
A Rewriting Logic for Declarative Programming *

J.C. Gonz~lez-Moreno and M.T. Hortal~-Gonz~lez and
F.J. L6pez-Fraguas and M. Rodrlguez-Artalejo

Dpto. de Inform~tica y Autom~tica. Fac. Matem~ticas, (UCM)
Av. Comphtense s/n, Madrid (SPAIN), E-28040

Emalh {j cmoreno,teresa,fraguas,mario} Qdia~ucm.es

Abst rac t . We propose an approach to declarative programming which
integrates the functional and relational paradigms by taking possibly
non-deterministic lazy functions as the fundamental notion. Programs
in our paradigm are theories in a constructor-based conditional rewri-
ting logic. We present proof calculi and a model theory for this logic,
and we prove the existence of free term models which provide an ade-
quate intended semantics for programs. Moreover, we develop a sound
and strongly complete lazy narrowing calculus, which is able to support
sharing without the technical overhead of graph rewriting and to identify
safe cases for eager variable elimination.

KEYWORDS: Declarative programming, non-deterministic functions, cons-
tructor-based rewriting logic, lazy narrowing.

1 I n t r o d u c t i o n

The interest in combining different declarative programming paradigms, espe-
cially functional and logic programming, has grown over the last decade; see
[10] for a recent survey. The operational semantics of many functional logic
languages is based on term rewriting and narrowing. In some cases, constructor-
based term rewriting systems (CTRSs) have been adopted, in order to allow for
a model-theoretic semantics that can reflect the behaviour of partial functions in
non-strict functional languages. Typical examples of this approach include the
languages K-LEAF [5] and BABEL [20]. To model the semantics of non-strict
partial functions, these languages use so-called strict equality, which regards two
terms as equal iff they have the same constructor normal form. On the other
hand, the usefulness of non-deterministic operations for algebraic specification
and programming has been advocated by Hussmann [13], who provides several
examples (including the specification of semantics for communicating sequential
processes) and leaves as an interesting open question "the integration of non-
strict operations (at least non-strict constructors)" (see [13], Section 8.2).

Following Hussmann's spirit, we propose a quite general approach to declara-
tive programming which views possibly non-deterministic lazy functions as the

* Research supported in part by the spanish CICYT (project TIC 95-0433-C03-01
" CPD ") and by the ESPRIT BR Working Group N. 6028 ~ CCL ~

157

fundamental notion. This is motivated by the fact that both relations and deter-
ministic lazy functions are particular cases of non-deterministic lazy functions,
while relations seem not expressive enough to model the behaviour of lazy func-
tions. Our approach retains the advantages of deterministic functions in func-
tional logic languages, such as dynamic cut [15] or simplification [11, 12]. But, in
addition, non-deterministic functions can be modelled by means of non-confluent
CTRSs, where a given term may be rewritten to constructor terms in more than
one way. To express conditions and goals, strict equality is replaced by the more
general notion ofjoisability: two terms a, b are regarded as joinable (in symbols,
a • b) iff they can be rewritten to a common constructor term. The following
simple example program illustrates the expressivity of our formalism. We use
Prolog's syntax for lists.

Ezample 1:

cons t ruc tors :
functions:
rules:

zero/O, suc/1, []/0, [_ I -]12
always/2, repetitions/2, copy/2, subNst/1

always(X,Y) --,. [X,Y I always(X,Y)].
repetitions(N, Xs) --~ true r copy(N, X) M sublist(Xs).
copy(zero, X) --+ [].
copy(suc(N), X) --* [X I copy(N, X)].
sublist(Xs) --4 [].
sublist([X I xs]) [X I sublist(Xs)].
sublist([X IXs]) ~ sublist(Xs).

The deterministic function "always" produces an infinite list from two given ele-
ments. The function "repetitions" represents a Prolog-like predicate which checks
if a given list Xs contains at least N repeated occurrences of some element. The
deterministic function "copy" is self-explanatory. The non-deterministic function
"sublist" produces lists consisting of non-deterministically chosen elements from
a given list Xs. The goal:

repetitions(suc(suc(zero)), always(zero,suc(zero))) I~ true.

can be solved by the lazy narrowing calculus presented in Section 5.

In contrast to other lazy narrowing calculi, as e.g. those in [5, 20, 1, 11, 21],
completeness of our calculus holds without any confluence or non-ambiguity
hypothesis, even for conditional rewrite systems with extra variables in the con-
ditions, which may cause incompleteness of narrowing w.r.t, the semantics of
equational logic [19]. To gain this generality, we restrict ourselves to left-linear,
constructor-based rewrite rules (which are expressive enough for programming),
and we replace equational logic by a rewriting logic. We present proof calculi
and a model theory for this logic, and we prove the existence of free term models
which provide an adequate intended semantics for programs. As in [13], sharing
turns out to be essential for the soundness of narrowing w.r.t to our model-
theoretic semantics. Consequently, our lazy narrowing calculus is designed to

158

achieve sharing without the technical overhead of graph rewriting, as used in
other approaches to functional logic programming with non-deterministic func-
tions [13, 23].

For the sake of simplicity, we restrict our presentation to the unsorted case,
but all our results can be straightforwaxdly extended to many-sorted signatures.
Proofs are omit ted due to lack of space, but they can be found in [8]. The
paper is organized as follows. In Section 2 we recall some technical preliminaries.
In Section 3 we introduce a Constructor-Based Conditional Rewriting Logic
(CRWL) by means of two equivalent proof calculi. Section 4 is concerned with
the model-theoretic semantics for CRWL programs, including the existence of
free term models. In Section 5 we present a lazy narrowing calculus CLNC. In
Section 6 we state the soundness and strong completeness of CLNC w.r.t, the
model-theoretic semantics of CRWL. In Section ? we summarize our conclusions
and we argue the implementability of the approach.

