 
Parallel processing has been considered as an impor tan t  way to higher perfor- 
mance. Unfortunately, because of its extra  complexity, software technology has 
yet to match  architectural advances. For the development of parallel software, 
a brand-new methodology is needed. Language is an impor tan t  aspect of the 
methodology. There are two possible choices, one is to take existent languages 
such as Fortran, and the other is to develop new languages. Although there has 
been a large production of software in existent languages and also programmers  
are familiar with them, these languages have been designed inherently for se- 
quential machines, and are not suitable for parallel computat ions.  The greatest 
hindrance to parallelization of conventional languages is tha t  programs always 
overspecify, and impose too many  unnecessary sequencing constraints. On the 
other hand, applicative languages, in particular,  single assignment languages 
such as SISAL [6] have emerged as a promising approach to parallel program- 
ming. Because of referential transparency, only da ta  dependencies define se- 
quencing in applicative programs. Therefore, the identification of concurrency is 
trivial. 

But, for applicative languages, aggregate structures such as arrays pose a 
problem for their efficient implementat ion.  Because of their semantics, an up- 
date operation generally requires copying the entire array, and the update  at 
appropr ia te  indices is made  in the new copy. The old copy needs to be kept 
intact because it may  be referenced by other subcomputat ions  in the program. 
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This simple implementation of the update operation leads to inefficient use of 
storage, and degrades the performance of an algorithm. In the context of sci- 
entific computing, where the manipulation of large aggregates is common-place, 
the copying can become intolerable. However, for most programs, the resulting 
copying operations are only inherent to language semantics and not the algo- 
r i thms themselves. Storage reuse is essential to their efficient implementation,  
saving t ime by not copying vMues, and saving space by not re-allocating storage. 

In this paper, we discuss the storage reuse of aggregates in a sequential im- 
plementation of first-order single assignment languages with nested aggregates. 
There are two reasons for us to restrict our attention to "sequential": (1) there 
has been no satisfactory solution to this problem and, (2) storage reuse in a 
sequential implementation is also an important  part  of parallel implementation 
since a partial sequentialization of programs is essential for an efficient parallel 
implementation. We analyze the inherent limits of storage reuse, define what a 
maximal  storage reuse is, and give an efficient method of achieving storage reuse. 

2 B a c k g r o u n d  

2.1 T h e  s ing le  a s s i g n m e n t  l a n g u a g e  

Single assignment languages are value-oriented. Their  semantics deals with func- 
tions on values rather than destructive operations on data  objects residing in 
memory. Even arrays are treated as values. In this paper, we consider the stor- 
age reuse for a subset of SISAL, called SL. We ignore the SISAL data  types: 
stream, union and record. These simplifications make the resulting language 
SL a first-order strict functional language with nested aggregates, and enable 
us to focus on the storage reuse of arrays without need to consider unrelated 
aspects. In this section, we introduce the main features of interest. 

An SL function computes one or more output  values as a function of one or 
more input values. A function has no side effects and retains no state information 
from one invocation to another. Hence the values returned by any invocation of 
an SL function depend only on the arguments. Since SL is a side-effect free 
language, subexpressions may be evaluated in any order without affecting the 
results, provided all data  dependencies are satisfied. Language constructs are 
provided for conditional and iterative expressions, which implicitly contain con- 
trol dependencies. An iterative expression, called while loop, has a set of initial 
value definitions, a corresponding set of redefinitions used to define new values 
on every iteration, a loop control and a set of resulting values defined in terms 
of the values of the names during all the iterations or only in the last iteration. 
The keyword old is used to refer to the value of a name in the previous iteration. 
SL also offers a for construct for expressing parallel iterations with no cross 
iteration dependencies, called forall loop. 

SL includes only one kind of data  structure: array. An array has an integer 
index set and its components are of arbi trary but  uniform type. Arrays can be 
nested to any depth. The operations on an array can be classified into three 
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categories: initialization, reference, and modification, array_fill(l, h, v) creates 
an array with indices ranging from I to h and each element being equal to v. A[j] 
selects the j th element of A. A typical array modification operation is A[j : v], 
which produces a new value identical to A except tha t  the element at the index 
j is substituted by v. A naive applicative implementation of the modification 
operation A[j : v] requires construction of a new array almost identical to A. 
The t ime and storage requirements of this operation are linear to A's size. This is 
very expensive. A loop can greatly magnify the effect of an array modification in 
it. As [2] pointed out, the insertion sort program in a single assignment language 
may be several thousand times slower than the FORTRAN counterpart  when 
sorting an array of 1000 floating point numbers. 

