
S o m e Pract i ca l P r o b l e m s and The i r
I n f l u e n c e on S e m a n t i c s

Cliff B Jones

Department of Computer Science, Manchester University
M13 9PL, UK

e-mail: cbj@cs.man.ac.uk

Abs t rac t . This paper offers an assessment of what has been achieved
in three decades of work on the semantics of programming languages
and pinpoints some practical problems in computing which might stim-
ulate further research. The examples sketched in this paper come from
the author's own research on concurrent object oriented languages, from
database practice, and from more speculative research on Internet issues.

1 Introduction

The main reason for writing this paper is to a t tempt to persuade leading re-
searchers in our field to encourage some of their younger colleagues to tackle
practical problems with semantic theories which are available. Currently it seems
that many publications are aimed at devising refinements of theories which them-
selves may not be applicable to a useful class of applications. One can be a
staunch defender of fundamental research while still being concerned that too
few of the strong new generation of theoretical computer scientists value the
stimulus of practical computing problems. In some respects, this paper echoes
the slightly tongue-in-cheek paper by Knuth [Knu73] in that the comments are
offered from a position of broad support for theoretical work.

Work on the formal semantics of programming languages began in the 1960's
- a useful early reference is [Ste66] which reports on a conference held in Baden-
bei-Wien in 1964. The subsequent literature on formal semantics of sequential
languages is extensive. A good state of the art example of a formal definition
is that of s tandard ML (cf. [HMT89]). This definition is written in Structured
Operational Semantics (cf. [PloS1]). It is sobering that , after a quarter century of
denotational semantics, it is still found more convenient to tackle the semantics
of a language like SML in an operational way. Furthermore, it must be clear tha t
it is extremely difficult to get a formal semantics to the stage where it correctly
reflects the intuitions about a language. There are some language standards like
that for Modula 2 which are actually being written using formal techniques. But
overall the situation is that formal semantic definitions are written only by a
very small number of highly skilled people.

The situation with recording the formal semantics of concurrent languages is
even less well developed. Although there are denotational definitions of CSP-like
languages, most people who are consideringspecifying a programming language

which embodies concurrency would turn to SOS. In spite of being an impressive
piece of work, the SMoLCS definition of Ada is not a document on which one
would choose to base reasoning about an implementation of Ada.

One goal of writing a formal semantics of a programming language is to be
able to reason about implementations of the language; another desirable objec-
tive is to be able to justify proof rules about constructs of the programming
language with respect to an underlying model theoretic semantics. There are
almost no practical programming languages which have serious sets of axioms
and probably none at all which have a complete set of proof rules. The proof
theory even for specially designed languages is hard to apply and in very few
cases has been applied to programs of significant industrial size.

It is not the intention to decry works on formal semantics, there are of course
many successes. This author has been involved in writing semantic definitions
of languages like ALGOL-60, Pascal and PL/I. Furthermore, the background
ideas on how to write a model theoretic semantics of a programming language
enable one to understand -and sketch the domains of- a language which one
wishes to study. In the area of proof theory, the application of proof rules for
programming languages has led to a process of rigorous design which provides a
way of developing proofs to support the top-down documentation of a program.
Moreover, the knowledge of how to write proofs using concepts like invariants
and termination arguments influences the thinking process of anyone who has
been exposed to those ideas.

Nor is it wish to suggest that researchers interested in theoretical aspects
of computingmust be prepared to model any messy architecture that has been
developed by practitioners. It is far more desirable to tease out the fundamental
concepts from -for example- programming languages. The position taken in this
paper is, however, that proposed formalisms should be challenged by application
to concepts from realistic systems and that the process of extracting key targets
should be undertaken on a wider and fresher range of applications than appears
to be in use in the current theoretical literature.

Progress in mathematics has frequently come from the invention of more
tractable notations (the trivial example of the development of Arabic numerals
in preference to Roman numerals is a much cited but nonetheless valid case
in point). Theoretical computer scientists have provided a range of notations
for documenting semantics and further research is required to make them more
tractable. But this author submits that the test of tractability has to be applied
on realistic programming languages rather than on those that could be regarded
as toys. The concern which motivated writing this paper is that too few computer
scientists are actively involved in practical experiments with the theories which
do exist. It is, of course, clear that both sorts of activities are required but the
'reward structure' of our community appears to be heavily biased towards the
presentation of new or refined theories. Basic research is necessary in order to
refine theories in the direction of greater or more ready applicability but many of
the refinements that are published result from striving solely for mathematical
elegance regardless of applicability..More experience in applying formal semantic

techniques is required in order to better motivate their improvement.

