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Abst rac t .  We propose an approach to declarative programming which 
integrates the functional and relational paradigms by taking possibly 
non-deterministic lazy functions as the fundamental notion. Programs 
in our paradigm are theories in a constructor-based conditional rewri- 
ting logic. We present proof calculi and a model theory for this logic, 
and we prove the existence of free term models which provide an ade- 
quate intended semantics for programs. Moreover, we develop a sound 
and strongly complete lazy narrowing calculus, which is able to support 
sharing without the technical overhead of graph rewriting and to identify 
safe cases for eager variable elimination. 
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1 I n t r o d u c t i o n  

The interest in combining different declarative programming paradigms, espe- 
cially functional and logic programming, has grown over the last decade; see 
[10] for a recent survey. The operational semantics of many functional logic 
languages is based on term rewriting and narrowing. In some cases, constructor- 
based term rewriting systems (CTRSs) have been adopted, in order to allow for 
a model-theoretic semantics that can reflect the behaviour of partial functions in 
non-strict functional languages. Typical examples of this approach include the 
languages K-LEAF [5] and BABEL [20]. To model the semantics of non-strict 
partial  functions, these languages use so-called strict equality, which regards two 
terms as equal iff they have the same constructor normal form. On the other 
hand, the usefulness of non-deterministic operations for algebraic specification 
and programming has been advocated by Hussmann [13], who provides several 
examples (including the specification of semantics for communicating sequential 
processes) and leaves as an interesting open question "the integration of non- 
strict operations (at least non-strict constructors)" (see [13], Section 8.2). 

Following Hussmann's spirit, we propose a quite general approach to declara- 
tive programming which views possibly non-deterministic lazy functions as the 
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fundamental notion. This is motivated by the fact that both relations and deter- 
ministic lazy functions are particular cases of non-deterministic lazy functions, 
while relations seem not expressive enough to model the behaviour of lazy func- 
tions. Our approach retains the advantages of deterministic functions in func- 
tional logic languages, such as dynamic cut [15] or simplification [11, 12]. But, in 
addition, non-deterministic functions can be modelled by means of non-confluent 
CTRSs, where a given term may be rewritten to constructor terms in more than 
one way. To express conditions and goals, strict equality is replaced by the more 
general notion ofjoisability: two terms a, b are regarded as joinable (in symbols, 
a • b) iff they can be rewritten to a common constructor term. The following 
simple example program illustrates the expressivity of our formalism. We use 
Prolog's syntax for lists. 

Ezample 1: 

cons t ruc tors :  
functions: 
rules: 

zero/O, suc/1, []/0, [_ I - ]12 
always/2, repetitions/2, copy/2, subNst/1 

always(X,Y) --,. [X,Y I always(X,Y)]. 
repetitions(N, Xs) --~ true r copy(N, X) M sublist(Xs). 
copy(zero, X) --+ []. 
copy(suc(N), X) --* [X I copy(N, X)]. 
sublist(Xs) --4 []. 
sublist([X I xs]) [X I sublist(Xs)]. 
sublist([X IXs]) ~ sublist(Xs). 

The deterministic function "always" produces an infinite list from two given ele- 
ments. The function "repetitions" represents a Prolog-like predicate which checks 
if a given list Xs contains at least N repeated occurrences of some element. The 
deterministic function "copy" is self-explanatory. The non-deterministic function 
"sublist" produces lists consisting of non-deterministically chosen elements from 
a given list Xs. The goal: 

repetitions(suc(suc(zero)), always(zero,suc(zero))) I~ true. 

can be solved by the lazy narrowing calculus presented in Section 5. 

In contrast to other lazy narrowing calculi, as e.g. those in [5, 20, 1, 11, 21], 
completeness of our calculus holds without any confluence or non-ambiguity 
hypothesis, even for conditional rewrite systems with extra variables in the con- 
ditions, which may cause incompleteness of narrowing w.r.t, the semantics of 
equational logic [19]. To gain this generality, we restrict ourselves to left-linear, 
constructor-based rewrite rules (which are expressive enough for programming), 
and we replace equational logic by a rewriting logic. We present proof calculi 
and a model theory for this logic, and we prove the existence of free term models 
which provide an adequate intended semantics for programs. As in [13], sharing 
turns out to be essential for the soundness of narrowing w.r.t to our model- 
theoretic semantics. Consequently, our lazy narrowing calculus is designed to 
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achieve sharing without the technical overhead of graph rewriting, as used in 
other approaches to functional logic programming with non-deterministic func- 
tions [13, 23]. 

For the sake of simplicity, we restrict our presentation to the unsorted case, 
but  all our results can be straightforwaxdly extended to many-sorted signatures. 
Proofs are omit ted due to lack of space, but they can be found in [8]. The 
paper is organized as follows. In Section 2 we recall some technical preliminaries. 
In Section 3 we introduce a Constructor-Based Conditional Rewriting Logic 
(CRWL) by means of two equivalent proof calculi. Section 4 is concerned with 
the model-theoretic semantics for CRWL programs, including the existence of 
free term models. In Section 5 we present a lazy narrowing calculus CLNC. In 
Section 6 we state the soundness and strong completeness of CLNC w.r.t, the 
model-theoretic semantics of CRWL. In Section ? we summarize our conclusions 
and we argue the implementability of the approach. 