2.2 The intermediate dataflow graph 

Our discussions are based on the dataflow representation of a program which is 
similar to IFl[8] .  A program can be described as a set of dataflow graphs with 
each representing a function and one of them being the main function graph 
where the computat ion starts. A dataflow graph is a quadruple (IP, OP, N, E) 
where IP,  OP, N and E are a set of input ports, a set of output  ports, a set of 
internal nodes and a set of arcs respectively. Nodes represent computations and 
arcs represent dependencies between them. For example, if there is an arc from 
node N1 to N2, then N2 is dependent on N1, i.e. N1 must be finished before N2 
starts. We simply denote this as N1 -~ N2. 

A node receives data  from its input ports, fulfills a specific computation and 
puts the results to its output  ports. There are mainly two kinds of nodes: atomic 
nodes and compound nodes. An atomic node represents an indivisible sequential 
computation. A compound node can embody a control structure to encapsulate a 
complex computation.  It consists of a set of input ports, a set of output  ports and 
a set of subgraphs. Typically, there are three kinds of compound nodes for rep- 
resenting an SL program, conditional, product loop and non-product loop, which 
correspond to a conditional, a forall loop and a while loop expression respectively. 
For example, a conditional node includes three subgraphs, the condition, then 
and else subgraphs corresponding to the predicate, then part  and else part  of 
a conditional expression respectively. There are control and data  dependencies 
between subgraphs of a compound node. As shown in figure l(a),  we represent 
a node by a rectangle, an arc by an arrow and an aggregate port  by a circle. 
Usually, we omit  representations of other ports. We also omit representations 
of dependencies within a compound node unless we represent them by dashed 
arrows when necessary. For a conditional node, the upper subnode corresponds 
to the predicate, the left lower one to the then part  and the right lower one to 
the else part  as C1 and C2 in this figure. 

2.3 A g g r e g a t e s  

An aggregate is a compound value consisting of simpler values, which are called 
components of the aggregate. In this paper, by an aggregate we mean an at- 
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ray. The aggregate operations fall into three categories, tha t  is, E-operations 
which reference a whole aggregate returning the same aggregate as a result, 
R-operations which reference individual components  of an aggregate, and W- 
operations 1 which change some components  of  an aggregate. We denote an 
E-operation on A by E(A). We introduce a typical R-operation read(A, i) and 
a typical W-operation replace(A, i, a) to represent the SL expressions A[i] and 
A[i : v] respectively. 

An aggregate, say A, may  be a component  of another  bigger aggregate B. In 
this case, B is called a super-aggregate or nested aggregate and A is called a sub- 
aggregate of B. The R-operation read(A, i) on a super-aggregate A can be taken 
as an E-operation on the sub-aggregate A[i]. The W-operation replace(B, i, A) 
where A is an aggregate can be taken as an E-operation on A and B[j] for j 5s i. 
A naive implementat ion of the E-operation E(A) is to copy A into a new physical 
space to get a new value equal to A. Obviously, this is an inefficient way. In the 
following discussion, we assume the more efficient model: E(A) represents the 
aggregate which is, not only logically but  also physically, the same as A, tha t  
is, E-operations are implemented through sharing the same physical space. A 
related problem is the passing method of aggregate parameters  of a function. 
Semantically, the call-by-value passing method is used for a strict functional 
language. This requires the copying of aggregate paramete r  values. Instead, we 
use the more efficient call-by-reference passing method  for aggregate parameters  
in the implementat ion.  In the following discussions, we use A, B, A ~, B f, with 
or without subscripts to indicate aggregates. 

3 Limits  of  Storage Reuse  

3.1 Compilation granules 

There can be more than one operation on an aggregate. A W-operation can 
reuse the storage of an aggregate only if it is the last operat ion on the aggregate. 
There are static and dynamic methods to achieve storage reuse. The  former is 
to statically order the operations without violation of dependencies so that  a 
W-operation can be done last on an aggregate to reuse its storage. The lat ter  is 
to make decisions at run time, typically through reference counting. Because the 
static method involves less overheads, and the dynamic method can not achieve 
effective storage reuse without the static method,  ordering the compilat ion gran- 
ules is a basic par t  of any practical method of achieving storage reuse. 