2 Prel iminaries

We fix here some basic notions, terminology and notations, needed for the rest
of the paper.

A poser with bot tom is a set S equipped with a partial order E and a least
element _L (w.r.t. _E). We say that an element x E S is totally defined (written
def(x)) iff x is maximal w.r.t. C_. The set of all totally defined elements of S will
be noted Def(S). D C_ S is a directed set iff for all x, y E D there exists z E D
with x E z, y E z. A subset A C_ S is a cone iif_L E A, and A is downclosed,
i.e., y E_ x =~ y E A, for all x E A, y E 5. An ideal I C_ S is a directed cone.
We write C(S), 2"(S) for the sets of cones and ideals of S respectively. The set
g =d , ! I (S) , equipped with the set-inclusion C_ as ordering, is a poser with
bot tom called the ideal completion of S. There is a natural, order-preserving
embedding of S into 5, which maps each x E S into the principal ideal generated
by x, < x > : d , ! {Y E S : y D x} E S. A poser with bot tom C is a cpo iff D has a
least upper bound UD (also called limit) for every directed set D C_ C. u E C is a
finite dement (written fin(u)) if whenever u E U D for a directed D, there exists
x E D with u _ x. A cpo C is called algebraic if any element of C is the limit of a
directed set of finite elements. For any poser with bot tom S, its ideal completion
g turns to be the least cpo including S. Furthermore, g is an algebraic cpo whose
finite dements are precisely the principal ideals (x), x E S; see e.g. [18]. Note
that dements x E Def(S) correspond to finite and maximal elements (x) in the
ideal completion.

A signature with constructors is a countable set 2? = DC~ U FS~:, where DCr =
U,~e~ DC~ and FSa = U,~e~ FS~ axe disjoint sets of constructor and defined
f~nction symbols respectively, each of them with associated arity. We assume a
countable set ~ of variables, and we omit explicit mention of ~ in the subse-

159

quent notations. We write Term for the set of terms built up with aid of ~ and
12, and we distinguish the subset CTerm of those terms (called constructor terms,
shortly C-terms) which only make use of DC and 1;. We will need sometimes to
enhance ~? with a new constant (0-arity constructor) _L, obtaining a new signa-
ture E.L. We will write Term• and CTermL for the corresponding sets of terms
in this extended signature, the so-called pgrtial terms. As frequent notational
conventions we will also use c,d E DC; f,g E FS; s,t E CTerm.L; a,b,e E Term L.

A natural gpprozimation ordering " E_ " for partial C-terms can be defined as
follows: _E is the least partial ordering over CTerm• satisfying the following
properties:

- / ~ t, for all t E CTermz
- t l _C sl t,~ _E s . =~

ti, si E CTerm•
c(t _E cCs, , s~), for all c E DC '~,

The ideal completion of CTerm.L is isomorphic to a cpo whose elements are pos-
sibly infinite trees with nodes labelled by symbols from OC U{J_} in such a way
that the arity of each label corresponds to the number of sons of the node; see [6].

C-substitution8 are mappings 0 : ~2 ~ CTerm which have a unique natural exten-
sion 0: Term --~ Term, also noted as 0. The set of all C-substitutions is noted as
CSubst. The bigger set CSubst• of all partial C-substitutions 8 : 1; --* CTerm• is
defined analogously. We note as tO the result of applying the substitution 8 to
the term t, and we define the composition or0 such that t(cr8) - (t~)8. A substi-
tution 8 such that 08 - 8 is called iclempotent. The approximation ordering over
CTermz induces a natural approximation ordering over CSubst• defined by the
condition: 8 E 8' iff X0 C XS', for all X E 1;. We will also use the subsumption
ordering over CSubst• defined by: 8 < 8' iff 8' - 8~ for some ~. Finally, the
notation 8 ~ 8' [/2], where U C_ 12, means that X8 ~ - X(Ocr) for some cr and for
all X E/2 (i.e, 8 is more general than 81 over the variables in/2) .

3 A Constructor Based Conditional Rewriting Logic

In this section we give a proof-theoretical presentation of CRWL, a construc-
tor based conditional rewriting logic which we propose as logical framework for
our approach to declarative programming. In spite of some obvious similari-
ties, CRWL differs from Meseguer's rewriting logic [17] both in its semantics
and its intended applications. Meseguer's logic aims at modelling change caused
by concurrent actions at a very high abstraction level, while CRWL intends to
model the evaluation of terms in a constructor-based language involving possi-
bly non-deterministic lazy functions. We introduce two kinds of CRWL-formulas:

For given s,b E Term• the reduction 8~a~ement a --* b is intended to mean that
a can be reduced to b, and the joinabilit~ statement s • b is intended to mean
that a, b can be reduced to some common totally defined value. We allow for

160

partial terms in CRWL-statements because we want to model the behaviour of
non-strict functions. Partial C-terms t G CTerm• are intended to represent finite
approximations of values. Thus, reduction statements a --, t with t G CTerm.L
will be called approzimation statements. Their intended meaning is that t ap-
proximates a value of a (we must say "s ~slue" due to non-determinism).