2 Prel iminaries  

We fix here some basic notions, terminology and notations, needed for the rest 
of the paper. 

A poser with bot tom is a set S equipped with a partial order E and a least 
element _L (w.r.t. _E). We say that  an element x E S is totally defined (written 
def(x)) iff x is maximal w.r.t. C_. The set of all totally defined elements of S will 
be noted Def(S). D C_ S is a directed set iff for all x, y E D there exists z E D 
with x E z, y E z. A subset A C_ S is a cone iif_L E A, and A is downclosed, 
i.e., y E_ x =~ y E A, for all x E A, y E 5. An ideal I C_ S is a directed cone. 
We write C(S), 2"(S) for the sets of cones and ideals of S respectively. The set 
g =d , !  I (S ) ,  equipped with the set-inclusion C_ as ordering, is a poser with 
bot tom called the ideal completion of S. There is a natural, order-preserving 
embedding of S into 5, which maps each x E S into the principal ideal generated 
by x, < x > : d , !  {Y E S : y D x} E S. A poser with bot tom C is a cpo iff D has a 
least upper bound UD (also called limit) for every directed set D C_ C. u E C is a 
finite dement  (written fin(u)) if whenever u E U D for a directed D, there exists 
x E D with u _ x. A cpo C is called algebraic if any element of C is the limit of a 
directed set of finite elements. For any poser with bot tom S, its ideal completion 
g turns to be the least cpo including S. Furthermore, g is an algebraic cpo whose 
finite dements  are precisely the principal ideals ( x ), x E S; see e.g. [18]. Note 
that  dements  x E Def(S) correspond to finite and maximal elements ( x ) in the 
ideal completion. 

A signature with constructors is a countable set 2? = DC~ U FS~:, where DCr = 
U,~e~ DC~ and FSa = U,~e~ FS~ axe disjoint sets of constructor and defined 
f~nction symbols respectively, each of them with associated arity. We assume a 
countable set ~ of variables, and we omit explicit mention of ~ in the subse- 
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quent notations. We write Term for the set of terms built up with aid of ~ and 
12, and we distinguish the subset CTerm of those terms (called constructor terms, 
shortly C-terms) which only make use of DC and 1;. We will need sometimes to 
enhance ~? with a new constant (0-arity constructor) _L, obtaining a new signa- 
ture E.L. We will write Term• and CTermL for the corresponding sets of terms 
in this extended signature, the so-called pgrtial terms. As frequent notational  
conventions we will also use c,d E DC; f,g E FS; s,t E CTerm.L; a,b,e E Term L. 

A natural  gpprozimation ordering " E_ " for partial C-terms can be defined as 
follows: _E is the least partial ordering over CTerm• satisfying the following 
properties: 

- / ~ t, for all t E CTermz 
- t l  _C sl . . . . .  t,~ _E s .  =~ 

ti, si E CTerm• 
c(t  . . . . .  _E cCs, ,  . . . .  s~), for all c E DC '~, 

The ideal completion of CTerm.L is isomorphic to a cpo whose elements are pos- 
sibly infinite trees with nodes labelled by symbols from OC U{J_} in such a way 
that  the arity of each label corresponds to the number of sons of the node; see [6]. 

C-substitution8 are mappings 0 : ~2 ~ CTerm which have a unique natural  exten- 
sion 0: Term --~ Term, also noted as 0. The set of all C-substitutions is noted as 
CSubst. The bigger set CSubst• of all partial C-substitutions 8 : 1; --* CTerm• is 
defined analogously. We note as tO the result of applying the substitution 8 to 
the term t, and we define the composition or0 such that  t(cr8) - (t~)8. A substi- 
tution 8 such that  08 - 8 is called iclempotent. The approximation ordering over 
CTermz induces a natural approximation ordering over CSubst• defined by the 
condition: 8 E 8' iff X0 C XS',  for all X E 1;. We will also use the subsumption 
ordering over CSubst• defined by: 8 < 8' iff 8' - 8~ for some ~. Finally, the 
notation 8 ~ 8' [/2], where U C_ 12, means that  X8 ~ - X(Ocr) for some cr and for 
all X E/2 (i.e, 8 is more general than 81 over the variables in/2) .  

3 A Constructor Based Conditional Rewriting Logic 

In this section we give a proof-theoretical presentation of CRWL, a construc- 
tor based conditional rewriting logic which we propose as logical framework for 
our approach to declarative programming. In spite of some obvious similari- 
ties, CRWL differs from Meseguer's rewriting logic [17] both in its semantics 
and its intended applications. Meseguer's logic aims at modelling change caused 
by concurrent actions at a very high abstraction level, while CRWL intends to 
model the evaluation of terms in  a constructor-based language involving possi- 
bly non-deterministic lazy functions. We introduce two kinds of CRWL-formulas: 

For given s,b E Term• the reduction 8~a~ement a --* b is intended to mean that  
a can be reduced to b, and the joinabilit~ statement s • b is intended to mean 
that  a, b can be reduced to some common totally defined value. We allow for 
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partial terms in CRWL-statements because we want to model the behaviour of 
non-strict functions. Partial C-terms t G CTerm• are intended to represent finite 
approximations of values. Thus, reduction statements a --, t with t G CTerm.L 
will be called approzimation statements. Their intended meaning is that t ap- 
proximates a value of a (we must say "s ~slue" due to non-determinism). 

