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Abs t rac t .  This paper offers an assessment of what has been achieved 
in three decades of work on the semantics of programming languages 
and pinpoints some practical problems in computing which might stim- 
ulate further research. The examples sketched in this paper come from 
the author's own research on concurrent object oriented languages, from 
database practice, and from more speculative research on Internet issues. 

1 Introduction 

The main reason for writing this paper is to a t tempt  to persuade leading re- 
searchers in our field to encourage some of their younger colleagues to tackle 
practical problems with semantic theories which are available. Currently it seems 
that  many publications are aimed at devising refinements of theories which them- 
selves may not be applicable to a useful class of applications. One can be a 
staunch defender of fundamental research while still being concerned that  too 
few of the strong new generation of theoretical computer scientists value the 
stimulus of practical computing problems. In some respects, this paper echoes 
the slightly tongue-in-cheek paper by Knuth [Knu73] in that  the comments are 
offered from a position of broad support  for theoretical work. 

Work on the formal semantics of programming languages began in the 1960's 
- a useful early reference is [Ste66] which reports on a conference held in Baden- 
bei-Wien in 1964. The subsequent literature on formal semantics of sequential 
languages is extensive. A good state of the art  example of a formal definition 
is that  of s tandard ML (cf. [HMT89]). This definition is written in Structured 
Operational Semantics (cf. [PloS1]). It is sobering that ,  after a quarter century of 
denotational semantics, it is still found more convenient to tackle the semantics 
of a language like SML in an operational way. Furthermore, it must be clear tha t  
it is extremely difficult to get a formal semantics to the stage where it correctly 
reflects the intuitions about a language. There are some language standards like 
that  for Modula 2 which are actually being written using formal techniques. But  
overall the situation is that  formal semantic definitions are written only by a 
very small number of highly skilled people. 

The situation with recording the formal semantics of concurrent languages is 
even less well developed. Although there are denotational definitions of CSP-like 
languages, most people who are consideringspecifying a programming language 



which embodies concurrency would turn to SOS. In spite of being an impressive 
piece of work, the SMoLCS definition of Ada is not a document on which one 
would choose to base reasoning about an implementation of Ada. 

One goal of writing a formal semantics of a programming language is to be 
able to reason about implementations of the language; another desirable objec- 
tive is to be able to justify proof rules about constructs of the programming 
language with respect to an underlying model theoretic semantics. There are 
almost no practical programming languages which have serious sets of axioms 
and probably none at all which have a complete set of proof rules. The proof 
theory even for specially designed languages is hard to apply and in very few 
cases has been applied to programs of significant industrial size. 

It is not the intention to decry works on formal semantics, there are of course 
many successes. This author has been involved in writing semantic definitions 
of languages like ALGOL-60, Pascal and PL/I. Furthermore, the background 
ideas on how to write a model theoretic semantics of a programming language 
enable one to understand -and sketch the domains of- a language which one 
wishes to study. In the area of proof theory, the application of proof rules for 
programming languages has led to a process of rigorous design which provides a 
way of developing proofs to support the top-down documentation of a program. 
Moreover, the knowledge of how to write proofs using concepts like invariants 
and termination arguments influences the thinking process of anyone who has 
been exposed to those ideas. 

Nor is it wish to suggest that researchers interested in theoretical aspects 
of computingmust be prepared to model any messy architecture that has been 
developed by practitioners. It is far more desirable to tease out the fundamental 
concepts from -for example- programming languages. The position taken in this 
paper is, however, that proposed formalisms should be challenged by application 
to concepts from realistic systems and that the process of extracting key targets 
should be undertaken on a wider and fresher range of applications than appears 
to be in use in the current theoretical literature. 

Progress in mathematics has frequently come from the invention of more 
tractable notations (the trivial example of the development of Arabic numerals 
in preference to Roman numerals is a much cited but nonetheless valid case 
in point). Theoretical computer scientists have provided a range of notations 
for documenting semantics and further research is required to make them more 
tractable. But this author submits that the test of tractability has to be applied 
on realistic programming languages rather than on those that could be regarded 
as toys. The concern which motivated writing this paper is that too few computer 
scientists are actively involved in practical experiments with the theories which 
do exist. It is, of course, clear that both sorts of activities are required but the 
'reward structure' of our community appears to be heavily biased towards the 
presentation of new or refined theories. Basic research is necessary in order to 
refine theories in the direction of greater or more ready applicability but many of 
the refinements that are published result from striving solely for mathematical 
elegance regardless of applicability..More experience in applying formal semantic 



techniques is required in order to better motivate their improvement. 