People who have been involved in computing for a reasonable portion of its
relatively short history must be impressed with the fact that systems do actually
work. Today it is possible to achieve a good user interface on top of interface
managers like X-windows at a vastly lower investment than was thinkable even a
decade ago. Furthermore the excitement about Internet and WWW in a signifi-
cant portion of the community at large is evidence that computing is beginning
to serve the all-important purpose of an information provider rather than sim-
ply a computation device (but see comments on WWW under Section 3 below).
An essential part of the ability to build new software is the sensible design of
interfaces on top of which people can design their own systems.

Formal methods are not a significant factor in the creation of most of the
everyday systems on which we work: formal methods are in fact applied al-
most solely on safety critical systems. Tony Hoare has tried to tease out some
of the reasons that system design without formal methods has been successful
in [Hoa96]. It is, however, important to remember that many things that were
at one stage regarded as parts of a formalist's tool kit have now been absorbed
into everyday computing. An obvious example here is the role that context free
grammars have played both in the description of programming languages and
in the design of tools to analyse and process such languages. Type structure is
another important example. But in all humility formalists must ask themselves
whether they would really do better than the designers of software like emacs.

One of the key arguments for testing formal approaches on realistic applica-
tions is that it would provide scientists with the experience of extracting their
own abstractions from the messy detail of realistic systems. It is not enough to go
on working with abstractions like 'stack' and the 'dining philosophers problem'
which were abstracted many years ago. But these are exactly the sorts of exam-
ples which are seen over and over again in the papers presented at conferences
like ESOP and MFPS. Rarely do we see the best minds applying themselves to
exercise theories on new applications.

The approach which is commended in this paper is that authors who wish
to explore the applicability of a formalism should be prepared to tackle a new
application problem of their own. In this way they will gain the experience of
developing abstractions and perhaps find that the 'devil is in the detail' precisely
in the process of developing this abstraction. This proposal could sometimes lead
to a theory which works in that it gives some purchase on the problem in hand
but is 'ugly'. Hardy wrote in his 'Mathematicians Apology' [Har67] that there
is no permanent place for ugly mathematics. But it is sometimes necessary to
proceed through a period of less than elegant mathematics in order to understand
what the real problems are. This author -for example- originated a set of proof
obligations for programs which use post conditions of two states. Peter Aczel
approved of this step in [Acz82] and wrote 'It is familiar that the specification
[using a post-condition of the final state only] does not exactly express all that
we have in mind ' But went on to describe the rules published in [Jon80] in
the following way ' . . . his [CBJ] rules appear elaborate and unmemorable.' The

revised rules which were later employed in [Jon90] are however comparable with
those for single state post-conditions and do address relating the initial and final
states.

There are many examples of where a mathematically inelegant result has
been of use. Even from this author's experience the fact that the initial set of
data refinement rules used in VDM were known to be incomplete did not inhibit
their being extremely effective in developing a variety of systems (see [Jon89] for
details of this story and the role played by Tobias Nipkow's paper [Nip86]).

Starting from a set of rules which do 'work' but which are inelegant, one can
seek the refinement of a theory in a way which should yield some confidence as
to its applicability to realistic problems. The presentation of increasingly refined
systems which have themselves only been shown to suffice for extremely simple
examples seems less likely to yield applicable formal methods.

It is of course true that pure research has its own value and that finding the
right framework can make a system vastly more tractable but one also has to be
aware that there is a cost/benefit trade-off for esoteric theories in terms of the
difficulty of communicating them to engineers who are presumably expected to
be the ultimate users.

The plan of this paper is to use the task of describing the semantics of
concurrent object oriented languages as a major and solid example of what
seems to lay just beyond the scope of our semantic tools at this time and then
to sketch in less detail some increasingly tentative research areas which might
invite attempts to hone formal methods.

2 An example: Concurrent Object-Oriented Languages

This -the main example given in this paper- is not claimed to have fundamental
significance; it is presented because it has provided the stimulus to a sequence
of papers and comes from a practical problem. It is revealing that the standard
notions of bisimulation do not immediately apply to the example; the challenge
here is to offer semantic descriptions which facilitate reasoning.

