
Parametricity and Unboxing with Unpointed
Types

John Launchbury 1 and Ross Paterson 2

Oregon Graduate Institute, P.O. Box 91000, Portland, OR 97291-1000, USA
2 Department of Computing, Imperial College, London SW7, UK

Abstract . In lazy functional languages, .l. is typically an element of
every type. While this provides great flexibility, it also comes at a cost. In
this paper we explore the consequences of allowing unpointed types in a
lazy functional language like HaskeU. We use the type (and class) system
to keep track of pointedness, and show the consequences for parametricity
and for controlling evaluation order and unboxing.

1 I n t r o d u c t i o n

Ever since Scott and others showed how to use pointed CPOs (i.e. with bottoms)
to give meaning to general recursion, both over values (including functions),
and over types themselves, functional languages seem to have been wedded to
the concept. Languages like ttaskell [5] model types by appropriate CPOs and,
because non-terminating computations can happen at any type, all the CPOs
are pointed. This gives significant flexibility. In particular, values of any type
may be defined using recursion.

1.1 P a r a m e t r i c i t y

There are associated costs, however. When reasoning about programs, one must
also allow for the possibility of non-termination, even if a function is in fact total.
Similarly, the general parametricity theorems that follow from polymorphic types
(popularized by Wadler as "Theorems for Free" [15]) are rather weaker than in
the pure simply-typed A-calculus.

Parametricity was introduced by Reynolds to express the limits on behaviour
that polymorphism induces [11]. For example, a function that has the type
V a. ot ---* a can do nothing interesting to its argument: it can only return it.
However, in a language like Haskell in which 3_ is an element of every type, a
function of type V a. a ---* a could also ignore its argument, and call itself in
infinite recursion, i.e. return .l.. To allow for this, parametricity results must
be weakened; the usual treatment is to require that all relations be strict (and
inductive--if elements of two chains are related, then so are their limits). For
example, consider the following polymorphic typings in which the quantification
is given explicitly:

r eve r se : V a . L i s t a --, L i s t a

f o l d r : V (x, ft. (e~ ~ fl ~ /3) --*/3 ~ L i s t a --* fl

205

The parametricity theorem for reverse, in the simplified form where the relation
is a function a, is

reverse o map a = map a o reverse for a strict

However, this assertion can easily be proved by induction without assuming
strictness for a.

Similarly, the parametricity theorem for foldr is

b (f x y) = f ' (a x) (b y) ~ b o (f o l d r f c) = f o l d r f ' (b e) o m a p a
for a and b strict

but, again, a direct proof requires only b to be strict. In each case the para-
metricity theorem has given a significantly weaker result than a direct proof.

1.2 Operational Issues

There are also implementation costs associated with allowing all types to con-
tain a bottom element. In a non-strict language, any expression that could be
3_ cannot be evaluated before it is known to be needed. Hence arguments are
boxed, that is passed as pointers to (delayed) computations. Then, even some-
thing as straightforward as addition becomes costly: the arguments have to be
evaluated, extracted, added, and reboxed. This compares rather poorly with a
single machine instruction in C.

The bottom element has also been used to give the programmer some control
over evaluation order, and hence also over space behaviour. It is well known that
if a function is strict, an argument whose type is either primitive or an algebraic
data type may be safely pre-evaluated. Hence, some languages have a sequencing
operator, such as strictify or seq, intended to force evaluation of one expression
before going on to another.

Unfortunately, an operator like seq is not as sensible for other argument
types, even though they contain 3_. In the case of product types, seq would
require some sort of interleaved evaluation; for function types this would be
prohibitively expensive. Furthermore, because the implementation of such an
operator depends to some extent on the argument type, it cannot be made
polymorphic without weakening parametricity: all relations would have to be
strict and bottom-reflecting. Optimization techniques that rely on parametricity
would be lost.

Efforts to extend this sequencing effect to other types tend to complicate
the denotational description. For example, instead of true products, Haskell has
lifted tuples whose evaluation may be forced. While products satisfy a simple
set of equations, lifted tuples are more difficult to reason about.

1.3 This Paper

In this paper we show how modern domain theory may be used in practice to
influence the design of a lazy programming language like Haskell. In particular,

206

we will not accept that 2_ is an element of every type, but will allow unpointed
domains also. When recursion is used, that fact will be recorded in the type,
stating which type parameters must be pointed.