CRWL-theories, which will be called simply programs in the rest of the paper,
are defined as sets 7~ of conditional rewrite rules of the form:

f(t-') --~ r ~= C

/eft hand side (1) r ight hand side Condit ion

where f G FS, f must be a linear n-tuple of C-terms t~ G CTerm, r E Term and the
condition C must consist of finitely many (possibly zero) joinability statements
a ~ b with a, b E Term. In the sequel we use the following notation for possibly
partial C-instances of rewrite rules:

[T~]• -- { (I - -~r 4= C) 0 I 0 --~r ~= c) E ~ , 0 G CSubstj_)

Formal derivability of CRWL-statements from a given program 7~ is governed
by the following calculus:

Defini t ion 1. B a s i c P r o o f Calculus (BPC)

(B) B o t t o m : e -~ •
e~ .-4 eP~ . . . e ~

(MN) M o n o t o n i c i t y : h(el er,) e'r,) h~ne,z ' e ~ for h G DC '~ U FS '~.

(RF) Ref lez i~i ty: e --, e

(R) Reduc t ion: [~ r for any instance (I - , r r C) E [7~].L.

(TR) Tr~usiti~it11: e --, e' e' ---, e"
e - ~ e"

(J) Jo in : a --, t b - , t if t E CTerm.
a N b D

As shown by rule (B), a CRWL-reduction is related to the idea of approxima-
tion. In rule (J), the C-terra t must be total, since we wish to specify joinability
as a generalization of strict equality; as we will see in the next Section, terms
t E CTerm always denote totally defined elements in CRWL-models.

Rule (R) shows another important difference w.r.t, rewriting in the usual sense,
which would allow to apply arbitrary instances of rewrite rules, instead of C-
instances. This reflects so-called "cal l - t ime-choice" for non-determinism, mean-
ing that values of arguments for a function are chosen before the call; see [13],
Chapter 1. For this reason, outermost rewriting is not sound in our framework,
and the lazy narrowing calculus presented in Section 5 will incorporate sharing.
The following example, inspired by Hussmann [13], illustrates this point:

161

Ezample ~.

constructors: zero/0, sue/1
functions: coin/0, double/I, add/2
rules: coin --, zero.

coin --~ suc(zero).
add(zero, Y) --, Y.
add(suc(X), Y) --, suc(add(X,Y)).
double(X) ---* add(X, X).

Observe that in this example the following statements are deduced in our logic:

double(coin) --~ zero. double(coin) --~ suc(suc(zero)).

But not the following:

double(coin) ---* add(coin,coin). doub(eCcoin) ~ suc(zero).

In order to prepare the use of CRWL as a logic for declarative programming, we
introduce a second calculus which focuses on top-down proofs of approximation
and joinability statements.

Def in i t lon2 . Gor Proof Cr (GPC)

(B) Bottom: �9 --, _L.
(R R) Restricted Reflezi~ity: e ~ e, if �9 E l) U DC ~
(D C) Decomposfliom

c(ez, el "- ' t l " ' " e9 " " tn. for c E DC,~, t i E Term.L.
. . . . e,,) - , cl, t l t , ,) '

(O R) Outer Reduction:

el"-*t~ie;e '~- ' -~t 5 ' . . . , e ---~tC r - - , t , i f t ~ / , (f (t l , . . . , t n) . . _ ~ r C = C) E [~] j _ .

(J) Join: a --* t b -* t if t E CTerm. o a N b

By induction on the structure of proofs, we can prove:

P r o p o s i t i o n 3 . (Calculi Equivalence)
For anll progrgm TO, the calculi B P C and GPC derive the same approzimatio~
and joinabilitTI statements. �9

In the rest of the paper, the notation 7~ PoRWL ~o will mean provability of ~a
(an approximation or joinability statement) in any of the calculi BPC or GPC.
For instance, if Tr is the program from Example 1, the following statements are
derivable:

always(zero,sucCzero)) --~ [zero,sucCzero),zero,suc(zero) I •]
submistC~lw~YsCzero,sucCzero))) ~ [zero,zero]

copyCsuc(suc(zero)), zero) M sublist(alwaysCzero,sucCzero)))

162

4 M o d e l - t h e o r e t i c S e m a n t i c s f o r C R W L p r o g r a m s

In this section we define models for CRWL and we establish soundness and com-
pleteness of CRWL-provability w.r.t, semantic validity in models. Moreover, we
prove that every program has a free term model, which can be seen as a gener-
alization of C-semantics [4] for Horn clause programs.

To represent non-deterministic functions we use models with posets as carriers,
and we interpret functions symbols as monotonic mappings from elements to
cones. The poser's elements are best thought as finite approximations of possibly
infinite values in the poser's ideal completion (see Section 2). The technical
definitions are as follows:

D e f i n i t i o n 4 . (Non-deterministic and deterministic functions)
Given two posets with bottom D, E, we define:

- The set of all non-deterministic functions from D to E as:
[D --+,~ E] =d,: { f: D ~ C(E) IV , , , . ' e D: (u [:_ u' =~ f(u) c_ f(u')) }.

- The set of all deterministic functions from D to F as the subset of [D - , . El
specified as: [D "-*d E] : d ,] { f E [D --,, E] t V u E D: f(u) E I (E) }.

[]

Given any fixed u6 D, a deterministic function f computes a directed set f(u)
of partial values; thus, such functions become continuous mappings between
algebraic cpos, after performing an ideal completion. Note also that any non-
deterministic function f E [D ---,,~ El can be extended to a monotonic mapping .f

: C(D) ---, C(E) defined by f(C) =d,! [.Juecf(u). By an abuse of notation, we will

note .{ also as f in the sequel.