People who have been involved in computing for a reasonable portion of its 
relatively short history must be impressed with the fact that systems do actually 
work. Today it is possible to achieve a good user interface on top of interface 
managers like X-windows at a vastly lower investment than was thinkable even a 
decade ago. Furthermore the excitement about Internet and WWW in a signifi- 
cant portion of the community at large is evidence that computing is beginning 
to serve the all-important purpose of an information provider rather than sim- 
ply a computation device (but see comments on WWW under Section 3 below). 
An essential part of the ability to build new software is the sensible design of 
interfaces on top of which people can design their own systems. 

Formal methods are not a significant factor in the creation of most of the 
everyday systems on which we work: formal methods are in fact applied al- 
most solely on safety critical systems. Tony Hoare has tried to tease out some 
of the reasons that system design without formal methods has been successful 
in [Hoa96]. It is, however, important to remember that many things that were 
at one stage regarded as parts of a formalist's tool kit have now been absorbed 
into everyday computing. An obvious example here is the role that context free 
grammars have played both in the description of programming languages and 
in the design of tools to analyse and process such languages. Type structure is 
another important example. But in all humility formalists must ask themselves 
whether they would really do better than the designers of software like emacs. 

One of the key arguments for testing formal approaches on realistic applica- 
tions is that it would provide scientists with the experience of extracting their 
own abstractions from the messy detail of realistic systems. It is not enough to go 
on working with abstractions like 'stack' and the 'dining philosophers problem' 
which were abstracted many years ago. But these are exactly the sorts of exam- 
ples which are seen over and over again in the papers presented at conferences 
like ESOP and MFPS. Rarely do we see the best minds applying themselves to 
exercise theories on new applications. 

The approach which is commended in this paper is that authors who wish 
to explore the applicability of a formalism should be prepared to tackle a new 
application problem of their own. In this way they will gain the experience of 
developing abstractions and perhaps find that the 'devil is in the detail' precisely 
in the process of developing this abstraction. This proposal could sometimes lead 
to a theory which works in that it gives some purchase on the problem in hand 
but is 'ugly'. Hardy wrote in his 'Mathematicians Apology' [Har67] that there 
is no permanent place for ugly mathematics. But it is sometimes necessary to 
proceed through a period of less than elegant mathematics in order to understand 
what the real problems are. This author -for example- originated a set of proof 
obligations for programs which use post conditions of two states. Peter Aczel 
approved of this step in [Acz82] and wrote 'It is familiar that the specification 
[using a post-condition of the final state only] does not exactly express all that 
we have in mind . . . .  ' But went on to describe the rules published in [Jon80] in 
the following way ' . . .  his [CBJ] rules appear elaborate and unmemorable.' The 



revised rules which were later employed in [Jon90] are however comparable with 
those for single state post-conditions and do address relating the initial and final 
states. 

There are many examples of where a mathematically inelegant result has 
been of use. Even from this author's experience the fact that the initial set of 
data refinement rules used in VDM were known to be incomplete did not inhibit 
their being extremely effective in developing a variety of systems (see [Jon89] for 
details of this story and the role played by Tobias Nipkow's paper [Nip86]). 

Starting from a set of rules which do 'work' but which are inelegant, one can 
seek the refinement of a theory in a way which should yield some confidence as 
to its applicability to realistic problems. The presentation of increasingly refined 
systems which have themselves only been shown to suffice for extremely simple 
examples seems less likely to yield applicable formal methods. 

It is of course true that pure research has its own value and that finding the 
right framework can make a system vastly more tractable but one also has to be 
aware that there is a cost/benefit trade-off for esoteric theories in terms of the 
difficulty of communicating them to engineers who are presumably expected to 
be the ultimate users. 

The plan of this paper is to use the task of describing the semantics of 
concurrent object oriented languages as a major and solid example of what 
seems to lay just beyond the scope of our semantic tools at this time and then 
to sketch in less detail some increasingly tentative research areas which might 
invite attempts to hone formal methods. 

2 An example: Concurrent Object-Oriented Languages 

This -the main example given in this paper- is not claimed to have fundamental 
significance; it is presented because it has provided the stimulus to a sequence 
of papers and comes from a practical problem. It is revealing that the standard 
notions of bisimulation do not immediately apply to the example; the challenge 
here is to offer semantic descriptions which facilitate reasoning. 