By a compilation granule, we mean a node whose execution is not interleaved 
with any node outside it, or a function call node. The  size of a compilat ion 
granule (more exactly, the size and structure of a compilat ion granule, since 
a compilat ion granule can include compilat ion granules as its components)  can 

1 There are two kinds of W-operations in SISAL, incremental construction and incre- 
mental modification. In this paper, we only introduce the latter. But our storage 
reuse method takes both of them into account, though an extra phase is needed for 
pre-allocating enough storage for in-place incremental construction operations. 
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Fig.  1. Examples of conditional nodes 

affect the degree to which the storage can be reused. In figure l(a),  C1 and C2 are 
two independent conditional nodes, and write1 and write2 are the W-operations 
on the aggregate A. condl and cond2 do not reference A and their values can vary 
with other input data. So, i fa  whole conditional node is a compilation granule, no 
method can guarantee that  the storage of A can be reused reasonably efficiently. 
By "reasonably efficiently", we mean that  the overheads from the reuse are less 
than the benefits from the reuse. On the other hand, if a conditional node can 
be decomposed into smaller compilation granules, e.g. the condition part, then 
part  and else part,  the storage of A can be reused through ordering these smaller 
compilation granules so that  condl and cond2 are executed first and then making 
the further decision dynamically on the basis of their results as follows: 

condl cond2 
TRUE TRUE 
FALSE FALSE 
FALSE TRUE 
T R UE FALSE 

t h e  d e c i s i o n  
writez can reuse the storage 
write2 can reuse the storage 
no W-operation is executed 
both write1 and write2 will be executed 
the later one can reuse the storage 

Generally, the smaller the compilation granules, the more opportunities for stor- 
age reuse through static ordering, but  the compiler will be more complicated 
as the compilation granules become smMler. For simplicity of the compiler, the 
compound nodes, i.e. conditional, product loop and non-product loop, have been 
taken as compilation granules in some existing implementations[2]. In the rest 
of this paper, we make the same assumption. So, the control dependencies are 
encapsulated within compilation granules. 

3.2 A g g r e g a t e  o p e r a t i o n s  a n d  t h e i r  d e g r e e s  

We have described operations on an aggregate in w Generally, these opera- 
tions are embedded in compilation granules. We are particularly interested in 
those outermost compilation granules including operations on an aggregate since 
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effectively ordering them is an impor tan t  par t  of  achieving storage reuse. I t  will 
be convenient to also call them operations on this aggregate. By contrast,  we 
call those operations in w atomic operations. So, an aggregate operat ion can 
be atomic or compound.  In the lat ter  case, it can operate  on more  than  one 
aggregate and can include atomic R-, W- and /o r  E-operations. Some opera- 
tions are certain to operate on an aggregate, while others are not. For example,  
A[1 : 2] definitely operates on A, and, i f  x = 1 then A[1 : 2] else B end i f  can 
operate  on aggregate A only when x is equal to 1. Generally, an operat ion can 
be arbitrari ly complicated. In different operations, probabilit ies tha t  a tomic R-, 
E- or W.operations are to be executed are different. We can statically assign 
W-Degree(op, A) to operation op to represent the probabil i ty tha t  an atomic 
W-operation can be executed later than any a tomic R- or E-operation on A. 
When a node is executed, one of the following cases can occur for an aggregate: 

1. An atomic W-operation on it is certain to be executed later  than  any possible 
a tomic R-operation or E-operation on it. 

2. An atomic R-operation or E-operation on it is certain to be executed later 
than  any possible atomic W-operation on it. 

3. No atomic W-operation is executed on it. 
4. An atomic W-operation may  be executed on it, and if this occurs, it is later 

than  any R-operation or E-operation on it. 
5. An atomic W-operation may be executed on it, and whether or not the 

operation will be later than any possible R-operation or E.operation on it 
can not be predicted. 

In the first case, the W-Degree assigned is one. In the second and third cases, 
the W-Degree assigned is zero. In the last two cases, the W-Degree is evaluated 
to a value between zero and one. Similarly, we can define R-Degree(op, A) for 
an operat ion op on an input aggregate A to represent the probabil i ty  tha t  an 
a tomic R.operation on A can be executed in the operation; define E-Degree(op, 
A, B) for an operation op on an input aggregate A to represent the probabil i ty 
that  A can be directly used as an output  B of the operation; and E-Degree(op, 
A)=)-~BE-Degree(op, A, S). 