It would be reasonable to view the challenge of providing the semantics of
concurrent object oriented languages as an end in its own right. In fact, the work
described here fits into a larger programme of work outlined in [Jon96]. That pa-
per describes why some concepts from object oriented languages are seen as a
useful way to control the interference which is inherent with concurrency; it de-
scribes how an idea similar to Hoare's 'recursive data structures' (cf. [Hoa75])
can be realised by representing tree-like abstractions as collections of objects;
it also describes the role of equivalences which can increase concurrency in pro-
grams; lastly it describes how difficult forms of interference can be reasoned
about using a variant of rely-/guarantee-conditions. This paper draws on the
task of proving the concurrency-enhancing equivalences in order to motivate the
need for a tractable semantics.

The language used in [Jon96] is known as 7roSA. The essential points of the
semantics can be illustrated by a reduced language whose abstract syntax is
given in Appendix A.

Figures 1 and 2 illustrate two versions of a program which might be writ ten
in ro~)~. Both implement a sorting vector in which each object of class Sort
contains one value and an optional reference to a further instance of the class.
Figure 1 is sequential in the sense that an initial rendezvous with the insert
method will stay in tha t rendezvous until the value has trickled all the way
down the sorting vector to the appropriate place of insert and returns have
traced their way back up this vector. The program in Figure 2 is claimed to
have the same observable behaviour but is concurrent in the sense that as soon
as the parameters have been transferred to the first instance of insert a return is
executed and the client is free to execute in parallel with the server. Furthermore,
as soon as the nested calls to insert have completed -because of the premature
re turn- the earlier members of the sorting vector are available to accept calls
from other clients. This is true in spite of the fact that roi~A has the restriction
that only one method can be active in an object at any one time.

Sort class
vars v: N , - O; l: unique ref(Sort) , - nil
insert(z: N) method

begin
if is-nil(l) then (v ~-- x; l e-- new Sort)
elif v < x then l.insert(x)
else (l.insert(v); v ~ x)
fi
return

end
test(x: N) method : B

Fig. 1. Sequential implementation of Sort

The development of the sequential program in Figure 1 from a specification
is straightforward. The equivalence which is claimed to justify substi tution of
the more parallel program in Figure 2 can be described as follows.

E q u i v a l e n c e 1 S; return e is equivalent to return e; S providing

- S contains no return or delegate statements;
- S always terminates;
- e is not affected by S; and
- any method invoked by S belongs to an object reached by a unique reference.

Notice that the reference to l in both programs is marked as being a unique
reference.

Sort class
vats v: N ~ 0; l: unique ref(Sort) ~- nil
insert(x: N) method

begin
return;
if is-nil(l) then (v ~-- x; l ~-- new Sort)
elk v < x then l . inser t (x)
else (l . insert(v); v ~ x)
fi

end
test(x: N) method : B

, , .

Fig. 2. Concurrent implementation of Sort

Defini t ion 2 A unique reference mus t never be copied nor have references to
mutable objects passed over it - neither in nor out.

Defini t ion 3 A n immutable object derives f rom a class whose methods have
no side-effects: thus, once initialized, an immutable object's state remains un-
changed.

There are of course other equivalence laws which can be considered but this
one will serve to illustrate the task in hand.

2.1 SOS Semant ics of lro~,X

A number of people have considered the semantics of object oriented languages
(see [HJ96] for a list of references). Most notable among these is David Walker
who has provided both SOS semantics and mappings to the ~r-calculus for both
POOL lAme89] and for rof~)~. But David Walker's proofs have so far only tackled
specific examples of the equivalence like those envisaged in the example above;
what is required is a proof that the general equivalence in Equation 1 holds.

The goal of providing a semantic description for ~-o~A does not suggest that
it is itself a programming language (final programs designed using 7rof~A might
be written in languages like MODULA-3) but the semantics need be such that
it is possible to justify equivalences of the sort considered. It is important that
the equivalences are tackled in general so that it is not necessary for the person
who is developing programs using the rof~A design notation to reason about
this underlying semantics: it is orders of magnitude easier for engineers to apply
equivalence laws.