There are two major consequences of all this. First, parametricity is repaired
and returns to its former glory. When recursion is not used, there is no strictness
side-condition on the theorems. Secondly, unpointed types can be used to control
both evaluation order and unboxing of values, subsuming earlier work by Peyton
Jones and Launchbury [9].

2 P o i n t e d a n d U n p o i n t e d D o m a i n s

Domain theory was developed originally in order to provide solutions to recursive
domain equations. Such solutions are needed to model the untyped A-calculus,
but also for recursively-defined data types in languages like Haskell and ML. As
these solutions always exist for equations over pointed CPOs, the theory is often
presented in exactly that framework.

It has long been noted that this makes for an asymmetrical category: domains
are required to have a least element, but functions need not preserve it. As a
consequence a number of constructions fail, the most important being sums.
The theory of pointed CPOs comes equipped with two kinds of sum: coalesced
sum, in which the bottom elements of the summands are merged; and separated
sum, in which a completely fresh bottom element is introduced. Unfortunately,
neither of these is a true (categorical) sum. The first introduces "confusion", the
second contains "junk".

However, plain CPOs (that is, CPOs which do not necessarily have bottom
elements, of which sets are a special case) do possess a categorical sum, namely
the disjoint union of a pair of CPOs. The two summands are independent of
each other and no extra elements have been introduced. Notice however that, as
all domains are non-empty, a sum domain cannot have a bottom element.

CPOs also combine very well with the rest of domain theory, so long as
recursive-domain equations (and recursive values likewise) are restricted. We
shall give a brief account here; details may be found in standard texts [12, 2],

The first thing to note is that the category is still cartesian closed. That
is, the one-point domain is terminal: for each other domain there is exactly
one function from that domain to the one-point domain; products are built by
cartesian product as before, with each component of the product completely
independent of the other; and function spaces are constructed exactly as before,
with currying an isomorphism. All this is the same as in the category of pointed
CPOs.

The earlier separated sum, so widely used for data types in languages like
Haskell, can be viewed as a categorical sum followed by an additional operation
called lifting, which adds a fresh bottom element to a domain. Thus a data type
definition like

da t a Univ -~ Ch Char [Nu Inl

207

():1
/st : v~ ,8 . (~ x 8) --.
snd : V a, 8. (a x 8) "~ 8
(,) : v o , , 8 . , ~ ~ 8 ---* (o, x 8)

inl: V a , 8 . a ---* (a + 8)
inr: V a , 8 . 8 ~ (a + 8)
choose: V ,~, 8, 7. (,~ - ~,) - (8 --+ 7) - - . (,~ + 8) ~ "r

fai l : V a . a •
lift: Va.a --* aa.
ext: Ya, Poin tedS . (a ~ t3) ~ aj . --* 8

1 : V Pointed ~.

Fig. 1. Constants

will be modelled by the domain (abusing notation slightly):

Univ '= (C h a r + In t) j.

This lifting construction also arises naturally, as the left adjoint of the (implicit)
inclusion of the subcategory of pointed CPOs and strict functions.

This is all rather pleasant from a categorical perspective, because the five
domain constructions above arise directly from adjunctions. What this means
in practice is that the operations satisfy a rich and clean set of algebraic laws,
making reasoning about them easier than if the laws were clouded with special
cases and side-conditions.

A lazy functional language may be viewed as a form of the meta-language
used in denotational semantics to talk about this category of CPOs. In the
following, we shall introduce a tiny language of this sort.

3 P o i n t e d a n d U n p o i n t e d T y p e s

We shall consider a typed A-calculus with the following types:

t : : = l l l t x t I t - - * t I t + t [t x I s

where a and other Greek letters are type variables. We shall not discuss ex-
plicit le t polymorphism here, but the extension to include that case is entirely
standard.

The first three type constructors are those of a cartesian closed category. As
in the previous section, in the CPO model, the type 11 consists of a single value,
x constructs products, and ~ constructs function spaces. The last two type
constructors yield disjoint union and lifting.

The constants of our language, and their types, are given in Fig. 1. The type
a• includes a primitive non-terminating value fail .