More generMly, we call an operation op an R-operation on A if R-Degree(op, 
A)>O and W.Degree(op, A)=E-Degree(op, A)=O; call it a W-operation on A 
if W-Degree(op, A)>O; and call it an E-operation on A if there is an output  
aggregate B, E-Degree(op, A, B) > 0. If  there is indeed an a tomic W-operation 
tha t  is executed later than any a tomic R-operation or E-operation on A in an 
execution of the W-operation, we say tha t  it acts as a physical W-opera$ion on A 
in the execution. I f  A is indeed directly used as an output  in an execution of the 
E-operation,  we say tha t  it acts as a physical E-operation on A in the execution. 

3.3 D e p e n d e n c i e s  

W i t h o u t  s h a r i n g  After the compilat ion granules are fixed as w the inherent 
limits of storage reuse depend on the da ta  dependencies. For a W-operation wop 
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on A, if there is another operation op on A and wop -< op, wop must be executed 
before op and can not reuse the storage of A. As illustrated in figure l(b), read, 
write1 and C are all the possible operations on aggregate A, and write1 -< C. 
write1 can not reuse the storage of A, even if it is safe, e.g. when condis FALSE, 
and write1 is the only W-operation on A in the execution, since the safety of the 
reuse can not be justified in an execution generally. We call a W-operation a reuse 
candidate on an aggregate if no operation on the same aggregate is dependent 
on it. Only a reuse candidate of an aggregate can reuse the storage. 

The difficulties of reuse come from not only the dependencies between the 
operations on the same aggregate but also those on different aggregates. In the 
latter case, we call them interferences between these aggregates. In figure 2(a), 
due to the mutual  interferences of A and B, the storage of only one of them 
can be reused. This is because, for a W-operation on an aggregate to reuse 
the storage, we need to introduce extra temporal dependencies between it and 
all the R-operations on the aggregate. We denote that  opl temporally precedes 
op2 by opl <~ op2 (represented as a dashed arrow in a diagram). These extra 
dependencies should not result in cycles. But, here, the dependency cycle, WA -~ 
r B <3 WB -~ rA "~ WA, is formed. 

GenerMly, suppose that wo, . . . ,  wn-1 are reuse candidates on the aggregates 
A0, .. �9 ,An-1 respectively. Let k ~ = (k + 1)rood n. If there is a permutation i0, 
�9 .. ,in-1 of 0 , . . . ,  n - 1  such that  Vk (0 < k < n) either wik is also an R-operation 
on Ai~, (w~ k <~ wlk,), or there is an R-operation r on Aik, and wik -~ r (<~ wik,), 
we say that they form an interference cycle. If  all reuse candidates on these 
aggregates are in some cycle, then the storage of one of them can not be reused. 
We call such a cycle a complete interference cycle. An  example is shown in figure 
2(b) where opa is the W-operation on A and the R-operation on B and op2 is 
the W-operation on B and the R-operation on A. Here, oplop2 form a complete 
interference cycle. In the other cases , the interference cycle can be broken as 
follows without hindrance to storage reuse. 

- There is a reuse candidate wop on Aiz which is not in any interference 
cycle for some l, 0 < 1 < n. In this case, the cycle can be broken from 
wit and we can schedule the above W-operations in the following order: 
w i z . . . w l , _ , W i o . . . w i , _ , w o p  so that  the storage of Aj(0 < j < n A j ~k iz) 
can be reused by wj and the storage of Ai~ can be reused by wop. For ex- 
ample, in figure 2(c), WArBWBrA is an interference cycle and WlA is not in 
any interference cycle. This cycle can be broken through scheduling nodes 
in the following order, WArBWBrAWlA. 

- The cycle is adjacent to another interference cycle which can be broken. We 
say that  two cycles are adjacent if there is a W-operation wl in one cycle and 
a W-operation w2 in the other and wl and w2 operate on the same aggregate. 
If one can be broken, the other can be broken, e.g. from w2. 

W i t h  s h a r i n g  Semantically, an atomic E-operation E (A)  on the aggregate A 
produces a new aggregate equal to A, say A ~, but A ~ is mapped into the same 
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Fig.  2. Examples with dependencies 

space as A instead of being allocated a new physical space. In this case, we call 
A and A I inter-shared or simply shared. Closely related to sharing is nesting of 
aggregates. We define the relat ion/~ on -4, i.e. the set of all aggregates and sub- 
aggregates in a function, to describe the sharing among them. E is the smallest 
equivalence relation satisfying the following condition: 
For A1,A2 E .4, if A2 is generated through E(AI), (A~,A~) e E. 
/~ is related to a specific execution of the program. For example, when E- 
Degree(op, A, B)< 1, whether (A, B) E /~ depends on whether op acts as a 
physical E-operation on A in the execution. Each equivalence class on E rep- 
resents a set of inter-shared aggregates or sub-aggregates which are mapped to 
the same physical space. We call such a class an aggregate cluster or simply a 
cluster. Each non-shared aggregate comprises a cluster of only one element. 