In order to pin down the semantics of this subset of 7ro/~A a structured
operational semantics is first given (this follows that in [HJ96]). The object level
transitions are defined around states

E = l d - - ~ Val

7

Vat = B I N I Old

The low level transitions are relations on (Strut* • E) (see Appendix A for Stmt).
A few example rules follow.

I c~176 ((st):: t,o) -~ (a ~" t,~)

I-=3 ((x ~- e):: t, ~) ~, (t, o t {x ~ ~do})

Where ~e]a is the valuation of e in state a.

~e]a = true HEq
I_LLI ((if e then St else S/): : l, a) s (St:: t, a)

~e]a = false

L:LJ ((if e then St else S/): : l,a) ~ (S/ : : t,a)

Global transitions require information about all objects which have been
created.

Omap =Oid m ~ Oinfo

where

Oinfo :: cn
act :
rest :
state :
client :

: / d
{AVAIL, WAI~}
Stmt*
E
[Old]

These higher level transitions also require the class definitions.

Cmap= Id m Cdef

They are a relation over ~ C (Cmap x Omap • Omap). The initial Omap must
match the Cmap in an obvious way.

The promotion of low to high-level transitions is handled by the following
rule.

0(o~) = (c, AVAIL, t, o', co)
(t, ~) -~ (t', ~')

c ~ o ~" o t { - ~ (c, AVAIL, r, ~', ~)}

The transitions which involve more than one object are defined as follows.

0(~) = (c~, AVAIL, (v ~ new c: : t),~,co)

~ r dora o
(~" (Ca, AVAIL, t,O't {V~--~ ~},ca), }

Ct- O a--~ O t ~--~(c, AVAIL,[],init(C(c)),ni[)

O(ot) -~ (Ca, AVAIL, (r ~-- ~).m0: : la), f a, o))

O(J~) = (c/3, AVAIL, [], fiB, nil)

C[_ 0 g_, O , {~-*(ca,WAIT,(re-v .mO:: la) , fa ,~ }
(cB, AVAIL, b(mm(C(cB))(m)), a B, a)

O(oz) = (Ca, WAIT, (r ~-- v.m(): : la), fc~, ~g)
O(~) ---- (cfl, AVAIL, (return (e): : lfl), fB, o~)

{ ~ ~-'~ (Ca, AVAIL,/a, fa $ {r I-'~ [e]fB), ~), }
C I- 0 g-~ 0 "I" ~ (cB, AVAIL, b, GB, nil)

Constructing such an operational semantics is not in itself difficult; tuning it
in such a way to make it convenient for proofs does take a considerable amount
of experimentation; and - i t must be pointed out - there is little practical advice
in the literature.

There are a number of negative aspects of such a semantics which seem to
be inherent in the operational method. The most obvious comment is that the
natural proof strategy is to perform induction over the computation or reduction
steps of the SOS. Allied to this is the problem that the semantics has to be
documented at a very low level of granularity in the sense that the individual
steps in every object must be mergeable. This is somewhat distressing in the
cases where one wishes to prove precisely that such merging of the object steps
has no influence on the overall behaviour. The essential difficulty here is that the
low level of granularity is not easy to reason about because there is no natural
algebra of such SOS definitions. Furthermore, it is necessary to make a number
of decisions about how to hand-craft the communication links between different
objects. On the other hand there are clearly some positive aspects of writing
an SOS definition. One of the foremost of these is that it provides a test-bed
on which to experiment with ideas of reasoning. One particular advantage of an
SOS definition over the sort of mapping to process algebras which is considered
below is that it is easy to state which things can not happen in logic.

Such a definition has been used to attack both the equivalence rule in Equa-
tion 1 above and the more delicate proof rule concerned with ~ro/~A's delegate
statement. Both of these proofs have been tackled in [HJ96] for the general equiv-
alence rather than for specific examples. One essential point of these proofs is
that one can reason about what interference can not occur. The main innovation
in the proof is to partition the state in a way which shows that computation
within a particular 'island' cannot affect any objects outside the island.

Similar comments to those made about SOS definitions would of course apply
to a denotational semantics definition and in the case of the language under
discussion it would be necessary to use power domains [P1o76].