Next, we define the class of algebras which will be used as models for CRWL:

D e f l n l t l o n 5. (CRWL-Algebras)
Le t /7 be any given signature. CRWL.algebras of signature Z are algebraic struc-
tures of the form:

,4 = (D-t, { c-t DC , { f-t Fs)

where: D.A is a poset, c-t E [D~ ~ d D-t] for c 6 DC~:, and f-t E [D~ ~. D.t]
for f 6 FS~:. For c A we still require an additional condition, in order to ensure
preservation of finite and maximal elements in the ideal completion of D-t:

For all uz u,~ 6 D-t there is v E D-t such that c-t(uz u ,) = (v).
Moreover, v E Per(D-t) in case that all u~ 6 Per(D-t). []

A vgluation over a structure .4 is any mapping 7/: V ---, D-t, and we say that ~/
is totsll~l defined iff T/(X) E Per(D-t) for all X E Y. We denote by Val(.4) the set
of all valuations, and by DefVal(.4) the set of all totally defined valuations. The
evaluation of a partial term e E Term L in .4 under 7/yields [e]-tT/ E C(D-t)
which is defined recursively as follows:

163

- [_L]~n =,., (-L,d.
- I[x].4W =4., < ~/(X) >, for X �9 I).

[h(el e,~)]'4T/=,., hA(~ el]'A17 [e,~]'4T/), for all h E DC~: U FS~.

The following result is easy to prove by structural induction:

P r o p o s i t i o n 6.
Given an CRWL-algebra ,4, for any e E Term• and any ~/E Val(,4):

a) i e ~'% e c(O~).
b) [e ~'4r/ E Z(D.4) i f fA is deterministic for e~ery defined function symbol f

occurring in e.
e) [e]'4~1 = (v) for some v E V.4, ire E CZerm• Moreorer, v E Def(DA) i f

e E CTerm and ~7 E DefVal(,4). �9

We are now prepared to introduce models. The main idea is to interpret approx-
imation statements in ,4 as approximation in the sense of ,4's partial ordering,
and to interpret joinability statements as asserting the existence of some com-
mon, totally defined approximation.

Definition 7. (Models)
Assume a program 7~ and an CRWL-algebra ,4. We define:

- .4 is a model of Tr (in symbols .4 ~ TO) iff ,4 satisfies all the rules in TO.
- ,4 satisfies a rule [-. r <= C iff every valuation T/such that ,4 ~ C17 verifies

,4 ~ 0-" ,)n.
- ,4 satisfies a reduction statement a -4 b under a valuation 7/(,4 ~ Ca -~ b)~/)

- ,4 satisf iesajoinabili tystatement a M b under a valuation ~/(,4 ~ (a M b)n)
iff [a]~7 n I[b]A~7 F3 Def(DA) :/: r []

CRWL-provability is sound w.r.t, models in the following sense:

T h e o r e m 8. (Soundness)
For any program 7~ and any reduction or joinability statement ~:

T~ k- ~o =~ A ~ ~o~I, for all .4 ~ T~ and all ~} E DefVal(-4).

Completeness of k-cawL can be proved with the help of term models, that are
closely related to CRWL-provability.

Definltlong. (Term Model)
Given a program 7~ the term model .MR is defined as follows:

- D~ is the poset CTerrn.L with approximation ordering E.
- c~(tl t,~) =d.! < c(tl t,~) > (principal ideal), for all ti E CTerm•
- f'~(ti tn) =d,/ { t E CTerm• I Tr FcRwz f(tl t,~) --. t }, for all

t~ E CTerm• []

164

Adg is a well-defined CRWL-algebra. In fact, f ' ~ is monotonic (as required
by definitions 4,5) as a consequence of the next lemma, which will be useful
again in Section 6. The Lemma can be proved by induction on the structure of
GPC-proofs.

L e m m a 10. (Monotonicity Lemma)
Let ~ be a program, �9 E Term• 8, B' G CSubst• and t E CTerm• I f O ~ -1 8
and H is a GPC-proof of 7~ FcRwI, e8 ~ t, there ezists a GPC-proof II ' of
T~ Fc~wI. e0' --~ t zoith tt~e same length and structure as II. �9

The relationship between semantic validity in M ~ and FcRwL provability is
revealed by the following lemma, whose proof can be obtained by laborious, but
routine inductions. Note that partial C-substitutions are the same as valuations
over A ~ .

L e m m a 11. (Characterization of validity in .M.g)
Let 0 be any partial C-substitution. Then, for all e, a, b E Term• t E CTerm•

With the help of Lemma 11 we can prove the main result relating provability
and models in CRWL:

T h e o r e m 12. (Adequateness of .~4~)
~ is n model of T~. Moreover, for ~ny approzimation or joinability statement
~o, the following conditions are equivalent:

b) • ~ ~ for e~e~ ~4 ~ ~, and every ~ ~ VefVal(~4).
c) Y~4~ ~ ~o id, where id is the identity valuation, defined b~ id(X) = X for all

X E V . �9

Note that the completeness of FCRWL also follows from Theorem 12. According
to this result, .M~ can be regarded as the intended (canonic) model of pro-
gram 7~. In particular, a given f E FS will denote a deterministic function iff
f ~ (t l t~) is an ideal for all ti E CTermi. This property is undecidable in
general, but some decidable sufficient conditions are known which work quite
well in practice; see e.g. the sufficient non-ambiguity conditions in [7].

To state the last result in this section, we need homomorphisms between CRWL-
algebras. There exist several known homomorphism notions for algebras involv-
ing non-deterministic operations, see [13], Chapter 3. Our definition follows the
idea of loose element-valued homomorphisms, in Hussmann's terminology.