The sharing and nesting of aggregates make storage reuse even more com- 
plicated. We need to consider a kind of specific dependency, index dependency. 
As illustrated in figure 2(d), A is a nested aggregate; reads and read1 are two 
R-operations which reference A by the inputs from indez2 and indezl respec- 
tively; wl, r l  and r~ are operations on the sub-aggregate referenced by read2; 
w~, r3 and r4 are operations on the sub-aggregate referenced by read1; index1 is 
dependent on wl. Due to this dependency, when wl is executed, it is impossible 
to reasonably efficiently decide whether the sub-aggregates referenced by read1 
and reads belong to the same cluster, and whether there are more operations 
on the cluster. Therefore, it is impossible for wl to reasonably efficiently reuse 
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the storage of the sub-aggregate. 
Generally, it is impossible for a W-operation wop on A1 to reasonably effi- 

ciently reuse the storage of A1 in the following cases: 

- wop -~ op where op is an operation on aggregate A2 with (A1, A~) E/~; or 
- wop -< op. index where op is an operation on the nested aggregate A2 which 

includes a sub-aggregate (or a sub-aggregate of sub-aggregate, etc.) A~ with 
(A1, A~) E E, and op. index denotes the node whose output  is used as the 
index of op. In this case, we say that  op is index-dependent on wop. 

Otherwise, we call wop a reuse candidate on the cluster which A1 is in. Simi- 
larly, we can define the interferences and (complete) interference cycles between 
aggregate clusters, and a complete interference cycle can also affect the reuse of 
shared aggregates. 

In general, in executing a function, there are three cases when the storage of 
an aggregate cluster A C  can not be reused. 

- There is no reuse candidate on A C .  

- An aggregate of A C  is an output  of the function. 
- An aggregate of A C  is a parameter of the function, and this parameter can 

not be reused. (see w 

We call the aggregate cluster A C  non-reusable in these cases, otherwise reusable. 
Suppose for any function in a program, Na is the total  number of aggregate 
clusters, Nnr~ is the total number of non-reusable aggregate clusters and Nr 
is the total number of complete interference cycles without any operation on 
non-reusable aggregate clusters. From the above analysis, we can conclude that,  
in executing the function, the number of aggregate clusters whose storage can 
be reasonably efficiently reused is not greater than Nrnr : No - Nn~a - N c i c .  
If the number of reused aggregate clusters is exactly equal to Nm~, we say that  
the maximal storage reuse is achieved. 

4 T h e  M e t h o d  o f  A c h i e v i n g  S t o r a g e  R e u s e  

In this section, we outline a storage reuse method. Statically, we order all nodes 
in each function so that  the most likely reuse candidate is executed last on 
each aggregate. For shared aggregates, we can not, in general, statically deter- 
mine whether such a reuse candidate is also the last one on the whole aggregate 
cluster. So, ~ve introduce sharing counters for shared aggregates to dynamically 
capture the opportunities of storage reuse. In addition, we also need a dynamic 
mechanism to reuse the storage of an aggregate parameter  of a function. 

4 . 1  D y n a m i c  m e c h a n i s m s  

1. A sharing counter is associated with the physical space of each aggregate 
cluster to reflect the number of aggregates mapped to it. An operation can 
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reuse the storage of the cluster only if (1) it is executed last on the current 
aggregate 2, and (2) the sharing count is 1. 

2. The E-operalions are implemented by incrementing the corresponding sharing- 
counter. After all the operations on an aggregate of this cluster are finished, 
the sharing counter is decremented. 

3. In the static analysis, we assume that  each aggregate parameter  of a function 
is reusable. But,  quite likely, there are multiple calls to the same function. 
Different calls have different environments, and so, for some calls, an aggre- 
gate parameter  can be overwritten, while for the others, it can not be de- 
structively written. Our strategy is: at compile time, an auxiliary parameter  
is generated for every aggregate parameter  to indicate whether the storage 
for this aggregate can be reused in the current call. 

4.2 S t a t i c  m e t h o d s  

D e f i n i t i o n s  ~? is related to a specific execution, and generally, it can not be 
calculated statically. In this section, we define the relation T~ to statically derive 
the possible sharing on all the aggregates and sub-aggregates in a function. We 
also introduce the concept of nesting degree. 