208

Some types are qualified by a Pointed condition, indicating that they have
a least element I . We can describe this class, and when the type constructors
construct types that belong to it, with the following pseudo-Haskell:

c l a s s Pointed c~ w h e r e • :

i n s t a n c e Pointed II w h e r e • ~ 0

i n s t a n c e Pointed ~ A Pointed fl ~ Pointed (~ • fl) w h e r e • -~ (• •

i n s t a n c e Pointed 13 ~ Pointed (a .--* 13) w h e r e • x ~ _l_~

i n s t a n c e Pointed ~ • w h e r e • ~ fai l

Note that a sum type is never Pointed. Also note that lifted types and Pointed
types are not the same thing. All lifted types are Pointed but, while products of
Pointed types are Pointed, they are not lifted.

With these definitions and rules, the Pointed restrictions are inferred by the
usual Haskell algorithm [6, 16].

Functions that analyse a lifted type are defined using ext, and thus have a
Pointed result. For example, suppose that the type of lifted integers Int is defined
to be In t# • where Int # is the type representing the (unlifted) set of integers.
Then a primitive addition function, say

(+#) : I n t # -- , I n t # ~ I n t #

operating on unlifted integers would be extended to the type of lifted integers
as follows:

(+) : Int ~ Int ~ Int

x + u g u. v. tilt (u +" U)

That is, the arguments to + are "evaluated" using ext, then their values are
extracted and added together by +#. Finally, the result of the addition is lifted,
to make the result an element of the type of lifted integers. The type system
would prohibit a function which attempted to return an unlifted integer, as the
result type of ext must be pointed.

Similarly, the Haskell case operation on lifted sums is given by

case: V a , 13, Pointed 7. (a --+ 7) --* (/3 ~ 7) --* (~ +/3)• ~ 7
case f g x a= ext (choose f g) x

Of course, the full case construct is much richer, allowing nested pattern match-
ing with guards. What we have here corresponds to the simplified version from
Haskell's core language.

We can also use ext to define a polymorphic seq operation, as follows.

seq : V a, Pointed 13. a.t. ~ fl ~ fl

seq x y ~ ezt ()~ u. y) x

The argument x is evaluated and if it is non-• its value is thrown away by the
constant function which returns y. Notice the restrictions on the type of seq.

209

Vx: :l.x = 0

Va,# .V~ :a , y : # , p : a x # .
/st (~, y) =
snd (x, y) = y
p = (f s t p, sn d p)

Vc~,)3,7. V f : (~ - * 7 , g :~- -*7 , x : ~ , y : ~ , z : a + / 3 .
choose f g (i n l x) = f x
choose f g (inr y) = g y
(3 �9 : 4 . z = i.I ~) v (3 y : ~. z = i , , y)

V a, Pointed l3. V f : a ---, 13, x : 4, z : a j..
ext f fail = _L
ext f (lift z) = f z
(z = f a i O v(~:~ : ,~.z = l i ~)
f a i l < l i f t x

Fig. 2. Axioms

First, the x argument must be drawn from a lifted type, as produced by a d a t a
declaration, for example. As noted in Sect. 1.2, it is not sufficient for x merely to
be of pointed type. Secondly, the result type must be Poin ted as the evaluation
of the whole expression will not terminate if x is _L.

3.1 Axioms

The axioms of our language are given in Fig. 2. The first two groups, plus the
/3 and 0 rules for h-abstraction, are the usual axioms of a well-pointed carte-
sian closed category (that is, a category in which the axioms can be presented
element-wise).

The forms of the axioms demonstrate their origins. While the type construc-
tors 11, • and ---, are defined as right adjoints, + and (-)j_ are defined as left
adjoints, and so their axioms have a different structure.

P r o p o s i t i o n 1. The ax ioms o f Fig. 2 hold in the (general) C P O model.

A simple consequence is the following theorem:

V Poin ted c~. V z : a..1_ <_ x

That is, I is the least element of the types that have it.