Def ini t ion 13. (Homomorphisms)
Let .4, B two given CRWL-algebras. A homomorphism h: .4 ~ B is any deter-
ministic function hE[D~t--,dDe] which satisfies the following conditions:

165

- h is element-valued: for all u 6 D.4 there is v 6 DB such that h(u) = (v).
- h is steer: = (-B).
- h preserves constructors: for all c 6 DC", u~ 6 D.4: h(c4(Ul u,)) -

cB(h(.1) hCu.))
-h loosely preserves defined functions: for all f 6 FS", u~ 6 D.4:

h(f 'A(ul un)) C fB(h(u l) h (u .)) . []

T h e o r e m 14. (Freeness o.f .MTz)
For any program 7~, the term model A47~ is freely generated by V in the category
of all models of T~; that is, given any .A ~ 7~ and any valuation 17 6 DeNaI(.A),
there is a unique homomoryt~ism h: J ~ . --* JL eztendinf ~7 in the sense tt~at h(X)
= (,7(X)) for all X 6 V. �9

The proof of Theorem 14 follows basically from Theorem 12. By a construction
similar to that of A4~, using the poser of ground partial C-terms as carrier,
we can obtain also initial models for programs. However, the free term model
is more interesting for our purposes, since it characterizes CRWL-provability in
the sense of Theorem 12.

5 A L a z y N a r r o w i n g C a l c u l u s

In this Section we set the basis for using CRWL as a declarative programming
language. We define admissible goals and solutions for programs and we present
a lazy narrowing calculus for goal-solving.

Let ~ be any program. Goals for 7~ are certain finite conjunctions of CRWL-
statements, and solutions are C-substitutions such that the goal affected by the
substitution becomes CRWL-provable. The precise definition of admissible goal
includes a number of technical conditions which are needed to achieve the ef-
fect of lazy evaluation with sharing during goal solving. In particular, sharing
will be achieved by delaying the propagation of bindings for certain variables.
Similar ideas have been used in the so-called outermost strategy for the func-
tional logic language K-LEAF (based on flattening plus SLD-resolution) [5], in
the constrained lazy narrowing calculus from [16] and in a call-by-need strat-
egy for higher-order lazy narrowing [22]. In comparison to the present approach,
[5, 16] allow for less general programs 2, while the language in [22] lacks a model-
theoretic semantics and uses more restricted conditions of the form I ---, r, where
r is a ground normal form.

Definitlon15. (Admissible goals)
An admissible 9oal for a given program 7~ must have the form G ~ 3U. S [] P n E,
where:

- evar(G) =_ U is the set of so-called ezistential wriables of the goal G.

More precisely, this is true only for the sublanguage of [16] which omits the use of
disequalit!i constraints.

166

- S _= Xl -- sl • = sn is a set of equations, called solved part. Each si
must be a total C-term, and each Xi must occur exactly once in the whole
goal. (Intuition: Each s~ is a computed answer for X~.)

- P ~ el ~ tl e~ -* tk is a multiset of approzimation conditions, with
ti E CTerm. pvar(P) :de/var(tx) U . . . U var(tk) is called the set of produced
variables of the goal G. The production relation between G-variables is de-
fined by X >>p Y iff there is some 1 _< i _< k such that X E vsr(e~) and
Y E var(t~). (Intuition: e~ ---, t~ demands narrowing ei to match t~. This may
produce bindings for variables in ti.)

- E -- al ~ bl am ~ b,n is a multiset of join~bili~/conditions, dvar(E)
=d . ! { • E V / X - a~ or X ~ b~, for some 1 _< i _< rn } is called the
set of demanded variables of the goal G. (Intuition: due to the semantics of
joinability, goal solving must compute totally defined values for demanded
variables.)

Additionally, any admissible goal must fulfil the following conditions:

- The tuple (tx tk) must be linear. (Intuition: each produced variable is
produced only once.)

- All the produced variables must be existential, i.e. pvar(P) C evar(G). (Intu-
ition: produced variables are used to compute intermediate results.)

- The transitive closure of the production relation >~p must be irreflexive, or
equivalently, a strict partial order. (Intuition: Bindings for produced variables
are computed hierarchically.)

- The solved part contains no produced variables. (Intuition: the solved part
includes no reference to intermediate results.) []

We assume by convention that in an initial 9ocd G only the joinability part E is
present, and there are no existential variables in G s.

D e f i n i t i o n 16. (Solutions)

Let G --- qU. S[]P[]E be an admissible goal, and 0 a partial C-substitution.

- 0 is allol#able for G iff XO is a total C-term for every X ~ pvar (P) .
- 0 is a solution for G iff0 is allowable for G, XiO ~ si0 for all Xi = si E S, and

(P[]E)O has a "z~itness" Ad. A witness is defined as a multiset containing a
GPC-proof for each condition eO ---, tO E PO and a0 t~ bO E EO (see Def. 2).

- We write Sol(G) for the set of all solutions for G. r7

Our definition of solution must cover the case of intermediate goals of a computa-
tion. This explains why partial C-substitutions are considered, because produced
variables (which are not present initially, are existential and can eventually dis-
appear during the computation) may need to be given only partial values, since
they serve to express approximations. But notice that with our condition on

a To accept any admissible goal as initial goal seems not very natural, but it would
cause no major problem, except minor technical changes in some of the results below.

167

allowable substitutions, solutions of both initial and final goals (where only the
solved part S will be present) are total C-substitutions.

Due to the Adequateness Theorem 12, it is immediate to give a model-theoretic
characterization of solutions, equivalent to the proof-theoretic definition. It is
enough for our purposes to do this for initial goals.