It would be reasonable to view the challenge of providing the semantics of 
concurrent object oriented languages as an end in its own right. In fact, the work 
described here fits into a larger programme of work outlined in [Jon96]. That pa- 
per describes why some concepts from object oriented languages are seen as a 
useful way to control the interference which is inherent with concurrency; it de- 
scribes how an idea similar to Hoare's 'recursive data structures' (cf. [Hoa75]) 
can be realised by representing tree-like abstractions as collections of objects; 
it also describes the role of equivalences which can increase concurrency in pro- 
grams; lastly it describes how difficult forms of interference can be reasoned 
about using a variant of rely-/guarantee-conditions. This paper draws on the 
task of proving the concurrency-enhancing equivalences in order to motivate the 
need for a tractable semantics. 

The language used in [Jon96] is known as 7roSA. The essential points of the 
semantics can be illustrated by a reduced language whose abstract syntax is 
given in Appendix A. 



Figures 1 and 2 illustrate two versions of a program which might be writ ten 
in ro~)~. Both implement a sorting vector in which each object of class Sort 
contains one value and an optional reference to a further instance of the class. 
Figure 1 is sequential in the sense that  an initial rendezvous with the insert 
method will stay in tha t  rendezvous until the value has trickled all the way 
down the sorting vector to the appropriate place of insert and returns have 
traced their way back up this vector. The program in Figure 2 is claimed to 
have the same observable behaviour but is concurrent in the sense that  as soon 
as the parameters have been transferred to the first instance of insert a return is 
executed and the client is free to execute in parallel with the server. Furthermore,  
as soon as the nested calls to insert have completed -because of the premature 
re turn-  the earlier members of the sorting vector are available to accept calls 
from other clients. This is true in spite of the fact that  roi~A has the restriction 
that  only one method can be active in an object at any one time. 

Sort class 
vars v: N , -  O; l: unique ref(Sort) , -  nil 
insert(z: N)  method 

begin 
if is-nil(l) then (v ~-- x; l e-- new Sort) 
elif v < x then l.insert(x) 
else (l.insert(v); v ~ x) 
fi 
return 

end 
test(x: N) method : B 

Fig.  1. Sequential implementation of Sort 

The  development of the sequential program in Figure 1 from a specification 
is straightforward. The equivalence which is claimed to justify substi tution of 
the more parallel program in Figure 2 can be described as follows. 

E q u i v a l e n c e  1 S; return e is equivalent to return e; S providing 

- S contains no return or delegate statements; 
- S always terminates; 
- e is not affected by S; and 
- any method invoked by S belongs to an object reached by a unique reference. 

Notice that  the reference to l in both programs is marked as being a unique 
reference. 



Sort  class 
vats v: N ~ 0; l: unique ref(Sort) ~- nil 
insert(x: N)  method 

begin 
return; 
if is-nil( l)  then (v ~-- x; l ~-- new Sort)  
elk v < x then l . inser t (x)  
else ( l . insert(v);  v ~ x) 
fi 

end 
test(x: N) method : B 

, , .  

Fig. 2. Concurrent implementation of Sort  

Defini t ion  2 A unique reference mus t  never be copied nor have references to 
mutable objects passed over it - neither in nor out. 

Defini t ion 3 A n  immutable object derives f rom a class whose methods have 
no side-effects: thus, once initialized, an immutable object's state remains un- 
changed. 

There are of course other equivalence laws which can be considered but this 
one will serve to illustrate the task in hand. 

2.1 SOS Semant ics  of  lro~,X 

A number of people have considered the semantics of object oriented languages 
(see [HJ96] for a list of references). Most notable among these is David Walker 
who has provided both SOS semantics and mappings to the ~r-calculus for both 
POOL lAme89] and for rof~)~. But David Walker's proofs have so far only tackled 
specific examples of the equivalence like those envisaged in the example above; 
what is required is a proof that the general equivalence in Equation 1 holds. 

The goal of providing a semantic description for ~-o~A does not suggest that 
it is itself a programming language (final programs designed using 7rof~A might 
be written in languages like MODULA-3) but the semantics need be such that 
it is possible to justify equivalences of the sort considered. It is important that 
the equivalences are tackled in general so that it is not necessary for the person 
who is developing programs using the rof~A design notation to reason about 
this underlying semantics: it is orders of magnitude easier for engineers to apply 
equivalence laws. 