CRWL-theories, which will be called simply programs in the rest of the paper, 
are defined as sets 7~ of conditional rewrite rules of the form: 

f(t-') --~ r ~= C 

/eft hand side (1) r ight hand side Condit ion 

where f G FS, f must be a linear n-tuple of C-terms t~ G CTerm, r E Term and the 
condition C must consist of finitely many (possibly zero) joinability statements 
a ~ b with a, b E Term. In the sequel we use the following notation for possibly 
partial C-instances of rewrite rules: 

[T~]• -- { (I - -~r  4= C) 0 I 0  --~r ~= c )  E ~ ,  0 G CSubstj_ ) 

Formal derivability of CRWL-statements from a given program 7~ is governed 
by the following calculus: 

Defini t ion 1. B a s i c  P r o o f  Calculus (BPC) 

(B) B o t t o m :  e -~  • 
e~ .-4 eP~ . . .  e ~ 

(MN) M o n o t o n i c i t y :  h(el . . . . .  er,) . . . .  e'r,) h~ne,z ' e ~ for h G DC '~ U FS '~. 

(RF)  Ref lez i~i ty:  e --, e 

(R) Reduc t ion:  [ ~ r  for any instance (I - , r  r C) E [7~].L. 

(TR)  Tr~usiti~it11: e --, e' e' ---, e" 
e - ~  e" 

(J)  Jo in :  a --, t b - ,  t if t E CTerm. 
a N b  D 

As shown by rule (B), a CRWL-reduction is related to the idea of approxima- 
tion. In rule (J),  the C-terra t must be total, since we wish to specify joinability 
as a generalization of strict equality; as we will see in the next Section, terms 
t E CTerm always denote totally defined elements in CRWL-models. 

Rule (R) shows another important difference w.r.t, rewriting in the usual sense, 
which would allow to apply arbitrary instances of rewrite rules, instead of C- 
instances. This reflects so-called "cal l - t ime-choice" for non-determinism, mean- 
ing that values of arguments for a function are chosen before the call; see [13], 
Chapter 1. For this reason, outermost rewriting is not sound in our framework, 
and the lazy narrowing calculus presented in Section 5 will incorporate sharing. 
The following example, inspired by Hussmann [13], illustrates this point: 
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Ezample ~. 

constructors: zero/0, sue/1 
functions:  coin/0, double/I, add/2 
rules: coin --, zero. 

coin --~ suc(zero). 
add(zero, Y) --, Y. 
add(suc(X), Y)  --, suc(add(X,Y)).  
double(X) ---* add(X, X). 

Observe that in this example the following statements are deduced in our logic: 

double(coin) --~ zero. double(coin) --~ suc(suc(zero)). 

But not the following: 

double(coin) ---* add(coin,coin). doub(eCcoin) ~ suc(zero). 

In order to prepare the use of CRWL as a logic for declarative programming, we 
introduce a second calculus which focuses on top-down proofs of approximation 
and joinability statements. 

Def in i t lon2 .  Gor Proof Cr (GPC) 

(B)  Bottom: �9 --, _L. 
( R R )  Restricted Reflezi~ity: e ~ e, if �9 E l) U DC ~ 
( D C )  Decomposfliom 

c(ez, el "- '  t l  " ' "  e9 " "  tn. for c E DC,~, t i  E Term.L. 
. . . .  e,,) - ,  cl, t l  . . . . .  t , , )  ' 

( O R )  Outer Reduction: 

el"-*t~ie;e '~- ' -~t  5 ' . . . , e  ---~tC r - - , t ,  i f t ~ / , ( f ( t l , . . . , t n ) . . _ ~ r C = C ) E [ ~ ] j _ .  

( J )  Join: a --* t b -* t if t E CTerm. o a N b  

By induction on the structure of proofs, we can prove: 

P r o p o s i t i o n 3 .  (Calculi Equivalence) 
For anll progrgm TO, the calculi B P C  and GPC derive the same approzimatio~ 
and joinabilitTI statements. �9 

In the rest of the paper, the notation 7~ PoRWL ~o will mean provability of ~a 
(an approximation or joinability statement) in any of the calculi BPC or GPC. 
For instance, if Tr is the program from Example 1, the following statements are 
derivable: 

always(zero,sucCzero)) --~ [zero,sucCzero),zero,suc(zero) I • ] 
submistC~lw~YsCzero,sucCzero))) ~ [zero,zero] 

copyCsuc(suc(zero)), zero) M sublist(alwaysCzero,sucCzero)) ) 
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4 M o d e l - t h e o r e t i c  S e m a n t i c s  f o r  C R W L  p r o g r a m s  

In this section we define models for CRWL and we establish soundness and com- 
pleteness of CRWL-provability w.r.t, semantic validity in models. Moreover, we 
prove that  every program has a free term model, which can be seen as a gener- 
alization of C-semantics [4] for Horn clause programs. 