L e m m a 17. Let Tr be a program , G an initial 9oal, 0 a C-substitution. The
foi l �9 9 statements are equivalent:

a) e e Sol(G)

b) ~ ~ OO
c) MR b (~0)id
d) .4 ~ (GO)n, for all .4 ~ 7"r n 6 DefVal(A)

We present now a Constructor-based Lazy Narrowing Calculus (CLNC) for solv-
ing initial goals, obtaining solutions in the sense of Definition 16. The CLNC-
calculus consists of a set of transformation rules for goals. Each transformation
rule takes the form G H- G', specifying one of the possible ways of performing
one step of goal solving. Derivations are sequences of H--steps. For writing fail-
ure rules we use F A I L representing an irreducible inconsistent goal. We recall
that in a goal 9U. S D P D E , S is a set while P, E are multisets. Consequently, in
the transformation rules no particular selection strategy (e.g. "sequential left-to-
right") is assumed for the conditions in S , P or E. In addition, to the purpose of
applying the rules, we see conditions rt ~ b as symmetric. The notat ion svar(e),
used in some transformation rules, stands for the set of all variables X occurring
in e at some position whose ancestor positions are all occupied by constructors.

(DC1)

(ID)

(BD)

(IM)

(NRI)

T h e C L N C calculus

R u l e s fo r

D e c o m p o s i t i o n :

I d e n t i t y :
3U. SoPoX c~ X,E H- 3U. SoPoE if X ~ p~a~(P).
Binding:
3[I. SoPoX ~ s,E 14- 3U. X = s,(SoPoE)cr if s 6 CTerm, X ~ s,

Imitation:
3V s []P []x ~ c(~), E H- 3X, V. X = c(X), (S oP �9 . . . , X~ ~ e~, . . . E)v

if c(~) ~ CTerm or var(c(~)) Cl pvar(P) # ~,X r pvar(P), X r ,va.(c(~)),
wher~ ~ = {X/~(X)}, Y ~e new ~ri~Ue,.

N a r r o w i n g :
3U. S o P D f (~) ~ a ,E H- 3X, U. S [] . . . , e i ~ tl P []C , r ~ a ,E where
R: f(]) --, r ~= C is a variant of a rule in 7Z, with X = ear(R) new variables.

168

Rules fo r -4

(DC2) D e c o m p o s i t i o n :
3V s o c (~) -~ c(D, PoE H- 3V so ...,~, -4 ,,,... ,Poe.

(OB) O u t p u t B i n d i n g :
(OBI) 3V SoX -r ,,Poe H- 3V X = t,(SopnE)~

if * ~ Vat, X ~. pvs,(P), where ~ = {X/t}.
(OB2) BX, U. SoX -* ,,Poe H- 3u. (SnPoE)=

if t • Vat, X 6 pvar(e), where ~ = {X / t } .
(IB) I n p u t B i n d i n g :

3X, U. Sot --, X, PoE h u 3U. Sc](PoE)~ if t 6 CTerm, where ~ = {X/t}.
(IIM) I n p u t I m i t a t i o n :

qx , U. S oc(i) --, X, P o E H- 3X, U. S o (. . . , el - , X i , . . . , PoE)~r
if c(~) ~ c z , ~ , x e d~a,(E), where ~ = { X / c (~)) , ~ new va~ables.

(EL) E l i m i n a t i o n : qX, U. 8 o e -* X, P O E H- qu_ S o P o E i f X ~ v a t (P o e) .
(NR2) N a r r o w i n g :

3U. Sc~f(-~) -r t, Poe h u 3X, U. So..., e~ -* t~,... ,r --4 t, PoC, E if t
Var or t 6 dvar(E), where a : f(f-) --r r r C is a variant of a rule in 7~, with
X = vat(R) new variables.

Fa i l u r e ru l e s

(CF1)
(CV)
(CF2)

Conf l i c t : 3U. S o P o c(~) ~ d(b), E H- F A I L if c ~ d.
Cyc le : 3U. S o P o X ~ r E H- F A I L i f X ~ a ,X 6 aver(a).
Conf l i c t : 3U. Soc(~) --* d(]), P o E Pc- F A I L if c ~ d.

The following remarks attempt to clarify some relevant aspects of the CLNC
calculus.

�9 In all rules involving a subs t i t u t i on . (namely (BD), (IM), (OB), (IB), (IIM)),
cr replaces a variable by a C-term. This means, in particular, that for a condi-
tion f(~) --* X, in no case the substitution {X/ f (~)} is applied 4. Instead, the
following possibilities are considered:

(i) The rule (EL) deletes the condition if X does not appear elsewhere, because
in this case any value (even _L) is valid for the (existential) variable X to
satisfy the goal. As a consequence, the evaluation of f(#) is not needed and
is indeed not performed. Hence, the rule (EL) is crucial for respecting the
non-strict semantics of functions.

(ii) The rule (NR2) uses a rule of the program for reducing f(~), but only if
X is detected as a demanded variable, which in particular implies that X's
value in a solution cannot be .I_ 6 and therefore requires the evaluation of

4 To perform the eager replacement {X/f(i)} would be unsound due to the "call-time-
choice nondeterminism of functions.

s In fact, the condition for a variable to be in the set d~r could be relaxed to weaker
conditions still entailing X ~ .L.

169

f(~). After one or more applications of (NR2) it will be the case (if the
computat ion is going to succeed) that (IB) or (IIM) are applicable, thus
propagating (partially, in the case of (IIM)) the obtained value to all the
occurrences of X. As a result, sharing is achieved, and computat ions are
lazy.

(iii) If neither (EL) nor (NR2) are applicable, nothing can be done with f(~) - . X
but waiting until one of them becomes applicable. This will eventually hap-
pen, as our completeness results show.