4 P a r a m e t r i c i t y

So far, we have taken the types of the language and interpreted them as domains
in a fairly standard way. However, that 's not the ortly interpretation of types
that is interesting. In particular, types may be interpreted as relat ions between

210

I (~) g true
(A x B) (~) A A (fst~)AB (snd'~)

(A ~ B) (7) ~- V~. A (~) ~ B (7 ~)
(A + B) (~) ~= (~ . ~ = i . t~ ^ A (y)) V (3 ~ . ~ = i . ~ ^ B (~))

A~. (~) ~ (~ = T) V (B~.~= l i l t~AA (~))

where (h x)i ~ h x, and (f ~'), ~ f, xi

Fig. 3. Actions on relations

domains , i.e. as logical formulas. It is this relational interpretation of types that
allows us to derive the parametricity results.

The actions of the various type constructors on relations are given in Fig. 3.
The relations are defined inductively over vectors of elements drawn from the
corresponding types. If the vectors are all of length 1, then the relations sim-
ply define subsets. More commonly, we take the case where the vectors are of
length 2, giving binary relations.

The following result is standard.

P r o p o s i t i o n 2 . In any mode l sa t i s f y ing the a~:ioms o f Fig. 2, the ac t ions on
re la t ions preserve i den t i t y relat ions.

An action that preserves identity relations is said to be un i ta ry [10], or to
have the Identity Extension Property [11].

We can also add other base types, in particular fiat integers, etc, with their re-
lational action being an identity relation on that type. Then as a consequence of
this proposition, the relational interpretations of the types of primitive monomor-
phic constants will be theorems. This is not a great surprise: for example, the
binary relational interpretation of the type of +# is

V x l , x 2 , y l , y 2 : I n t # . X l : x2 ::*" (Yl = Y2 ::r Xl all-# Yl = x2 + # y2)

The real power of parametricity comes from polymorphic types. In the relational
interpretations of such types, free type variables 3 may stand for any relation
between any tuple of domains. The parametricity theorem [11] states that if all
the constants satisfy the relational interpretation, then so do all)~-expressions
built from them.

For example, suppose n is a A-expression with type V (~. (c~ --+ a) ~ c~ --. c~.
Then the following theorem holds:

V -ff . V A : R e l (-ff) . V -g : c~ ---* a , z : (~ . (Y ~ : ~. A ~ => A (-g ~)) =~ A -~ => A (n -g -~)

In other words, from its type alone we can tell that n satisfies some sort of
induction principle.

In our notation we have been using universal quantification as a sort of "recta-
notation" to emphasize which variables are free.

211

This much is standard. What is new here is a subclass of types, namely the
Pointed class. Now • has type V Pointed a. o~, and the relational interpretation
of this type is

V'5. V Pointed A : Rd(~). A(•

To achieve this, we define

Pointed A ~- A (i)

That is, applied to relations, the Pointed constraint specifies strictness.
The following extension of a standard result is easily verified.

P r o p o s i t i o n 3 . The relational interpretations of the types of the constants of
Fig. 1 are provable from the axioms of Fig. 2.

As a consequence, the parametricity theorem holds for any term of this cal-
culus, i.e. any term satisfies the formula that is its relational interpretation.

5 R e c u r s i v e F u n c t i o n s

To make our language useful, we must allow recursive functions. We introduce
a new constant

fix : V Pointed a. (~ ~ ol) ~ a

defined by the usual Kleene construction:

c o

f i x f ~ U k = f (.I_)

k=O

This definition makes sense only if the base type has a least element _L, hence
the Pointed restriction in the type.

This definition also requires a II operation on countable chains, i.e. tha t
the base domain is complete. Similarly, this operation must be preserved by
relations: if a relation A relates corresponding elements in a tuple of chains, it
must relate their lubs. That is, the relation must be inductive. We have chosen to
assume that all domains are complete, and so will also assume that all relations
are inductive. These properties are preserved by our type constructors and their
actions on relations. 4

Then, by construction, fix is parametric, i.e. it satisfies the relational inter-
pretation of its type:

V-~. V Pointed A: Rel(~). (V~: ~. A ~ =~ A (] ~)) ~ A(fix f)

This is just the familiar Scott-de Bakker induction rule.

4 Alternatively, we could have allowed any domains and relations, and introduced a
type class Complete for those that must be complete (and in the relational case,
inductive), but the additional complexity seems to bring little benefit. However, the
effort might be worthwhile in a specification language.