To represent non-deterministic functions we use models with posets as carriers, 
and we interpret functions symbols as monotonic mappings from elements to 
cones. The poser's elements are best thought as finite approximations of possibly 
infinite values in the poser's ideal completion (see Section 2). The technical 
definitions are as follows: 

D e f i n i t i o n 4 .  (Non-deterministic and deterministic functions) 
Given two posets with bottom D, E, we define: 

- The set of all non-deterministic functions from D to E as: 
[D --+,~ E] =d,:  { f: D ~ C(E) IV , , , . '  e D: (u [:_ u' =~ f(u) c_ f(u')) }. 

- The set of all deterministic functions from D to F as the subset of [D - , .  El 
specified as: [D "-*d E] : d , ]  { f E [D --,, E] t V u E D: f(u) E I (E)  }. 

[] 

Given any fixed u6 D, a deterministic function f computes a directed set f(u) 
of partial values; thus, such functions become continuous mappings between 
algebraic cpos, after performing an ideal completion. Note also that any non- 
deterministic function f E [D ---,,~ El can be extended to a monotonic mapping .f 

: C(D) ---, C(E) defined by f(C) =d,! [.Juecf(u). By an abuse of notation, we will 

note .{ also as f in the sequel. 

Next, we define the class of algebras which will be used as models for CRWL: 

D e f l n l t l o n  5. (CRWL-Algebras) 
Le t /7  be any given signature. CRWL.algebras of signature Z are algebraic struc- 
tures of the form: 

,4 = (D-t, { c-t DC , { f-t Fs ) 

where: D.A is a poset, c-t E [D~ ~ d  D-t] for c 6 DC~:, and f-t E [D~ ~. D.t] 
for f 6 FS~:. For c A we still require an additional condition, in order to ensure 
preservation of finite and maximal elements in the ideal completion of D-t: 

For all uz . . . . .  u,~ 6 D-t there is v E D-t such that  c-t(uz . . . . .  u , )  = ( v ). 
Moreover, v E Per(D-t) in case that all u~ 6 Per(D-t). [] 

A vgluation over a structure .4 is any mapping 7/: V ---, D-t, and we say that ~/ 
is totsll~l defined iff T/(X) E Per(D-t) for all X E Y. We denote by Val(.4) the set 
of all valuations, and by DefVal(.4) the set of all totally defined valuations. The 
evaluation of a partial term e E Term L in .4 under 7/yields [ e ]-tT/ E C(D-t) 
which is defined recursively as follows: 
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- [ _L ]~n =,., (-L,d. 
- I[ x ].4W =4., < ~/(X) >, for X �9 I). 

[ h(el . . . . .  e,~) ]'4T/=,., hA(~ el ]'A17 . . . . .  [ e,~ ]'4T/), for all h E DC~: U FS~. 

The following result is easy to prove by structural induction: 

P r o p o s i t i o n  6. 
Given an CRWL-algebra ,4, for any e E Term• and any ~/E Val(,4): 

a) i e ~'% e c(O~). 
b) [ e ~'4r/ E Z(D.4) i f  fA is deterministic for e~ery defined function symbol f 

occurring in e. 
e) [ e ]'4~1 = ( v ) for some v E V.4, ire E CZerm• Moreorer, v E Def(DA) i f  

e E CTerm and ~7 E DefVal(,4). �9 

We are now prepared to introduce models. The main idea is to interpret approx- 
imation statements in ,4 as approximation in the sense of ,4's partial ordering, 
and to interpret joinability statements as asserting the existence of some com- 
mon, totally defined approximation. 

Definition 7. (Models) 
Assume a program 7~ and an CRWL-algebra ,4. We define: 

- .4 is a model of Tr (in symbols .4 ~ TO) iff ,4 satisfies all the rules in TO. 
- ,4 satisfies a rule [ -. r <= C iff every valuation T/such that ,4 ~ C17 verifies 

,4 ~ 0-" ,)n. 
- ,4 satisfies a reduction statement a -4 b under a valuation 7/(,4 ~ Ca -~ b)~/) 

- ,4 satisf iesajoinabili tystatement a M b under a valuation ~/(,4 ~ (a M b)n) 
iff [ a ]~7 n I[ b ]A~7 F3 Def(DA) :/: r [ ]  

CRWL-provability is sound w.r.t, models in the following sense: 

T h e o r e m  8. (Soundness) 
For any program 7~ and any reduction or joinability statement ~: 

T~ k- ~o =~ A ~ ~o~I, for all .4 ~ T~ and all ~} E DefVal(-4). 

Completeness of k-cawL can be proved with the help of term models, that are 
closely related to CRWL-provability. 

Definltlong. (Term Model) 
Given a program 7~ the term model .MR is defined as follows: 

- D~ is the poset CTerrn.L with approximation ordering E. 
- c~(tl ..... t,~) =d.! < c(tl ..... t,~) > (principal ideal), for all ti E CTerm• 
- f'~(ti ..... tn) =d,/ { t E CTerm• I Tr FcRwz f(tl ..... t,~) --. t }, for all 

t~ E CTerm• [] 
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Adg is a well-defined CRWL-algebra. In fact, f ' ~  is monotonic (as required 
by definitions 4,5) as a consequence of the next lemma, which will be useful 
again in Section 6. The Lemma can be proved by induction on the structure of 
GPC-proofs. 