In order to pin down the semantics of this subset of 7ro/~A a structured 
operational semantics is first given (this follows that in [HJ96]). The object level 
transitions are defined around states 

E = l d - - ~  Val 
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Vat = B I N I  Old 

The low level transitions are relations on (Strut* • E)  (see Appendix A for Stmt). 
A few example rules follow. 

I c~176 ((st):: t,o) -~ (a  ~" t,~) 

I-=3 ((x ~- e):: t, ~) ~, (t, o t {x ~ ~do})  

Where ~e]a is the valuation of e in state a. 

~e]a = true HEq 
I_LLI ((if e then St else S/): :  l, a) s (St::  t, a) 

~e]a = false 

L:LJ ((if e then St else S/): :  l,a) ~ (S/ : :  t,a) 

Global transitions require information about  all objects which have been 
created. 

Omap =Oid  m ~ Oinfo 

where 

Oinfo :: cn 
act : 
rest : 
state : 
client : 

: / d  
{AVAIL, WAI~} 
Stmt* 
E 
[Old] 

These higher level transitions also require the class definitions. 

Cmap= Id m Cdef 

They  are a relation over ~ C  (Cmap x Omap • Omap). The initial Omap must 
match the Cmap in an obvious way. 

The promotion of low to high-level transitions is handled by the following 
rule. 

0(o~) = (c, AVAIL, t, o', co) 
(t, ~) -~ (t', ~') 

c ~ o ~" o t { -  ~ (c, AVAIL, r, ~', ~)} 

The  transitions which involve more than one object are defined as follows. 

0(~) = (c~, AVAIL, (v ~ new c: : t),~,co) 

~ r dora o 
( ~" (Ca, AVAIL, t,O't {V~--~ ~},ca), } 

Ct-  O a--~ O t ~--~(c, AVAIL,[],init(C(c)),ni[) 



O( ot) -~ (Ca, AVAIL, (r  ~-- ~).m0: : la), f a, o)) 

O(J~) = (c/3, AVAIL, [], fiB, nil) 

C[_ 0 g_, O ,  {~-*(ca,WAIT,(re-v .mO:: la) , fa ,~  } 
(cB, AVAIL, b(mm( C(cB))(m)), a B, a) 

O(oz) = (Ca, WAIT, (r  ~-- v.m():  : la), fc~, ~g) 
O(~) ---- (cfl, AVAIL, (return (e): :  lfl), fB, o~) 

{ ~ ~-'~ (Ca, AVAIL,/a, fa $ {r I-'~ [e]fB), ~), } 
C I- 0 g-~ 0 "I" ~ (cB, AVAIL, b, GB, nil) 

Constructing such an operational semantics is not in itself difficult; tuning it 
in such a way to make it convenient for proofs does take a considerable amount 
of experimentation; and - i t  must be pointed out -  there is little practical advice 
in the literature. 

There are a number of negative aspects of such a semantics which seem to 
be inherent in the operational method. The most obvious comment is that  the 
natural proof strategy is to perform induction over the computation or reduction 
steps of the SOS. Allied to this is the problem that  the semantics has to be 
documented at a very low level of granularity in the sense that  the individual 
steps in every object must be mergeable. This is somewhat distressing in the 
cases where one wishes to prove precisely that  such merging of the object steps 
has no influence on the overall behaviour. The essential difficulty here is that  the 
low level of granularity is not easy to reason about because there is no natural 
algebra of such SOS definitions. Furthermore, it is necessary to make a number 
of decisions about how to hand-craft the communication links between different 
objects. On the other hand there are clearly some positive aspects of writing 
an SOS definition. One of the foremost of these is that  it provides a test-bed 
on which to experiment with ideas of reasoning. One particular advantage of an 
SOS definition over the sort of mapping to process algebras which is considered 
below is that  it is easy to state which things can not happen in logic. 

Such a definition has been used to attack both the equivalence rule in Equa- 
tion 1 above and the more delicate proof rule concerned with ~ro/~A's delegate 
statement. Both of these proofs have been tackled in [HJ96] for the general equiv- 
alence rather than for specific examples. One essential point of these proofs is 
that  one can reason about what interference can not occur. The main innovation 
in the proof is to partition the state in a way which shows that  computation 
within a particular 'island' cannot affect any objects outside the island. 