2.2 Mapping ~ofilA to the 1r-calculus

The first a t tempt (cf. [Jon93a]) to write a semantics for ~ro/~A was undertaken by
mapping it to the polyadic first order 7r-calculus (cf. [MPW92]). This mapping

is pleasingly direct. It is necessary to build some basic data types like Booleans
and to work out how to code certain tricks like the sequential composition of
statements but the following mapping from a simple Bit class to its 7r-calculus
equivalent indicates that the way ~r-calculus creates new names works ideally
for the object identifiers which have to be created as 'capabilities' for each new
object; that replication works perfectly for the multiple instances of a class; and
that the expansion factor of the mapping is linear. Although it could again be
argued that the semantics given is at a very low level of granularity, one can see
that the algebra of the 7r-calculus provides a way of reasoning about equivalent
terms. One disadvantage is that there are perhaps too many equivalence notions
for process algebras!

Bi t class
vars v: B +- false
w(x:]3) method v ~- x; return
r 0 method return v

Gets mapped to

[Bit] = ! (v ~) (~ . / ~)

& =

V = (vt)(-tb I I ! t(x).(-Sx.'tx -b s(y).-ty))

and

[new Bit] = b i t (5)

[[p!w(true)] = (vw)(~"~wwbt.wO." ")

[pTr()] = (r,w)('E~w.w(x). . . .)

On the negative side, it is important to notice that -in this mapping to the
basic calculus- everything has to be done by communication. This includes access
to the instance variables which are modelled by parallel composed processes. This
point becomes more pressing in an example where reference values are concerned.
The following is the mapping of the ~ro~A code provided in Figure 1.

[Sort] = ! (vu)(s--~u.I , ,)

I~ = (v~-d)(g I L I B ,)

v = ! +

L = (v t) ((vn) (~n)] ! t (x) . (~x .~x "4- s l (y) . ty))

lO

B,~ = ~ .

l a i@x) .a . (v) .
if v = nil then Sv(X).sort(u~).~u'.~.B~
elif v < x then at(u').u'(l~).(vr162162
else at(u').u' (f l) .(vr162162).-g~vx.'~.Bu

+
at(wx).at(l).av(V).

if l = nil V x < v then ~bl.Bu
elif x = v then ~bt.B,,
else at(u').u'(~).(vr162

and

~new Sort] = sort(u)

]p!i(n)] = u(a).Cvw)(57wn.w())

[p! t(n)] = u(~). (r,w)(~twn.w(b).. . .)

Here the access to the instance variable I results in communica t ions for which
it is unfor tuna te ly not t rue tha t the names of unique objects never appear in ob-
ject positions: they are not - in this mapp ing - 'uniquely handled ' . It is, however,
possible to use the idea of indexing process definitions in a way which brings
a not ion similar to local states into the r-calculus. For example, the Bit class
above could be coded as

]Bit] = ! (va)(b-~a.B-d{v ~ false})

~ = (~(~x) .~ .~(~ t {v ~ x})+ ~r (~)z (~(v)) .~)

The Sort class above could be coded as follows:

[Sort] = ! (v~)(s-'g'~.BXa{v H nil, l ~ nil})

ai(~z).
if a(v) = nil then sort(~).~.B-~(a t {v ~ x, l ~ ~})

el i f a(v) < x then (le t /3 = a(l) in (v~b)(fl,r
else (let ~ = a(l) in (vr162 t {v ~ x}))

+
a t @ x)

The parallel version in Figure 2 gets mapped to

B~o"
ot

' a~(wz).'~.

if a(v) = nil then sortCfl).BL(a t {v ~ x, l ~ ~})

elif a(v) < x then (let fl = a(l) in (vr162162
else (let fl = a(l) in (vr162 t {v ,-~ x}))

+
at@z)....

11

As indicated above, the SOS definitions have frequently served as a stimulus
to ways in which one might reason in the mapped form of semantics. The use
of state indices to process definitions is one example. It is straightforward to see
how one could use the notion of islands as a way of dividing a large composition
into sub-terms which do not interact with one another. Immutable classes can
be made local by alpha converting their mapped versions.

A number of researchers (cf. [Vaa90, Wa191, Jon93b, HT91, Wal93]) have
noted the possibility of mapping object oriented languages in general -and con-
current object oriented languages in particular- into process algebras. But even
Walker who has expended most effort on the attempt to prove the transforma-
tions correct has so far only been able to get out proofs of specific examples
of the equivalences. One of the stumbling blocks is the ability to state negative
properties: it is not obvious how to say what can not happen.