L e m m a  10. (Monotonicity Lemma) 
Let ~ be a program, �9 E Term• 8, B' G CSubst• and t E CTerm• I f  O ~ -1 8 
and H is a GPC-proof of 7~ FcRwI, e8 ~ t, there ezists a GPC-proof II '  of 
T~ Fc~wI. e0' --~ t zoith tt~e same length and structure as II.  �9 

The relationship between semantic validity in M ~  and FcRwL provability is 
revealed by the following lemma, whose proof can be obtained by laborious, but 
routine inductions. Note that partial C-substitutions are the same as valuations 
over A ~ .  

L e m m a  11. (Characterization of validity in .M.g ) 
Let 0 be any partial C-substitution. Then, for all e, a, b E Term• t E CTerm• 

With the help of Lemma 11 we can prove the main result relating provability 
and models in CRWL: 

T h e o r e m  12. (Adequateness of .~4~) 
~ is n model of T~. Moreover, for ~ny approzimation or joinability statement 
~o, the following conditions are equivalent: 

b) • ~ ~ for e~e~ ~4 ~ ~, and every ~ ~ VefVal(~4). 
c) Y~4~ ~ ~o id, where id is the identity valuation, defined b~ id(X) = X for all 

X E V .  �9 

Note that the completeness of FCRWL also follows from Theorem 12. According 
to this result, .M~ can be regarded as the intended (canonic) model of pro- 
gram 7~. In particular, a given f E FS will denote a deterministic function iff 
f ~ ( t l  . . . . .  t~) is an ideal for all ti E CTermi. This property is undecidable in 
general, but some decidable sufficient conditions are known which work quite 
well in practice; see e.g. the sufficient non-ambiguity conditions in [7]. 

To state the last result in this section, we need homomorphisms between CRWL- 
algebras. There exist several known homomorphism notions for algebras involv- 
ing non-deterministic operations, see [13], Chapter 3. Our definition follows the 
idea of loose element-valued homomorphisms, in Hussmann's terminology. 

Def ini t ion 13. (Homomorphisms) 
Let .4, B two given CRWL-algebras. A homomorphism h: .4 ~ B is any deter- 
ministic function hE[D~t--,dDe] which satisfies the following conditions: 



165 

- h is element-valued: for all u 6 D.4 there is v 6 DB such that h(u) = ( v ). 
- h is steer: = (-B). 
- h preserves constructors: for all c 6 DC", u~ 6 D.4: h(c4(Ul . . . . .  u,)) - 

cB(h(.1) . . . . .  hCu.)) 
-h loosely preserves defined functions: for all f 6 FS", u~ 6 D.4: 

h(f 'A(ul . . . . .  un)) C fB(h(u l )  . . . . .  h (u . ) ) .  [ ]  

T h e o r e m  14. (Freeness o.f .MTz ) 
For any program 7~, the term model A47~ is freely generated by V in the category 
of all models of T~; that is, given any .A ~ 7~ and any valuation 17 6 DeNaI(.A), 
there is a unique homomoryt~ism h: J ~ .  --* JL eztendinf ~7 in the sense tt~at h(X) 
= ( ,7(X))  for all X 6 V. �9 

The proof of Theorem 14 follows basically from Theorem 12. By a construction 
similar to that of A4~, using the poser of ground partial C-terms as carrier, 
we can obtain also initial models for programs. However, the free term model 
is more interesting for our purposes, since it characterizes CRWL-provability in 
the sense of Theorem 12. 

5 A L a z y  N a r r o w i n g  C a l c u l u s  

In this Section we set the basis for using CRWL as a declarative programming 
language. We define admissible goals and solutions for programs and we present 
a lazy narrowing calculus for goal-solving. 

Let ~ be any program. Goals for 7~ are certain finite conjunctions of CRWL- 
statements, and solutions are C-substitutions such that the goal affected by the 
substitution becomes CRWL-provable. The precise definition of admissible goal 
includes a number of technical conditions which are needed to achieve the ef- 
fect of lazy evaluation with sharing during goal solving. In particular, sharing 
will be achieved by delaying the propagation of bindings for certain variables. 
Similar ideas have been used in the so-called outermost strategy for the func- 
tional logic language K-LEAF (based on flattening plus SLD-resolution) [5], in 
the constrained lazy narrowing calculus from [16] and in a call-by-need strat- 
egy for higher-order lazy narrowing [22]. In comparison to the present approach, 
[5, 16] allow for less general programs 2, while the language in [22] lacks a model- 
theoretic semantics and uses more restricted conditions of the form I ---, r, where 
r is a ground normal form. 

Definitlon15. (Admissible goals) 
An admissible 9oal for a given program 7~ must have the form G ~ 3U. S [] P n E, 
where: 

- evar(G) =_ U is the set of so-called ezistential wriables of the goal G. 

More precisely, this is true only for the sublanguage of [16] which omits the use of 
disequalit!i constraints. 
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- S _= Xl -- sl . . . . .  • = sn is a set of equations, called solved part. Each si 
must be a total C-term, and each Xi must occur exactly once in the whole 
goal. (Intuition: Each s~ is a computed answer for X~.) 

- P ~ el ~ tl  . . . . .  e~ -* tk is a multiset of approzimation conditions, with 
ti E CTerm. pvar(P) :de/var( tx)  U . . .  U var(tk) is called the set of produced 
variables of the goal G. The production relation between G-variables is de- 
fined by X >>p Y iff there is some 1 _< i _< k such that  X E vsr(e~) and 
Y E var(t~). (Intuition: e~ ---, t~ demands narrowing ei to match t~. This may 
produce bindings for variables in ti.) 