1. A ~op B denotes E-Degree(op, A, B)> O. 
2. A r-op B denotes tha t  A may become a subaggregate of B through op; 

A ~op B denotes that  B may be a subaggregate of A as a result of op, where 
A and B are input and output  aggregates of op respectively. 
For example, for op: B := A[i] where A is a nested aggregate, A -lop B; 
for op: B := C[i : A] where C and B are nested aggregates, A r-op B; 
for op: A := i f  cond then B[i] else C[i] end i f  where C and B are nested 
aggregates, B -hop A and C -lop A. 

3. Let M be the set of all the aggregates and sub-aggregates in a function, then 
7~ is the smallest equivalence relation on .4 satisfying the following condition: 
For A , B  E .4, if there is an op so that  A ~op B or A [--op B or A -lo~ B 
holds, then (A, B) ET~. T~(A) includes all possible aggregates which may 
share with A, or whose sub-aggregates (or sub-aggregates of sub-aggregates, 
...) or whose super-aggregates (or super-aggregates of super-aggregates, ...) 
may. 

4. the nesting degree of an aggregate A: 

1 if A is a fiat aggregate 
N-Degree(A) = N-Degree(sub(A)) -t- 1 otherwise 

where sub(A) is any sub-aggregate of A. 

2 This is true if the aggregate is not a parameter of the current function. The more 
exact condition is reflected on the reusability tag. See w 
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P r i o r i t y  r u l e s  The strategies of static ordering are embodied in the following 
priority rules. Suppose that  opl and op2 are two mutually independent operations 
and (A, B)  ET~. 

1. r e a d - f i r s t :  If opl is an R-operation on A and op2 is a W-operation on B, 
opl is executed before op2. 

2. s u p e r - f i r s t :  If opl is a W-operation on A, op2 is a W-operation on B, and 
N-Degree(A) > N-Degree(B), opl is executed before op2. 

3. h l g h e s t - d e g r e e - l a s t :  If Ol)1 is a W-operation on A, op2 is a W-operation on 
B, and W-Degree(opl, A) < W-Degree(op2, B), opl is executed before op2. 

The read-first and highest-degree-last rules are motivated for the most likely 
reuse candidate to be executed last on each aggregate cluster. The super-first rule 
is motivated for super-aggregates to be able to dereference their sub-aggregates 
as early as possible in order to increase the opportunity for operations on sub- 
aggregates to be done in place. 

But the above rules can not always be completely implemented since there 
can be conflicting requirements for the storage reuse of different aggregates clus- 
ters. For example, a conflict occurs in enforcing the highest-degree-last rule if 
there are operations opl and op2 on both A and B with W-Degree(opl, A)> W- 
Degree(op2, A) and W-Degree(opl, B)< W-Degree(op2, B). To get around this 
difficulty, we replace this rule by the following simpler one: 

3 ~. For two independent operations opi and op2, op2 is executed first if  W- 
Degree(opl) > W-Degree(op2), where W-Oegree(opi) = E A  W-Degree(opi, A) 
(i = 1, 2). 

Similarly, there also can be conflicts in implementing the read-first and super- 
first rules. Figure 2(b) illustrates a conflict in implementing the read-first rule. 
Generally, these two rules can be completely implemented for a program only if 
the extra dependency arcs introduced to enforce them do not lead to dependency 
cycles. In these cases, we call this program read-first-consistent and super-first- 
consistent respectively. 

Static steps 
P h a s e  1: For each function, 
1. Calculate the degrees of each aggregate operation; 
2. Calculate the relation T~; 
The process may be recursive due to recursive function calls, and the following 
analysis takes account of this. Suppose that  n, m, k are the number of functions, 
the largest size of function (i.e. the maximal number of nodes and arcs within a 
function graph), and the maximal number of aggregate parameters to a function 
respectively. Because all the degrees of each aggregate are monotonically increas- 
ing in the calculation, by fixing the scale of degrees to a small constant s, the 
total t ime complexity of step 1 in the worst case is O(s.k.n.mn) = O(kmn~), 
where skn is the maximal number of loops to calculate the fixed points, and 
mn represents the program size [5]. Similarly, the total  time complexity of step 
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2 in the worst case is also O(kmn$). When k and n are quite small,  they are 
basically linear to the program size. If  there is no recursive function call, the 
t ime complexity of this phase is definitely linear. 
P h a s e  2: For each function in the program,  all nodes are ordered according to 
their dependencies and the above priority rules. 