3 F u r t h e r C h a l l e n g e s

There is an extensive literature on the problems of handling parallel transactions
in databases (see for example [Dat94]). There are even several books on formal
presentations of the need to verify such systems (cf. [B+87, L+94]). Most of this
literature relies on presentations of semantics which would not be familiar to
people who have worked on programming language semantics. It is interesting
to investigate the extent to which more traditional semantic approaches might
give tractable ways of reasoning about the correctness of database systems.

It seems that this is an important area on which researchers could work if
only because the database community has created a large number of approaches
to transaction scheduling which do work. Furthermore, their descriptions appear
to have provided ways of reasoning about the correctness of such systems at least
to the extent that there is a repertoire of algorithms which can be employed in
database systems. Furthermore, the formal methods community may well have
something to learn, either from the challenge of reformulating these descriptions
in more traditional semantic approaches or by realising that these semantic ap-
proaches are not in fact the most apposite for database problems. If we cannot
easily verify the algorithms, it could stimulate the development of new ways
for reasoning about other classes of concurrent systems. Who knows, the formal
methods people may even spot some new database algorithms!

The basic approach in the bulk of the database literature is to argue about
'serialisability' of transactions. In other words, it is permissible for a database
system to merge the actions within transactions providing a result is achieved
which could have come about by executing the separate transactions in some

sequential non-interfering order.
A simplified form of the problem can be relatively easily presented based

around the following abstract syntax.

P g m = Tid m Trans

Trans = STrans I ATrans

1 2

STrans :: Act*

ATrans :: Act*

Act = Rd l Wr

Rd :: Temp
Var

Wr :: Var
Expr

The basic correctness notion can be provided by a structured operational
semantics which processes transactions in a non-deterministic but serial order.

Individual action steps (-~) are relations on (N • P • ,U).

a: liar m, Val p: Temp m ~ Val

i < len t
t(i + 1) = mk-Rd(l, v)

t ~- (i ,p,a) ~ ' ~ + l , p t {l ~ a(v)},a) -~

i < len t
t(i + 1) = ink-Wr(v, e)

�9 - - ' - a - - "

t 1- (t, p, a) ---* (t + 1, p, o" t {v ~ le]lp})

Transaction level transitions (_t) for a given program are presented as rela-
tions on (Tid-set • E).

tid E pend
p(tid) E STrans
p(tid) ~- (0, { }, a) -5 (len (p(tid)), p', a')

p t- (pend, a) t_, (pend- {tid}, a')

[u-abort]

tid e pend
p(tid) e ATrans

p h (pend, a) ~ (pend - {tid}, a)

Then the input /output relation of a program p is given by

(o', o") E [p~ iff p ~- (dora p, a) t ({ }, o")

Various interleaving semantics can be presented as SOS rules. It is normally
easy to see that all (a, a ~) transitions of the serial semantics can be reproduced;
the interesting issue is whether there are too many transitions. For the simple
approaches to a concurrent implementation it does look as though an argument
in terms of SOS would be possible. More subtle ways of merging transactions
look increasingly interesting. The challenge, of course, is to tackle algorithms

13

which employ, for example, locking on subparts of the database to be able to
show that they are correct with respect to the sequential semantics.

There is, in fact, an interesting series of articles stimulated by Lamport's
'Lake Arrowhead' example. These are slanted more towards reasoning about as-
sertions but warrant comparison with what is sketched here. As in the preceding
section, it would also be interesting to investigate whether a treatment in terms
of process algebra would provide purchase on these problems.

There are other problems in this class of refining atomicity where it is con-
venient to provide an overall specification with large granularity and to show
that implementations which refine that granularity and permit substeps to be
interleaved are correct with respect to the original specification. Potential ex-
amples include caching [B+94], pipelining in computer architectures and some
approaches to fault tolerance.

There are many other areas which would appear to be in need of some formal
analysis. One from this author's own experience (cf. [JJLM91]) is the desire
to build general purpose theorem proving assistants which have user interfaces
tempting to users other than the originators of the system. One of the goals
here must be to be able to describe not just 'logic frames' but to be able to deal
with 'method frames' in the way outlined by the DEVA group [WSL93]. One
would even wish to be able to specify things like version control of specifications
and proofs and record information about which test cases had been run against
which versions of the system.