212

Now when we define functions, Poin ted constraints are placed only where
needed. Returning to the examples from the introduction, let us assume a unary
type constructor List . We shall discuss recursive type definitions in detail in
Sect. 7, but for now it suffices to note that since it is defined as a lifted sum,
Lis t o~ is Poin ted even if a is not. The function reverse is the fixed point of a
function of type

V a . (L i s t a ---* Lis t a) --. (L i s t c~ --~ Lis t c~)

Since Lis t a is always Pointed, so is Lis t a ~ Lis t a . Hence the inferred type of
r e v e r s e is

reverse : g a . L is t ~ --+ Lis t a

without any condition on a. Similarly, the type of fo ldr is

fo ldr : V ot, Po in ted ~. (o~ --+ fl --+ fl) --+/~ ~ L is t ot --+/3

which describes the desired property. This time the use of recursion relies on the
type/~ (but not a) being Pointed .

6 O p e r a t i o n a l I m p l i c a t i o n s

None of the earlier material forces any changes to the operational model. The
type system guarantees that we could implement unlifted types differently from
lifted types, but it does not require that we do. In effect, we could model an
element of an unpointed type by the corresponding element in the corresponding
pointed type, and lose nothing. All the reasoning ability from the forgoing is still
entirely valid.

However, we will claim that the semantically clean language we have pre-
sented is also ideal for the expression of such low-level concerns as sequencing
and unboxing. Peyton Jones and Launehbury [9] present a closely related sys-
tem, with the intention of describing when a value may be passed unboxed. It
turns out that our system provides a better vehicle for doing the same, and with
a greater degree of flexibility.

6.1 Unboxed Values

A value is said to be boxed if it represented by an indirection into the heap,
say, rather than being represented directly by an appropriate bit-pattern. In a
language like Haskell, there are three distinct reasons why values are boxed (that
is, placed in the heap and passed by reference). First, it may be more efficient to
pass around the address of a large data object than the object itself. Secondly, in
order to implement a polymorphic function as a single piece of generic code, the
values it manipulates must be packaged so that they all look the same. There
has been a lot of recent work on minimizing the boxing and unboxing of values
that arises in this way [7, 3, 14]. Finally, in lazy languages, arguments are not
to be evaluated until it is known that their results are required, so arguments

213

are passed as pointers to computations (so-called call-by-need). In order to use
the same function whether the arguments are already evaluated or not (perhaps
they were shared by some other computation which forced their evaluation) all
arguments must be passed boxed. It is the last of these that we will address here.

6.2 U n p o i n t e d Types and Unboxed Values

The semantic notion of unpointed types and the operational notion of unboxed
values are closely related: an expression of unpointed type must terminate, and
thus may be safely evaluated and represented by a value in weak head normal
form. Operationally this is just right: the value may be stored unboxed. If the
value has already been evaluated, then it cannot possibly be J_, so does not need
to live in a pointed domain.

This relationship was first explored by Peyton Jones and Launchbury [9].
They introduce a class of unboxed types corresponding to our unlifted types,
some primitive (e.g. unboxed integers), and others defined by the user using
unboxed data type declarations. Also as here, they model these types using
unpointed domains.

However, the big difference comes in the semantics of functions. Because
they do not track the use of recursion, they are forced to model a function
whose target is an unboxed type, by a function to the lifted version of that type.
So if g has type g : A --* B #, where B # is unboxed, the semantics models this
by a function A --* (B#• That is, unboxed values are manipulated in a special
strict sublanguage. This special treatment of unboxed types complicates the
semantics, but they were able to salvage the usual transformations by imposing
two restrictions on expressions, to be enforced by a modified type system:

1. An expression of unboxed type appearing as a function argument must be
in weak head normal form. Thus if f is a function f : B # ~ C, their lan-
guage does not permit the expression f (g x). Rather, g x must be explicitly
evaluated and bound to a variable, which may then be used as an argument.

2. Ordinary type variables cannot be instantiated to unboxed types.

However, once uses of recursion are recorded in the types, these restrictions van-
ish. One way of expressing the difference between the systems is that, whereas
their semantics introduced lifting to model functions to unboxed types, we re-
quire that lifting show up in the source language whenever it is actually needed,
so giving finer source-level control.