Input: a dataflow graph G; 
O u t p u t :  an ordered list of nodes L; 
Algori thm O r d e r :  

1. Introduce a tempora l  dependency arc f rom opl to op2 for each R-operation 
opl on A and each W-operation op2 on B where (A, B) E 7~ as long as no 
dependency cycles are formed; 

2. Introduce a tempora l  dependency arc f rom opi to op2 for each W-operation 
opl on A and each W-operation op~ on B where (A, B) E 7~ and N-Degree(A) 
>N-Degree(B) as long as no dependency cycles are formed; 

3. Let T be an intermediate list. Initialize T to include the nodes which have 
no immediate  predecessors and order them according to their W-Degrees so 
tha t  node nl precedes node n2 if W-Degree(n1)< W-Degree(n2); 

4. I f  T is empty,  output  L and terminate;  otherwise, n = dequeue(T). If  n is 
the last processed reuse candidate on A, then 

- if A is generated in the current graph, tag the corresponding input port  
of n "reusable" 

- otherwise (i.e. A is a parameter  of the current function, or an input into 
the current compound node or subgraph node), copy the reusability tag 
of A into the corresponding input port  of n (if any). 

I f  n is an atomic node, L = L + n; otherwise L = L + Ordere(n). Delete 
n and all the arcs adjacent to it f rom G and insert the nodes whose sets of 
predecessors become empty  into T according to their W-Degrees. 

5. goto 4 ; 

Here, dequeue(T) deletes and outputs  the first element of T; L q- m con- 
catenates L and m where m is an element or a list. Step 1 and step 2 are to 
enforce the read-first and super-first priority rules respectively. Step 4 orders all 
nodes and identifies reusable input aggregates into each node. Orderc orders all 
subgraphs in a compound node, identifies reusable input aggregates into a sub- 
graph and recursively applies the algori thm Order to each subgraph.  Orderc is 
similar to Order and the only difference is tha t  the former also uses the control 
dependencies encapsulated in the compound node. The worst case t ime com- 
plexity of this phase is polynomial  since both step 1 and step 2 can be executed 
in O(n 2 + e) , and the worst-case complexity of steps 4 to 5 is also O(n 2 q- e) 
where n and e are the number  of nodes and the number  of arcs in the graph 
respectively. In common cases when the number  of  extra  tempora l  dependency 
arcs is less than the size of the program, it is linear to the size of the program.  

In sum, the static worst-case t ime complexity is polynomial  to the size of the 
program. In common cases, it is linear. 
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4.3 P e r f o r m a n c e  

T h e o r e m l .  The above method can achieve the maximal storage reuse under 
the following conditions for a well-optimized program 3. 

1. The program is read-first-consistent and super-first-consistent, and 
P. For each operation op on an aggregate A, one of the following holds: 

- R-Degree(op, A)>O, W-Degree(op, A)---O, E-Degree(op, A)=O 
- W-Degree(op, A)§ A)--1 

Proof: Due to the space limit, we only give an outline of the proof  here. We 
consider a reusable aggregate cluster A C  which includes nested aggregates (oth- 
erwise, the proof is simple). There must  be reuse candidates on AC. Suppose 
tha t  wop on A E A C  is the latest executed one of them. Since the program is 
read-first-consistent, all the R-operations on AC must  have been executed before 
wop by the read-first rule. Let us assume that  wop fails in reusing the storage 
of AC. Then one of the following two cases must  be true. case  1: wop does not 
act as a physical W-operation on A. By condition 2, it must  act as a physical 
E-operation on A and output  an aggregate B E AC.  But there is no operation 
on B since wop is the latest one on AC. So, B must  be used as an output  of the 
current function call (since the program is well-optimized). This contradicts the 
reusability of AC. case  2: The sharing count of A C  is greater than 1. Since wop 
is the last operation on AC, there must  be at least one super-aggregate which is 
still referencing an aggregate of AC. But this contradicts the premise that  the 
program is super-first-consistent, by which the super-first rule can be completely 
implemented,  and all the super-aggregates must  have dereferenced aggregates of 
A C  since no operat ion is index-dependent on wop. Thus, we conclude that  the 
storage of any reusable aggregate cluster can be reused. 13 