- E -- al ~ bl . . . . .  am ~ b,n is a multiset of join~bili~/conditions, dvar(E) 
=d . !  { • E V / X -  a~ or X ~ b~, for some 1 _< i _< rn } is called the 
set of demanded variables of the goal G. (Intuition: due to the semantics of 
joinability, goal solving must compute totally defined values for demanded 
variables.) 

Additionally, any admissible goal must fulfil the following conditions: 

- The tuple (tx . . . . .  tk) must be linear. (Intuition: each produced variable is 
produced only once.) 

- All the produced variables must be existential, i.e. pvar(P) C evar(G). (Intu- 
ition: produced variables are used to compute intermediate results.) 

- The transitive closure of the production relation >~p must be irreflexive, or 
equivalently, a strict partial order. (Intuition: Bindings for produced variables 
are computed hierarchically.) 

- The solved part contains no produced variables. (Intuition: the solved part  
includes no reference to intermediate results.) [] 

We assume by convention that in an initial 9ocd G only the joinability part  E is 
present, and there are no existential variables in G s. 

D e f i n i t i o n  16. (Solutions) 

Let G --- qU. S[]P[]E be an admissible goal, and 0 a partial C-substitution. 

- 0 is allol#able for G iff XO is a total C-term for every X ~ pvar (P) .  
- 0 is a solution for G iff0 is allowable for G, XiO ~ si0 for all Xi = si E S, and 

(P[]E)O has a "z~itness" Ad. A witness is defined as a multiset containing a 
GPC-proof  for each condition eO ---, tO E PO and a0 t~ bO E EO (see Def. 2). 

- We write Sol(G) for the set of all solutions for G. r7 

Our definition of solution must cover the case of intermediate goals of a computa- 
tion. This explains why partial C-substitutions are considered, because produced 
variables (which are not present initially, are existential and can eventually dis- 
appear during the computation) may need to be given only partial values, since 
they serve to express approximations. But notice that with our condition on 

a To accept any admissible goal as initial goal seems not very natural, but it would 
cause no major problem, except minor technical changes in some of the results below. 
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allowable substitutions, solutions of both initial and final goals (where only the 
solved part S will be present) are total C-substitutions. 

Due to the Adequateness Theorem 12, it is immediate to give a model-theoretic 
characterization of solutions, equivalent to the proof-theoretic definition. It is 
enough for our purposes to do this for initial goals. 

L e m m a  17. Let Tr be a program , G an initial 9oal, 0 a C-substitution. The 
foi l �9  9 statements are equivalent: 

a) e e Sol(G) 

b) ~ ~ OO 
c) MR b (~0)id 
d) .4 ~ (GO)n, for all .4 ~ 7"r n 6 DefVal(A) 

We present now a Constructor-based Lazy Narrowing Calculus (CLNC) for solv- 
ing initial goals, obtaining solutions in the sense of Definition 16. The CLNC- 
calculus consists of a set of transformation rules for goals. Each transformation 
rule takes the form G H- G', specifying one of the possible ways of performing 
one step of goal solving. Derivations are sequences of H--steps. For writing fail- 
ure rules we use F A I L  representing an irreducible inconsistent goal. We recall 
that  in a goal 9U. S D P D E ,  S is a set while P, E are multisets. Consequently, in 
the transformation rules no particular selection strategy (e.g. "sequential left-to- 
right") is assumed for the conditions in S , P  or E.  In addition, to the purpose of 
applying the rules, we see conditions rt ~ b as symmetric.  The notat ion svar(e),  
used in some transformation rules, stands for the set of all variables X occurring 
in e at some position whose ancestor positions are all occupied by constructors. 

(DC1) 

(ID) 

(BD) 

(IM) 

(NRI) 

T h e  C L N C  calculus 

R u l e s  fo r  

D e c o m p o s i t i o n :  

I d e n t i t y :  
3U. SoPoX c~ X,E H- 3U. SoPoE if X ~ p~a~(P). 
Binding: 
3[I. SoPoX ~ s,E 14- 3U. X = s,(SoPoE)cr if s 6 CTerm, X ~ s, 

Imitation: 
3V s []P []x ~ c(~), E H- 3X, V. X = c(X), ( S oP �9 . . . , X~ ~ e~, . . . E)v 

if c(~) ~ CTerm or var(c(~)) Cl pvar(P) # ~,X r pvar(P), X r ,va.(c(~)), 
wher~ ~ = {X/~(X)}, Y ~e new ~ri~Ue,. 

N a r r o w i n g :  
3U. S o P D f ( ~ )  ~ a ,E H- 3X,  U. S [ ] . . . , e i  ~ tl . . . .  P [ ]C , r  ~ a ,E  where 
R:  f(])  --, r ~= C is a variant of a rule in 7Z, with X = ear(R) new variables. 
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Rules fo r  -4 

(DC2) D e c o m p o s i t i o n :  
3V s o c ( ~ )  -~ c(D, PoE H- 3V so ...,~, -4 ,,,... ,Poe. 