�9 The absence of cycles of produced variables implies that no occur-check is
needed in (OB), (IB), (IIM).
�9 The rules (BD), COB), (IB) correspond to safe cases for eager variable elimi-
nation (via binding). Special care is taken with produced variables. For instance,
the goal qN. []X ~ s(N)oX ~ N is admissible, but if (BD) could be applied
(which is not allowed in CLNC, since N is a produced variable) we would obtain
qN. X = NoN -, s(N)o , which is not admissible due to the presence of the
produced variable N in the solved part and, more remarkable, the creation of a
cycle N >>p N, with the subsequent need of occur check to detect unsolvability
of iv 8(iv).
�9 Narrowing rules include a don't kno~# choice of the rule R of the program
7~ to be used. The rest of the rules are completely deterministic (modulo the
symmetry of ~) and, what is more important, if several H--rules are applicable
to a given goal, a don't care choice among them can be done, as a consequence
of the Progress Lemma 21 below. This kind of strong completeness doesn't hold
in general for other lazy narrowing calculi, as shown in [21].

As an additional consequence of Lemma 21 below, a goal is H--irreducible iff it
is F A I L or takes the form 3U. S o o (we call solved forms to these goals). It
is easy to see that solved forms are satisfiable. Each solved form 3U. S o o ,
with S ~ X 1 = t l , . . . , Xn = tn, defines an associated answer substitution ~s =
{ X 1 / t l , . . . , Xn/ta} , which is idempotent. Notice that ors E Sol(3U. S o o) .

6 S o u n d n e s s a n d C o m p l e t e n e s s

In this section we state the soundness and completeness of CLNC w.r.t, the
declarative semantics of CRWL. Our first result proves correctness of a single
CLNC step. It says that H--steps preserve admissibility of goals, fail only in case
of unsatisfiable goals and do not introduce new solutions. In the latter case, some
care must be taken with the possible elimination of existential variables.

L e m m a 18. (Correctness lemma)

(INV) I f G H- G I and G is admissible, then G I is admissible.
(CR1) If G 8- F A I L then Sol(G) = @
(cRy) ff C H- C' O' Sol(G') then there e ists 0 e SoZ(G) ith

0 - - , ,

170

It is easy now to obtain the following result, stating that computed answers for
a goal G are indeed solutions of G. We recall that, according to Lemma 17, we
can give both proof-theoretic and model-theoretic readings to this result. The
same remark holds for the Completeness Theorem 22 below.

Theorem 19. (Soundness of CLNC)
I f G is an initial goal and G H -+ 3U.. $ o [], then ~s E Sol(G). �9

We address now the question of completeness of CLNC. For reasoning about
termination we introduce a well founded ordering over multisets of proofs which
will allow to express how far is a goal from a solved form.

De f in i t i on 20. (Multiset ordering for proofs)
Let 7~ be a program. If Ad - {{Hz , . . . , Hn}} and A4' - {{H~, . . . , H~}} are
multisets of GPC-proofs of approximation and joinability statements, we define

M, {{ I -x I,..., I -o I))-, {{I - I I,...,
where I H I is the length (i.e., the number of inference steps) of H, and ~ is the
multiset eztension [3] of the usual ordering over IN. []

The well founded ordering <~ will be used for comparing witnesses of goal solu-
tions. The overall idea for proving completeness is the following: for given goal
G and solution 0, if G is not in solved form, then any rule of CLNC applicable
to G (and there will be at least one by Lemma 21 (PR1) below) can be used
for performing a H--step, while still capturing 0 (Lemma 21 (PR2) below) and
descending in the ordering <~ (again Lemma 21 (PR2) below). This is expessed
by the following result, whose proof is technically involved s.

L e m m a 2 1 . (Progress Lemma)

(PR1) I fG ~ F A I L is not a solved form, then there ezists a CLNC-transformation
applicable to G.

(PR~) If .M is a witness of 0 G Sol(G), and T is a CLNC-transformation
applicable to G, then there ezist G/, 0' and .Ad I such that

(i) G H- G' by means of the CLNC-transformstion T
(ii) M ' is a witness ofO' e Sol(G')
(iii) ~ ' ~
(iv) o = O'[\(ewr(G) o ~wr(O'))],

where ,~wr(G') = wr (O I) \ wr(G) (C_ ewr(O'))

We can now prove that any solution for a goal is subsumed by a computed
answer, which constitutes the main result of this section.

T h e o r e m 22. (Completeness of CLNC)
Let 7~ be s CRWL, G an initial goal, 0 G Sol(G). Then there ezists a solved
form 3~. s m [] such that G H-+ 3~. S n [] and ~s <_ O[var(G)]. �9

e Among other technicalities, the proof uses Lemma 10.

171

7 Conclusions and Final Example

We have achieved a logical presentation of a quite general approach to declarative
programming, based on the notion of non-deterministic lazy function. Besides
proof calculi and a proof theory for a constructor-based conditional rewriting
logic CRWL, we have presented a sound and strongly complete lazy narrowing
calculus CLNC, which is able to support sharing and to identify safe cases for
eager replacement. All this shows the potential of our approach as a firm foun-
dation for the development of functional logic languages. On the other hand, the
practicability of the approach is guaranteed since existing implementations of
functional logic languages can be used with only trivial changes (mainly relax-
ing the use of extra variables) for executing CWRL programs. As an example
we show here a CWRL program which has been executed using the functional
logic programming system BabLog ~ [2], based on implementation techniques
borrowed from [14]. We present the program in BabLog's syntax s. The use of
non-deterministic functions allows a very natural formulation of a grammar for
simple arithmetic expressions. Any concrete token list tokens can be parsed by
solving the goal tokens =-- exp. Note that =-- and := are BabLog's syntax for

and --,, respectively.