We find tha t  the program class described by Theorem 1 includes all the 
common benchmark programs: gaussian elimination, mat r ix  transpose, mat r ix  
multiplication, LU-decomposition, quick-sort and insertion sort, where multiple- 
dimensional arrays are represented as nested one-dimensional arrays. The max-  
imal  storage reuse can be achieved for these programs.  In fact, we can even 
loosen the read-first-consistency requirement to allow the existence of breakable 
cycles as in w In this case, we can modify the static ordering algorithm so 
tha t  the nodes are ordered according to the reverse order of their dependencies 
to break all the cycles more easily. In other cases, static ordering is not suffi- 
cient for the maximal  storage reuse and dynamical ly ordering operations can 
increase the oppor tuni ty  of storage reuse. For the example illustrated in figure 
3, g i  e 7~(g) (i = 1, 2) and Bi E n ( B )  (i = 1, 2), and according to the read-first 
rule, opl and op3 must  be executed next after iop. The other operations can 
be executed in the order op~wlr2op4w2rl for the maximal  storage reuse if opl 
acts as a physical W-operation on A, since it has become clear tha t  r l  and op2 
do not operate on the same aggregate and r l  need not precede op2; otherwise, 

3 We call a program well-optimized if any value produced in a function call is always 
referenced later or used as an output of the function call. 
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in the order opaw2rlop2wlr2 if op3 acts as a W-operat ion on B. In the other 
cases when all the operations are in an interference cycle, no execution ordering, 
whether static or dynamic, can guarantee the maximal storage reuse. Whether 
the maximal storage reuse can be achieved can not be predicted, and on the 
basis of degrees, our method of static ordering tries to choose the most likely 
reuse candidate to operate last on each aggregate cluster to reuse its storage. 
But theoretical analysis of actual effects remains to be done. 

A lap B ! 

W-D~r.e(op ~, A)=0.S (i=~, 2) 

I!-De~ee(op~, A)=0.5 (i=l, 2) 
W-I~Z~.e(op~, B)=0.S (i=3.4) 

E-l~sze..e(op~, B)=0.5 (i=Z. 4) 

Fig. 3. A limiting case 

5 R e l a t e d  W o r k  

Storage optimization for applicative languages has been investigated by other 
researchers. But, almost all the results have been restricted to first-order func- 
tional languages without nested aggregates. Also, almost all the existing algo- 
rithms are potentially exponential except that in [7]. At Colorado, the SISAL 
group has developed a compiler for SISAL [2, 3]. They considered general itera- 
tion and function call boundaries with the assumption that there is no recursive 
function call. Although touching on nested aggregates, they did not propose a 
general solution and only attacked some special cases. Bloss considered update 
analysis to first-order lazy functional languages[I]. She defined path semantics 
to check whether an update can be performed destructively. But computing the 
path semantics of a program is at least exponentially complicated. So we do not 
consider it a practical method. In addition, in her work, the order of evalua- 
tion of arguments of primitive operations is statically fixed. This may decrease 
the opportunity of updates being done destructively. Gopinath proposed an ap- 
proach to eliminating copies in divide and conquer problems through computing 
the target of an expression[4]. It also assumed a fixed pre-ordering of primitive 
operators. Also, his algorithm has very high time complexity, which makes it 
impractical. More recently, Sastry, Clinger and Ariola at University of Oregon 
claimed that their algorithm for strict functional languages with flat aggregates 
is the first practical one with a polynomial time complexity to solve the problem 
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[7]. But  their algori thm is still quite conservative. For example,  a function can be 
called from different sites with different environments.  Parameters  may  be up- 
dated destructively under one environment but not under another one. However, 
according to their algorithm, if a paramete r  of the function can not be updated  
destructively in one site, then it is not allowed to be updated  destructively in any 
environment.  Obviously, this is over restrictive. None of this previous work has 
touched on the inherent limits of storage reuse and what  the maximal  storage 
reuse is. 

6 C o n c l u s i o n s  

The storage reuse of aggregates is essential for efficiently implementing single 
assignment languages. We have analyzed the inherent l imits of storage reuse 
and defined what the maximal  storage reuse is. We have also given an efficient 
storage reuse method.  I t  is of polynomial  complexity and linear in common 
cases and can achieve the maximal  storage reuse for an extensive program class 
into which all common benchmark programs fall. We also show tha t  no general 
method can guarantee the maximal  reuse for programs outside the class, and in 
this case, our method  can choose the most  likely operat ion to reuse the storage 
of an aggregate or a set of shared aggregates. 

Storage reuse and parallelization have conflicting requirements, e.g. al though 
more pre-ordering can bring about  more opportunit ies  for reusing storage, it 
imposes more restrictions on exploitation of parallelism. Theoretical and exper- 
imental  work has to be done to find their relationship. 
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