If the argument of the formal methods community that their techniques pro-
vide convenient ways of designing and thinking about systems are to be justified,
it would seem essential that methods are applied not only to existing problems
like those outlined above but to areas where new systems are only just begin-
ning to evolve. An example -again taken from this author's own experience-
is a desire to understand what it would mean to design a useful 'global yet
personal information system'. The starting observation here is that -in spite
of its usefulness- World Wide Web can hardly be classed as a global informa-
tion system. URLs are the world's worst pointers! Furthermore, what is actually
available on the Internet at the moment seems to be just sequences of bytes
rather than structured information. The paper [GJ96] looks at the challenge of
designing a genuine information system which would be distributed on a global
basis. No magic answers are provided but the paper makes clear that there is a
major challenge in designing such systems. This appears to be exactly the sort
of challenge which an abstract model with an appropriate notation might well
enable the architects to think about more clearly than if they just proceed by
designing programs in an ad hoc way.

Another very speculative area is that of multi-media systems. These are
clearly becoming important in practice and it would be desirable if formalism
could be applied before the systems become too unstructured for that to be an
appetising possibility.

14

4 Point of this sermon

It appears that the 'reward structure' of computer science encourages the de-
velopment of deep theories and under values the process of establishing the
usefulness of existing theories. It is certainly not the intention here to argue
that people who -for example- undertake a PhD should be invited to apply an
established method to a routine problem. But, in spite of the many first gen-
eration formal methods books, there are relatively few at tempts to take formal
methods and apply them to established or evolving areas of computer science.
It would certainly be considered desirable to see more research publications on
the application of established formal methods to novel practical problems.

It is worrying that some computer scientists who do choose to develop systems
to support their own research seem reluctant to employ formal methods during
that process. It seems obvious that the persistent application of a formal method
to increasingly challenging problems will force us to refine the methods and make
them more tractable; to not do so seems an abdication of responsibility.

Many of us feel privileged that we are present during the development of a
new science. The argument here is that we must make sure that this subject is
computing science rather than a branch of mathematics which can be shown to
apply to only trivial problems which have some connection with computing.

Senior members of our field do and should continue to choose their own re-
search agendas. When advising younger members of the community they should
perhaps put more emphasis on the application of methods rather than just the
development of new methods. We must avoid the danger of 'corrupting the
young' and having to take the Hemlock (cf. [Pla54])!

Acknowledgements

This paper was written whilst the author was on sabbatical from Manchester
University at the Isaac Newton Institute of Mathematical Sciences. The pa-
per evolved out of a talk given at the Institute. The author is also grateful to
Gonville and Caius college for their hospitality during his Visiting Fellowship
there. Tony Hoare provided insightful comments on a draft of the paper. The
author 's research is supported by a grant from the Engineering and Physical
Sciences Research Committee.

References

[Acz82]
lame89]

[B+87]

1B+94]

P. Aczel. A note on program verification, manuscript, January 1982.
Pierre America. Issues in the design of a parallel object-oriented language.
Formal Aspects of Computing, 1(4), 1989.
P. A. Berustein et al. Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, 1987.
Ed Brinksma et al. Verifying sequential consistet memory. Technical Report
Project P6021, ESPRIT, August 1994.

15

[Bae90]

[Bes93]

[Dat94]

[GJ93]

[GJ96]

[Har67]

[H J96]

[HMT89]

[Hoa75]

[noa96]

[HT91]

JIM91]

[JJLM91]

[JonS0]

[Jon89]

[Jon90]

[Jon93a]

[Jon93b]

[Jon96]

[Knu73]

[L+94]