Ezample 3.

data tok :=

n i n t l + l - - I * l / l (I) .
fun exp : l ist tok.

exp := term +-I- [air -I- - J exp].
exp := term.

fun term : l ist tok.

fun factor : list tok.
factor := [(I exp] -I-Jr [)].
factor := [n N].

f u n a l t : A - + A - ~ A .
alt X Y := X.
alt X Y := Y.

term := factor +J r [alt �9 / J term], fun -I-jr : l ist A -+ list A --~ llst A.
term := factor. [] Jr j r L := L.

[XlXs] + + L := [X I Xs + + L].

Future work will include more experimentation with implementations and ex-
tension of the whole approach to cover typed higher order programming via
applicative CTRSs, using ideas and techniques from [?, 9].

Acknowledgement: We would like to thank Ana Gil-Luezas and Purl Arenas-S~nchez
for useful comments and contributions to implementation work.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Proc. 21st
ACM Syrup. on Princ. of Prog. Lang., Portland, pp. 268-279, 1994.

2. P. Arenas-S~nchez and A. Gii-Luezas. BabLog User's Manual Tech. Rep. DIA
94/12, 1994.

z Available in f tp ://bach.mat .ucm. es/pub/langs/HOBABgL/bablog, ta~.gz
s With some liberalities like the use of Jr, - , * . . . as constant constructor symbols, and

the use of infix notation for the list concatenation operation +Jr.

172

3. N. Dershowitz and Z. Manna: Proving Termination with Multiset Orderings.
Comm. of the ACM 22(8), 1979, 465-476.

4. M. Falaschi, G. Levi, M. Martelli and C. Palamidessi. A Model-Theoretic Re-
construction of the Operational Semantics of Logic Programs. Information and
Computation, 102(1), pp. 86-113, 1993.

5. E. Giovannetti, G. Levi, C. Moiso and C. Palamidessi. Kernel-LEAF: A Logic plus
Functional Language. JCSS 42 (2), pp. 139-185, 1991.

8. J. A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright. Initial Algebra
Semantics and Continuous Algebras. Journal of the ACM 24(1), pp. 68-95, 1977.

7. J. C. Gonz&lez-Moreno, M. T. Hortal~-Gons~lez and M. Rodr/guez-Artalejo. On
the completeness of Narrowing as the Operational Semantics of Functional Logic
Programming. Proc. CSL'92, Springer LNCS 702, pp. 216-230, 1993.

8. J. C. Gonz~ez-Moreno, M. T. Hortal~-Gonz~les , F.3. L6pez-Fraguas and M.
Rodrlguez-Artalejo. A Rewriting Logic for Declarative Programming, Tech. Rep.
DIA 95/10, 1995.

9. J. C. Gonz~lez-Moreno. A Correctness Proof for Warren' s HO into FO Translation.
Proc. GULP'93, Gizzeria (CZ), Italy, 1993.

10. M. Hanus. The Integration of Functions into Logic Programw_/ng: A Survey. JLP
(19&20). Special issue "Ten Year8 of Logic Programming", pp. 583-628, 1994.

11. M. Hanus. Lazy bYn//ication with Simp//tlcation. Proc. ESOP'94, Springer LNCS
778, pp. 272-288, 1994.

12. M. Hanus. Combining Lazy Narrowing and Simplitlcation. Proc. PLILP'94,
Springer LNCS 844, pp. 370-384, 1994.

13. H. Hussmann. Non-determinism in Algebraic Spec/~cations and Algebraic Pro-
grams. Birkh~user Verlag, 1993.

14. R. Loogen, F.J.L6pes-Fraguas and M.Rodrlguez-Artalejo. A Demand Driven Com-
putation Strategy for Lazy Narrowing. Proc. PLILP'93, Springer LNCS 714, pp.
184-200, 1993.

15. R. Loogen and S. Winlder. Dynamic detection of determinism in functional logic
languages. TCS 142, pp. 59-87, 1995.

16. F. J. L6pez-Fraguas. Programaci6n Funcional y Ldgica con Restricciones. PhD
Thesis, Univ. Complutense Madrid, 1994. (In Spanish)

17. J. Meseguer. Conditional rewriting logic as a un/~ed model of concurrency. TCS
96, pp. 73-155, 1992.

18. B. M6lier. On the Algebraic Specitlcation oflntlnite Objects - Ordered and Con-
tinuoas Models of Algebraic Types. Acta l.nformatica 22, pp. 537-578, 1985.

19. A. Middeldorp and E. Hamoen. Completeness Results for Basic Narrowing. Appli-
cable Algebra in Engineering, Comm. and Comp. 5, pp. 213-253, 1994.

20. J. J. Moreno-Navexro and M. Rodrlguez-Artalejo. Log/c Programming with Func-
tions and Predicates: The Language BABEL. JLP 12, pp. 191-223, 1992.

21. S. Okui, A. Middeldorp and T. Ida. Lazy Narrowing: Strong Completeness and
Eager Variable E//mination. Proc. CAAP'95, Springer LNCS 915, pp. 394-408,
1995.

22. C. Prehofer. A Call-by-Need Strategy for Higher-Order Functional Logic Program-
ming. Proc. ILPS'95, MIT Press, pp. 147-161, 1995.

23. A. Sarmiento-Escalona. Una aproximaci6n a la Programaci6n L6gica con Funciones
/ndeterministas, PhD Thesis, Univ. La Corufia, 1992. (In Spanish)