6.3 A n I m p l e m e n t a t i o n Scheme

The only way in which a value of lifted type t• can be constructed is by using lift;
the only way it can be scrutinized is by using ext. Operationally, lift corresponds
to a return, leaving an element of type t on the top of the stack or in appropriate
registers, depending on the convention of the actual implementation. (If this
value is potentially sharable, it must also be copied into the heap, updating

214

a boxed closure.) Similarly, ext corresponds to a context switch, going off to
evaluate its second argument. If evaluation of the argument terminates, it will
have performed a lift. Now ext can immediately (tail-) call its function argument,
passing it the explicit value that had just been returned.

This evaluation scheme is reminiscent of the continuation-passing style that
is rather effective for call-by-value computations [1]. More precisely, there is a
one-to-one correspondence between elements of a type t• and functions of type
V Pointed (~. (t --* a) --* a, given by the functions

v ~)~k. e z t k v f~ -* f lift

To implement choose requires some convention about the layout of sums. Perhaps
the tag is always the top word on the stack, for example. As choose operates
on a sum, its argument will already have been evaluated, so choose can simply
perform a branch on the basis of the tag.

6.4 Source-level Unboxing

Having outlined a possible implementation mechanism, we shall consider how we
can take advantage of it in practice. Fortunately there is a lot of direct experience
we can draw on here. As our mechanisms subsume the methods of Peyton Jones
and Launchbury, we can use all their techniques; techniques which are used in
practice every time the Glasgow Haskell compiler is used.

We will take two examples of the forms of optimization that can be achieved.
The first concerns removing repeated attempts at evaluation, the second shows
how to take advantage of simple strictness information.

At this point it is worth mentioning that it is not our intention that the
typical programmer should ever see any of this. Mostly it will be done within
the compiler. On the other hand, there are times when the programmer needs
control of data layout, particularly when writing library code, or time-critical
code. In such cases, the form of code presented here may be written by hand.

E l imina t ing R e p e a t e d A t t e m p t s at Evaluat ion. We may define a doubling
function as follows.

double : Int ~ Int

double x ~= x + x

When double is called, its argument is represented by a possibly unewluated
heap closure. When the body is evaluated, the plus function is entered. Because
+ requires its arguments, the first argument is entered, evaluated, and its value
extracted. Then the second argument is entered and, because it's already evalu-
ated, its value is returned directly. Clearly the second evaluation is unnecessary,
and one might hope that a clever code generator could spot this.

On the other hand, code generators are already rather complex, so offloading
extra functionality on to the code generator may not be a good idea. If instead
it is possible to express unboxing as a source to source transformation, then we
can move such optimizations to an earlier phase in the pipeline.

215

In the case above, for example, we could unfold the definition of + we gave
earlier to obtain

double : In t ~ l n t

double z ~- ez t (A u. e~t (A v. l i f t (u + # ,,)) ~)

Now we can appeal to a law satisfied by ext, namely that

ext (Au. ext (A v . f u v) x) x = ez t (A u . f u u) x

Tha t is, repeated scrutiny of a value can be replaced by a single one. Using this
law, we obtain

double : In t ---* In t

double x a_ ext (A u. l i f t (u + # u)) ~e

Now z is scrutinized just once, and its In t # component used twice.

W o r k e r s a n d W r a p p e r s . To see how source-level unboxing can be used to take
advantage of simple strictness analysis, consider the following iterative version
of the factorial function.

f a c t : I n t ~ In t ---* I n t

f a c t x n ~= i f z = = 0 t h e n n e lse f a c t (z - 1) (n * x)

Conventional strictness analysis tells us that f a c t was strict in each of its argu-
ments, that is f a c t x n = _L if either x or n is .L. This s tatement is not as useful
for program transformation as the following equivalent form using lifting:

f a c t z n = e~et (A u. ez t (A v. f a c t (l i f t u) (l i f t v)) n) x

This suggests a restructuring of f a c t into two functions: a wrapper (still called
f ac t) which evaluates and unboxes its arguments, and a worker (called f a c t #)
which received unboxed arguments and does the work. Such functions could be
produced entirely mechanically to give the following.