(OB) O u t p u t  B i n d i n g :  
(OBI) 3V SoX -r ,,Poe H- 3V X = t,(SopnE)~ 

if * ~ Vat, X ~. pvs,(P), where ~ = {X/t}. 
(OB2) BX, U. SoX -* ,,Poe H- 3u. (SnPoE)= 

if t • Vat, X 6 pvar(e), where ~ = {X / t } .  
(IB) I n p u t  B i n d i n g :  

3X, U. Sot --, X, PoE h u 3U. Sc](PoE)~ if t 6 CTerm, where ~ = {X/t}. 
(IIM) I n p u t  I m i t a t i o n :  

qx ,  U. S oc( i )  --, X, P o E  H- 3X,  U. S o ( . . . ,  el - ,  X i , . . . ,  PoE)~r  
if c(~) ~ c z , ~ ,  x e d~a,(E),  where ~ = { X / c ( ~ ) ) ,  ~ new va~ables. 

(EL) E l i m i n a t i o n :  qX, U. 8 o e  -* X,  P O E  H- qu_ S o P o E  i f X  ~ v a t ( P o e ) .  
(NR2) N a r r o w i n g :  

3U. Sc~f(-~) -r t, Poe h u 3X, U. So..., e~ -* t~,... ,r --4 t, PoC, E if t 
Var or t 6 dvar(E),  where a : f(f-) --r r r C is a variant of a rule in 7~, with 
X = vat(R) new variables. 

Fa i l u r e  ru l e s  

(CF1) 
(CV) 
(CF2) 

Conf l i c t :  3U. S o P o c( ~) ~ d( b ), E H- F A I L  if c ~ d. 
Cyc le :  3U. S o P o X  ~ r E H- F A I L  i f X  ~ a ,X 6 aver(a). 
Conf l i c t :  3U. Soc(~)  --* d(]), P o E  Pc- F A I L  if c ~ d. 

The following remarks attempt to clarify some relevant aspects of the CLNC 
calculus. 

�9 In all rules involving a subs t i t u t i on .  (namely (BD), (IM), (OB), (IB), (IIM)), 
cr replaces a variable by a C-term. This means, in particular, that  for a condi- 
tion f(~) --* X,  in no case the substitution {X/ f (~ )}  is applied 4. Instead, the 
following possibilities are considered: 

(i) The rule (EL) deletes the condition if X does not appear elsewhere, because 
in this case any value (even _L) is valid for the (existential) variable X to 
satisfy the goal. As a consequence, the evaluation of f(#) is not needed and 
is indeed not performed. Hence, the rule (EL) is crucial for respecting the 
non-strict semantics of functions. 

(ii) The rule (NR2) uses a rule of the program for reducing f(~),  but only if 
X is detected as a demanded variable, which in particular implies that X's 
value in a solution cannot be .I_ 6 and therefore requires the evaluation of 

4 To perform the eager replacement {X/f(i)} would be unsound due to the "call-time- 
choice nondeterminism of functions. 

s In fact, the condition for a variable to be in the set d~r could be relaxed to weaker 
conditions still entailing X ~ .L. 
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f(~).  After one or more applications of (NR2) it will be the case (if the 
computat ion is going to succeed) that  (IB) or (IIM) are applicable, thus 
propagating (partially, in the case of (IIM)) the obtained value to all the 
occurrences of X. As a result, sharing is achieved, and computat ions are 
lazy. 

(iii) If neither (EL) nor (NR2) are applicable, nothing can be done with f(~) - .  X 
but  waiting until one of them becomes applicable. This will eventually hap- 
pen, as our completeness results show. 

�9 The absence of cycles of produced variables implies that  no occur-check is 
needed in (OB), (IB), (IIM). 
�9 The rules (BD), COB), (IB) correspond to safe cases for eager variable elimi- 
nation (via binding). Special care is taken with produced variables. For instance, 
the goal qN. []X ~ s(N)oX ~ N is admissible, but if (BD) could be applied 
(which is not allowed in CLNC, since N is a produced variable) we would obtain 
qN. X = NoN -, s(N)o , which is not admissible due to the presence of the 
produced variable N in the solved part and, more remarkable, the creation of a 
cycle N >>p N, with the subsequent need of occur check to detect unsolvability 
of iv 8(iv). 
�9 Narrowing rules include a don't kno~# choice of the rule R of the program 
7~ to be used. The rest of the rules are completely deterministic (modulo the 
symmetry of ~) and, what is more important, if several H--rules are applicable 
to a given goal, a don't care choice among them can be done, as a consequence 
of the Progress Lemma 21 below. This kind of strong completeness doesn't hold 
in general for other lazy narrowing calculi, as shown in [21]. 

As an additional consequence of Lemma 21 below, a goal is H--irreducible iff it 
is F A I L  or takes the form 3U. S o o (we call solved forms to these goals). It  
is easy to see that  solved forms are satisfiable. Each solved form 3U. S o  o , 
with S ~ X 1  = t l , . . . ,  Xn = tn, defines an associated answer substitution ~s = 
{ X 1 / t l , . . . ,  Xn/ta} ,  which is idempotent.  Notice that  ors E Sol(3U. S o  o) .  

6 S o u n d n e s s  a n d  C o m p l e t e n e s s  

In this section we state the soundness and completeness of CLNC w.r.t, the 
declarative semantics of CRWL. Our first result proves correctness of a single 
CLNC step. It says that  H--steps preserve admissibility of goals, fail only in case 
of unsatisfiable goals and do not introduce new solutions. In the latter case, some 
care must be taken with the possible elimination of existential variables. 