Similar comments to those made about SOS definitions would of course apply 
to a denotational semantics definition and in the case of the language under 
discussion it would be necessary to use power domains [P1o76]. 

2.2 Mapping ~ofilA to the 1r-calculus 

The first a t tempt (cf. [Jon93a]) to write a semantics for ~ro/~A was undertaken by 
mapping it to the polyadic first order 7r-calculus (cf. [MPW92]). This mapping 



is pleasingly direct. It is necessary to build some basic data types like Booleans 
and to work out how to code certain tricks like the sequential composition of 
statements but the following mapping from a simple Bit  class to its 7r-calculus 
equivalent indicates that the way ~r-calculus creates new names works ideally 
for the object identifiers which have to be created as 'capabilities' for each new 
object; that replication works perfectly for the multiple instances of a class; and 
that the expansion factor of the mapping is linear. Although it could again be 
argued that the semantics given is at a very low level of granularity, one can see 
that the algebra of the 7r-calculus provides a way of reasoning about equivalent 
terms. One disadvantage is that there are perhaps too many equivalence notions 
for process algebras! 

Bi t  class 
vars v: B +- false 
w(x:  ]3) method v ~- x; return 
r 0 method return v 

Gets mapped to 

[Bit] = ! ( v ~ ) ( ~ . / ~ )  

& = 

V = (vt)(-tb I I ! t(x).(-Sx.'tx -b s(y).-ty)) 

and 

[new Bit] = b i t ( 5 ) . . . .  

[[p!w(true)] = (vw)(~"~wwbt.wO." ") 

[pTr()] = (r,w)( 'E~w.w(x). . . .)  

On the negative side, it is important to notice that -in this mapping to the 
basic calculus- everything has to be done by communication. This includes access 
to the instance variables which are modelled by parallel composed processes. This 
point becomes more pressing in an example where reference values are concerned. 
The following is the mapping of the ~ro~A code provided in Figure 1. 

[Sort] = ! (vu)(s--~u.I , , )  

I~ = (v~-d)(g I L I B , )  

v = ! + 

L = (v t ) ( (vn) (~n)  ] ! t ( x ) . (~x .~x  "4- s l (y) . ty))  
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B,~ = ~ .  

l a i@x) .a . ( v ) .  
if v = nil then Sv(X).sort(u~).~u'.~.B~ 
elif v < x then at(u').u'(l~).(vr162162 
else at( u').u' ( f l) .(vr162162 ).-g~vx.'~.Bu 

+ 
at(wx).at( l).av( V). 

if l = nil V x < v then ~bl.Bu 
elif x = v then ~bt.B,, 
else at(u').u'(~).(vr162 

and 

~new Sort] = sort(u) . . . .  

]p!i( n)] = u(a).Cvw)(57wn.w() ) 

[p! t(n)] = u(~). (r,w)(~twn.w(b).. . .)  

Here the  access to the instance variable I results in communica t ions  for which 
it is unfor tuna te ly  not  t rue  tha t  the  names of unique objects  never appear  in ob- 
ject  positions: they  are not  - in  this mapp ing -  'uniquely  handled ' .  It  is, however, 
possible to use the  idea of indexing process definitions in a way which brings 
a not ion similar to  local states into the r-calculus.  For example,  the Bit class 
above could be coded as 

]Bit] = ! (va)(b-~a.B-d{v ~ false}) 

~ = (~(~x) .~ .~(~ t {v ~ x})+ ~r (~)z (~(v) ) .~)  

The  Sort class above could be coded as follows: 

[Sort] = ! (v~)(s-'g'~.BXa{v H nil, l ~ nil}) 

ai(~z). 
if a(v) = nil then sort(~).~.B-~(a t {v ~ x, l ~ ~}) 

el i f  a(v) < x then ( le t /3  = a(l) in (v~b)(fl,r 
else (let ~ = a(l) in (vr162 t {v ~ x})) 

+ 
a t @ x ) . . . .  

The  parallel version in Figure 2 gets mapped  to  

B~o" 
ot 

' a~(wz).'~. 

if a(v) = nil then sortCfl).BL(a t {v ~ x, l ~ ~}) 

elif a(v) < x then (let fl = a(l) in (vr162162 
else (let fl  = a(l) in (vr162 t {v ,-~ x})) 

+ 
at@z).... 
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As indicated above, the SOS definitions have frequently served as a stimulus 
to ways in which one might reason in the mapped form of semantics. The use 
of state indices to process definitions is one example. It is straightforward to see 
how one could use the notion of islands as a way of dividing a large composition 
into sub-terms which do not interact with one another. Immutable classes can 
be made local by alpha converting their mapped versions. 