f a c t : I n t --* In t ~ In t

f a c t z n = e~et (A u. ez t (A v. f a c t # u v) n) z

f a c t # : In t # ---, I n t # ~ I n t
zx

f a c t # u v = i f l i f t u = = 0 t h e n lift v else f a c t (l i f t u - 1) (l i f t v �9 l i f t u)

In the body of f ac t # , the boxed versions of the arguments have simply been
reconstructed. So far we have gained nothing. But now, let's adopt the principle
that all wrappers are to be unfolded. After all, wrappers will be very short, non-
recursive functions, that is, they recurse via the worker which we do not intend
to unfold. In addition, let's suppose that all the "primitive" operations like - - ,
- , * and i f are also defined in terms of workers and wrappers. For example,

(= =) : In t ~ 1at ~ Bool
~x

m = = n = ext (A u. ext (A v. l i f t (u = = # v)) n) m

216

Unfolding the definition of =-- brings a use of ezt directly against an explicit
use of lift. From the axioms earlier the two cancel as follows:

ext f (lift u) = f u

Unfolding all the wrappers (including fact , and 0 whose wrapper is of the form
0 = lift 0"), and cancelling the explicit lifts yields the result:

f a c t " : I n t " ~ In t # ---, In t

f a c t " u v -~ i f f u = = " O" t h e n lift v else f a c t " (u - " I ') (v *" u)

So, on the initial call to fac t , the arguments are evaluated and unboxed. From
then on the computation proceeds without laziness, passing unboxed values to
the tail-recursion. Finally, once the function terminates, a lifted integer is re-
turned. If course the function may not terminate as z could have been negative.
In this case the result is .1_. If we had tried to avoid the final lifting on the result,
the type checker would object as we are using recursion--the result type must
be Poin ted .

6.5 P r o j e c t i o n - b a s e d S t r i c t n e s s Ana lys i s

Our explicit treatment of lifting is also suitable for exploiting the results of
projection-based strictness analysis [17]. For example, the image of the head-
strict projection on lists of integers is exactly the lists of unboxed integers. With
explicit lifting, this may be formalized by factoring projections as embedding-
projection pairs, as is done in a related paper [8].

7 Recursive Type Definitions

To complete the picture of the interaction between Poin t ed constraints and the
features of a typical functional language, we now consider recursively defined
types. The semantics of these types is customarily described using a colimit
construction [13]. That is, to construct the fixed point of a type constructor F,
one constructs the sequence of domains corresponding to 11, F 11, F (F 1) , . . . with
each domain embedded in the next. Usually, one assumes that all domains are
pointed, but to obtain these embeddings it suffices that F preserve Poin tedness .
Then the categorical colimit construction yields a P o i n t e d type PF, with a pair
of isomorphisms

i n r : F IAF ----4 PF
OUtF : IlF ----4 F t lF

The interesting case is where the recursive type has parameters. The following
treatment follows Pitts [10]. However, instead of assuming all types and relations
are pointed, we shall use the P o i n t e d constraint to keep track of exactly which
types are required to be pointed in Pitts 's proofs.

To sketch the general situation, we shall assume a single recursive type
with one parameter. The extension to mutual recursion and more parameters

217

is straightforward. To obtain the most general types [10], we first separate neg-
ative and positive occurrences of each variable, replacing each with a pair of
variables. Suppose F a - a + 13- 13+ is a type constructor, with a - and 13- oc-
curring negatively, and a + and 13+ occurring positively. The recursive type will
be #~, a - a +. As this type is constructed by iterating F and taking the colimit,
we need a condition C (either Pointed or nothing) such that

C a + A Pointed 13 + ~ Pointed (F a - a + 13- /3 +)

Note that negative arguments play no role in these constraints, as they are
ignored in the rule making ~ an instance of Pointed. The proofs of Pitts [10]
are easily extended to establish that for any such F and for any IT+ satisfying
17, the recursive type/ tF IT- IT+ exists and is Pointed. Moreover py is unitary,
and there is a domain interpretation for a pair of constants

inF : V IT - ,C IT+. F IT- IT+ (ttF IT+ IT-) (~ F IT- IT+) ""4 l-iF IT-- IT+
out F :VIT- ,17 IT+'~F IT- O•'l" ""+ F a - a + (I~F IT+ IT-) (I~F a - a +)

Further, these functions constitute an isomorphism pair, and satisfy the rela-
tional interpretations of their types (this is a form of structural induction).