J. C. M. Baeten, editor. Applications of Process Algebra. Cambridge Uni-
versity Press, 1990.
E. Best, editor. CONCUR'93: ~th International Conference on Concurrency
Theory, volume 715 of Lecture Notes in Computer Science. Springer-Verlag,
1993.
C J Date. An Introduction to Database Systems. Addison-Wesley, sixth
edition, 1994.
M-C. Gaudel and J-P. Jouannaud, editors. TAPSOFT'93: Theory and Prac-
tice of Software Development, volume 668 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1993.
J. R. Gurd and C. B. Jones. The global-yet-personal information system. In
Computing Tomorrow. Cambridge University Press, 1996.
G. H. Hardy. A Mathematician's Apology. Cambridge University Press,
1967.
S. J. Hodges and C.B. Jones. Non-interference properties of a concur-
rent object-based language: Proofs based on an operational semantics. In
C. Lengauer, editor, to be published. Kluwer, 1996.
R. Harper, R. Milner, and M. Torte. The definition of standard ML - Ver-
sion 3. Technical Report ECS-LFCS-89-81, University of Edinburgh, LFCS,
Department of Computer Science, University of Edinburgh, The Kings Build-
ings, Edinburgh, 1989.
C. A. R. Hoare. Recursive data structures. International Journal of Com-
puter ~ Information Sciences, 4(2):105-132, June 1975.
C. A. R. Hoare. How did software get so reliable without proof? In M-C
Gaudel, editor, Proceedings FME'96. Springer-Verlag, 1996. Lecture Notes
in Computer Science.
K. Honda and M. Tokoro. A small calculus for concurrent objects. A CM,
OOPS Messenger, 2(2):50-54, 1991.
T. Ito and A. R. Meyer, editors. TACS'91 - Proceedings of the International
Conference on Theoretical Aspects of Computer Science, Sendai, Japan, vol-
ume 526 of Lecture Notes in Computer Science. Springer-Verlag, 1991.
C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal
Development Support System. Springer-Verlag, 1991. ISBN 3-540-19651-X.
C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall
International, 1980. ISBN 0-13-821884-6.
C. B. Jones. Data reification. In J. A. McDermid, editor, The Theory and
Practice of Refinement, pages 79-89. Butterworths, 1989.
C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990. ISBN 0-13-880733-7.
C. B. Jones. Constraining interference in an object-based design method. In
[GJ93], pages 136-150, 1993.
C. B. Jones. A pi-calculus semantics for an object-based design notation. In
[Bes93], pages 158-172, 1993.
C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105-122,
1996.
Donald E Knuth. The dangers of computer-science theory. In Logic, Method-
ology and Philosophy of Science IV, pages 189-195. North-Holland, 1973.
Nancy Lynch et al. Atomic Transactions. MIT Press, 1994.

[MPW921

[Nip86]

[Pla541
[Plo761
[PIo81]

[Ste66]

[v 9o]

[Wa191]

[Wa1931

[WSL931

16

R. Milner, J. Pa~row, and D. Walker. A calculus of mobile processes. In-
formation and Computation, 100:1-77, 1992.
T. Nipkow. Non-deterministic data types: Models and implementations.
Acta lnformatica, 22:629-661, 1986.
Plato. The Last Days of Socrates. Penguin Classics, 1954.
G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3), 1976.
G. D. Plotkin. A structural approach to operational semantics. Technical
report, Aarhus University, 1981.
T. B. Steel. Formal Language Description Languages for Computer Pro-
gramming. North-Holland, 1966.
F. W. Vaandrager. Process algebra semantics of POOL. In [Bae90], pages
173-236, 1990.
D. Walker. ~r-calculus semantics for object-oriented programming languages.
In [IM91], pages 532-547, 1991.
D. Walker. Process calculus and parallel object-oriented programming lan-
guages. In In T. Casavant (ed), Parallel Computers: Theory and Practice.
Computer Society Press, to appear, 1993.
M. Weber, M. Simons, and Ch. Lafontaine. The Generic Development Lan-
guage Deva: Presentation and Case Studies, volume 738 of Lecture Notes in
Computer Science. Springer-Verlag, 1993. ISBN 3-540-57335-6.

A Abstract syntax

This is a reduced version of the ~ro/3A language.

System = Id m Cdef

I d = . . .

Cdef :: ivars : Id m Type

mm : I d - - ~ Mdef

Type = UNIQUEREF I SHAREDREF I BOOL

Mdef :: r : [Type]
pl : (Id • Type)*
b : Strut

Stmt = Compound [Assi9n [If [New [Cal [Delegate I Return

Compound :: sl : Strut*

Assign :: lhs : Id
rhs : Expr

I f : : b : Expr
th : Strut
el : Strut

17

N e w :: l h s : Id
cn : l d
al : Expr*

Call :: lhs : [ld]
ca l l : Mre f

Delegate :: r : M r e f

Mre f :: obj : Id
m n : Id

al : Expr*

Re turn :: r : [Expr]