A number of researchers (cf. [Vaa90, Wa191, Jon93b, HT91, Wal93]) have 
noted the possibility of mapping object oriented languages in general -and con- 
current object oriented languages in particular- into process algebras. But even 
Walker who has expended most effort on the attempt to prove the transforma- 
tions correct has so far only been able to get out proofs of specific examples 
of the equivalences. One of the stumbling blocks is the ability to state negative 
properties: it is not obvious how to say what can not  happen. 

3 F u r t h e r  C h a l l e n g e s  

There is an extensive literature on the problems of handling parallel transactions 
in databases (see for example [Dat94]). There are even several books on formal 
presentations of the need to verify such systems (cf. [B+87, L+94]). Most of this 
literature relies on presentations of semantics which would not be familiar to 
people who have worked on programming language semantics. It is interesting 
to investigate the extent to which more traditional semantic approaches might 
give tractable ways of reasoning about the correctness of database systems. 

It seems that this is an important area on which researchers could work if 
only because the database community has created a large number of approaches 
to transaction scheduling which do work. Furthermore, their descriptions appear 
to have provided ways of reasoning about the correctness of such systems at least 
to the extent that there is a repertoire of algorithms which can be employed in 
database systems. Furthermore, the formal methods community may well have 
something to learn, either from the challenge of reformulating these descriptions 
in more traditional semantic approaches or by realising that these semantic ap- 
proaches are not in fact the most apposite for database problems. If we cannot 
easily verify the algorithms, it could stimulate the development of new ways 
for reasoning about other classes of concurrent systems. Who knows, the formal 
methods people may even spot some new database algorithms! 

The basic approach in the bulk of the database literature is to argue about 
'serialisability' of transactions. In other words, it is permissible for a database 
system to merge the actions within transactions providing a result is achieved 
which could have come about by executing the separate transactions in some  

sequential non-interfering order. 
A simplified form of the problem can be relatively easily presented based 

around the following abstract syntax. 

P g m  = Tid  m Trans 

Trans = STrans  I ATrans  



1 2  

STrans :: Act* 

ATrans :: Act* 

Act = Rd l Wr 

Rd :: Temp 
Var 

Wr :: Var 
Expr 

The basic correctness notion can be provided by a structured operational 
semantics which processes transactions in a non-deterministic but serial order. 

Individual action steps (-~) are relations on (N • P • ,U). 

a: liar m, Val p: Temp m ~ Val 

i < len t 
t(i + 1) = mk-Rd(l, v) 

t ~- (i ,p,a) ~ ' ~  + l , p t  {l ~ a(v)},a) -~ 

i < len t 
t(i + 1) = ink-Wr(v, e) 

�9 - - ' - a - - "  . . . . . .  

t 1- (t, p, a) ---* (t + 1, p, o" t {v  ~ le]lp}) 

Transaction level transitions (_t) for a given program are presented as rela- 
tions on (Tid-set • E). 

tid E pend 
p( tid) E STrans 
p(tid) ~- (0, { }, a) -5 (len (p(tid)), p', a') 

p t- (pend, a) t_, (pend-  {tid}, a') 

[ u-abort] 

tid e pend 
p( tid) e ATrans 

p h (pend, a) ~ (pend - {tid}, a) 

Then the input /output  relation of a program p is given by 

(o', o") E [p~ iff p ~- (dora p, a) t ({ }, o") 

Various interleaving semantics can be presented as SOS rules. It is normally 
easy to see that  all (a, a ~) transitions of the serial semantics can be reproduced; 
the interesting issue is whether there are too many transitions. For the simple 
approaches to a concurrent implementation it does look as though an argument 
in terms of SOS would be possible. More subtle ways of merging transactions 
look increasingly interesting. The challenge, of course, is to tackle algorithms 
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which employ, for example, locking on subparts of the database to be able to 
show that they are correct with respect to the sequential semantics. 

There is, in fact, an interesting series of articles stimulated by Lamport's 
'Lake Arrowhead' example. These are slanted more towards reasoning about as- 
sertions but warrant comparison with what is sketched here. As in the preceding 
section, it would also be interesting to investigate whether a treatment in terms 
of process algebra would provide purchase on these problems. 