L e m m a  18. (Correctness lemma) 

(INV) I f  G H- G I and G is admissible, then G I is admissible. 
(CR1) If  G 8- F A I L  then Sol(G) = @ 
(cRy) ff C H- C' O' Sol(G') then there e ists 0 e SoZ(G)  ith 

0 - -  , ,  
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It is easy now to obtain the following result, stating that computed answers for 
a goal G are indeed solutions of G. We recall that, according to Lemma 17, we 
can give both proof-theoretic and model-theoretic readings to this result. The 
same remark holds for the Completeness Theorem 22 below. 

Theorem 19. (Soundness of CLNC) 
I f  G is an initial goal and G H -+ 3U.. $ o  [], then ~s E Sol(G). �9 

We address now the question of completeness of CLNC. For reasoning about 
termination we introduce a well founded ordering over multisets of proofs which 
will allow to express how far is a goal from a solved form. 

De f in i t i on  20. (Multiset ordering for proofs) 
Let 7~ be a program. If Ad - {{Hz , . . . ,  Hn}} and A4' - {{H~, . . . ,  H~}} are 
multisets of GPC-proofs of approximation and joinability statements, we define 

M, {{ I -x  I,..., I -o  I))-,  {{I - I  I,..., 
where I H I is the length (i.e., the number of inference steps) of H, and ~ is the 
multiset eztension [3] of the usual ordering over IN. [] 

The well founded ordering <~ will be used for comparing witnesses of goal solu- 
tions. The overall idea for proving completeness is the following: for given goal 
G and solution 0, if G is not in solved form, then any rule of CLNC applicable 
to G (and there will be at least one by Lemma 21 (PR1) below) can be used 
for performing a H--step, while still capturing 0 (Lemma 21 (PR2) below) and 
descending in the ordering <~ (again Lemma 21 (PR2) below). This is expessed 
by the following result, whose proof is technically involved s. 

L e m m a 2 1 .  (Progress Lemma) 

(PR1) I fG ~ F A I L  is not a solved form, then there ezists a CLNC-transformation 
applicable to G. 

(PR~) If  .M is a witness of 0 G Sol(G), and T is a CLNC-transformation 
applicable to G, then there ezist G/, 0' and .Ad I such that 

(i) G H- G' by means of the CLNC-transformstion T 
(ii) M '  is a witness ofO' e Sol(G') 
(iii) ~ '  ~ 
(iv) o = O'[\(ewr(G) o ~wr(O'))], 

where ,~wr(G') = wr (O I) \ wr(G) ( C_ ewr(O')) 

We can now prove that any solution for a goal is subsumed by a computed 
answer, which constitutes the main result of this section. 

T h e o r e m  22. (Completeness of CLNC) 
Let 7~ be s CRWL, G an initial goal, 0 G Sol(G). Then there ezists a solved 
form 3~. s m  [] such that G H-+ 3~. S n  [] and ~s <_ O[var(G)]. �9 

e Among other technicalities, the proof uses Lemma 10. 



171 

7 Conclusions and Final Example 

We have achieved a logical presentation of a quite general approach to declarative 
programming, based on the notion of non-deterministic lazy function. Besides 
proof calculi and a proof theory for a constructor-based conditional rewriting 
logic CRWL, we have presented a sound and strongly complete lazy narrowing 
calculus CLNC, which is able to support sharing and to identify safe cases for 
eager replacement. All this shows the potential of our approach as a firm foun- 
dation for the development of functional logic languages. On the other hand, the 
practicability of the approach is guaranteed since existing implementations of 
functional logic languages can be used with only trivial changes (mainly relax- 
ing the use of extra variables) for executing CWRL programs. As an example 
we show here a CWRL program which has been executed using the functional 
logic programming system BabLog ~ [2], based on implementation techniques 
borrowed from [14]. We present the program in BabLog's syntax s. The use of 
non-deterministic functions allows a very natural formulation of a grammar for 
simple arithmetic expressions. Any concrete token list tokens can be parsed by 
solving the goal tokens =-- exp. Note that  =--  and := are BabLog's syntax for 

and --,, respectively. 

Ezample 3. 

data tok :=  

n i n t l + l - - I * l / l ( I ) .  
fun exp : l ist tok. 

exp :=  term +-I- [air -I- - J exp]. 
exp :=  term. 

fun term : l ist tok. 

fun factor : list tok. 
factor :=  [ ( I exp ] -I-Jr [ ) ]. 
factor :=  [ n N ]. 

f u n a l t  : A - + A - ~ A .  
alt X Y := X. 
alt X Y :=  Y. 

term := factor +J r  [ alt �9 / J term], fun -I-jr : l ist A -+ list A --~ llst A. 
term :=  factor. [ ] Jr j r  L :=  L. 

[XlXs] + +  L :=  [X I Xs + +  L]. 

Future work will include more experimentation with implementations and ex- 
tension of the whole approach to cover typed higher order programming via 
applicative CTRSs, using ideas and techniques from [?, 9]. 

Acknowledgement:  We would like to thank Ana Gil-Luezas and Purl Arenas-S~nchez 
for useful comments and contributions to implementation work. 
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