For example, a language might allow definitions like

t ype Pointed IT ::*, Seq a ~ a x Seq IT
A

t ype List IT = (11 + a • List IT)•

describing infinite sequences and lists. In the former, the Pointed condition is
required in order to make the whole type pointed. On the other hand, the type
of lists is lifted, and is thus pointed without any condition on IT.

Another example is the recursive type used in the definition of the fiix function
as Curry's Y combinator:

t ype Pointed IT+ ~ A a - a + 13- 13+ a :13- --+IT+

fix : V Pointed a. (a ---* a) ~ a

fix f ~- z (ina z) wherez ~- ~ ix. f (ontA Z Z)

Here IT+ must be Pointed in order to make the recursive type Pointed, forcing the
constraint on the type of fiix. We could avoid the need for the Pointed constraint
in the type definition by lifting it, but then fiix must be defined using eixt, and ends
up with the same type as before. Both definitions yield fixed points. Together
with the parametricity property of this type, this uniquely determines fiix, so
these definitions are equivalent to Kleene's (see section 5).

8 A c k n o w l e d g e m e n t s

The fundamental ideas described in this paper have been around for a while.
Some years ago, Phil Wadler suggested that something like the system in this
paper might work.

218

We have benefited from discussions with Erik Meijer, and the paper has been
improved by feedback from T im Sheard, Andrew Tolmack and Andrew Moran.

After writing this paper, we became aware of the work of Brian Howard [4],
who uses an equivalent t rea tment of lifting and pointed types to describe a
language in which initial, final and retractive types co-exist.

References

1. Andrew A. Appel. Compiling with Continuations. Cambridge University Press,
1992.

2. Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques.
MIT Press, 1992.

3. Fritz Henglein and J. Jcrgensen. Formally optimal boxing. In ~lst ACM Syrup.
on Principles of Programming Languages, pages 213-226, Portland, OR., January
1994.

4. Brian T. Howard. Inductive, projective, and pointed types. In ACM Int. Conf. on
Functional Programming, Philadelphia, May 1996.

5. Paul Hudak, Simon Peyton Jones, Philip Wadler, et al. Report on the program-
ming language Haskell, a non-strict purely functional language (Version 1.2). SIG-
PLAN Notices, 27(5), March 1992.

6. Stefan Kaes. Parametric overloading in polymorphic programming languages. In
2nd European Syrup. on Programming, volume 300 of Lecture Notes in Computer
Science, pages 131-144. Springer, 1988.

7. Xavier Leroy. Unboxed objects and polymorphic typing. In 19th ACM Syrup. on
Principles of Programming Languages, pages 177-188, Albuquerque, NM, January
1992.

8. Ross Paterson. Compiling laziness using projections, October 1995. Draft.
9. Simon L. Peyton Jones and John Launchbury. Unboxed values as first class cit-

izens in a non-strict functional language. In Conf. on Functional Programming
Languages and Computer Architecture, pages 636-666, Cambridge, MA, 1991.

10. Andrew M. Pitts. Relational properties of domains. Information and Computa-
tion, to appear, 1996.

11. John C. Reynolds. Types, abstraction and parametric polymorphlsm. In lnforma.
tion Processing 83, pages 513-523. Elsevier, 1983.

12. David A. Schmidt. Denotational Semantics: A Methodology for Language Devel-
opment. Allyn and Bacon, 1986.

13. Mike B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recur-
sire domain equations. SIAM Journal on Computing, 11(4):761-783, 1982.

14. Peter J. Thiemann. Unboxed values and polymorphic typing revisited. In Conf. on
Functional Programming Languages and Computer Architecture'95, pages 24-35,
June 1995.

15. Philip Wadler. Theorems for free! In 4th Conf. on Functional Programming Lan-
guages and Computer Architecture, pages 347-359. IFIP, 1989.

16. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphlsm less ud-hoc.
In 16th ACM Syrup. on Principles of Programming Languages, pages 60-76, 1989.

17. Philip Wadler and John Hughes. Projections for strictness analysis. In Conf.
on Functional Programming Languages and Computer Architecture, volume 274 of
Lecture Notes in Computer Science, Portland, OR, 1987.