There are other problems in this class of refining atomicity where it is con- 
venient to provide an overall specification with large granularity and to show 
that implementations which refine that granularity and permit substeps to be 
interleaved are correct with respect to the original specification. Potential ex- 
amples include caching [B+94], pipelining in computer architectures and some 
approaches to fault tolerance. 

There are many other areas which would appear to be in need of some formal 
analysis. One from this author's own experience (cf. [JJLM91]) is the desire 
to build general purpose theorem proving assistants which have user interfaces 
tempting to users other than the originators of the system. One of the goals 
here must be to be able to describe not just 'logic frames' but to be able to deal 
with 'method frames' in the way outlined by the DEVA group [WSL93]. One 
would even wish to be able to specify things like version control of specifications 
and proofs and record information about which test cases had been run against 
which versions of the system. 

If the argument of the formal methods community that their techniques pro- 
vide convenient ways of designing and thinking about systems are to be justified, 
it would seem essential that methods are applied not only to existing problems 
like those outlined above but to areas where new systems are only just begin- 
ning to evolve. An example -again taken from this author's own experience- 
is a desire to understand what it would mean to design a useful 'global yet 
personal information system'. The starting observation here is that -in spite 
of its usefulness- World Wide Web can hardly be classed as a global informa- 
tion system. URLs are the world's worst pointers! Furthermore, what is actually 
available on the Internet at the moment seems to be just sequences of bytes 
rather than structured information. The paper [GJ96] looks at the challenge of 
designing a genuine information system which would be distributed on a global 
basis. No magic answers are provided but the paper makes clear that there is a 
major challenge in designing such systems. This appears to be exactly the sort 
of challenge which an abstract model with an appropriate notation might well 
enable the architects to think about more clearly than if they just proceed by 
designing programs in an ad hoc way. 

Another very speculative area is that of multi-media systems. These are 
clearly becoming important in practice and it would be desirable if formalism 
could be applied before the systems become too unstructured for that to be an 
appetising possibility. 
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4 Point  of this  sermon 

It appears that  the 'reward structure' of computer science encourages the de- 
velopment of deep theories and under values the process of establishing the 
usefulness of existing theories. It is certainly not the intention here to argue 
that  people who -for  example-  undertake a PhD should be invited to apply an 
established method to a routine problem. But, in spite of the many first gen- 
eration formal methods books, there are relatively few at tempts  to take formal 
methods and apply them to established or evolving areas of computer science. 
It would certainly be considered desirable to see more research publications on 
the application of established formal methods to novel practical problems. 

It is worrying that  some computer scientists who do choose to develop systems 
to support  their own research seem reluctant to employ formal methods during 
that  process. It seems obvious that  the persistent application of a formal method 
to increasingly challenging problems will force us to refine the methods and make 
them more tractable; to not do so seems an abdication of responsibility. 

Many of us feel privileged that  we are present during the development of a 
new science. The argument here is that  we must make sure that  this subject is 
computing science rather than a branch of mathematics which can be shown to 
apply to only trivial problems which have some connection with computing. 

Senior members of our field do and should continue to choose their own re- 
search agendas. When advising younger members of the community they should 
perhaps put more emphasis on the application of methods rather than just the 
development of new methods. We must avoid the danger of 'corrupting the 
young' and having to take the Hemlock (cf. [Pla54])! 
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A Abstract  syntax 

This is a reduced version of the ~ro/3A language. 

System = Id m Cdef 

I d = . . .  

Cdef :: ivars : Id m Type 

mm : I d - - ~  Mdef 

Type = UNIQUEREF I SHAREDREF I BOOL 

Mdef :: r : [Type] 
pl : ( Id • Type)* 
b : Strut 

Stmt = Compound [ Assi9n [ If  [ New [ Cal [ Delegate I Return 

Compound :: sl : Strut* 

Assign :: lhs : Id 
rhs : Expr 

I f : :  b : Expr 
th : Strut 
el : Strut 
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N e w  :: l h s  : Id 
cn : l d  
al : Expr* 

Call :: lhs : [ld] 
ca l l :  Mre f  

Delegate :: r : M r e f  

Mre f  :: obj : Id 
m n :  Id  

al : Expr* 

Re turn  :: r : [Expr] 


