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Abstract .  In lazy functional languages, .l. is typically an element of 
every type. While this provides great flexibility, it also comes at a cost. In 
this paper we explore the consequences of allowing unpointed types in a 
lazy functional language like HaskeU. We use the type (and class) system 
to keep track of pointedness, and show the consequences for parametricity 
and for controlling evaluation order and unboxing. 

1 I n t r o d u c t i o n  

Ever since Scott and others showed how to use pointed CPOs (i.e. with bottoms) 
to give meaning to general recursion, both over values (including functions), 
and over types themselves, functional languages seem to have been wedded to 
the concept. Languages like ttaskell [5] model types by appropriate CPOs and, 
because non-terminating computations can happen at any type, all the CPOs 
are pointed. This gives significant flexibility. In particular, values of any type 
may be defined using recursion. 

1.1 P a r a m e t r i c i t y  

There are associated costs, however. When reasoning about programs, one must 
also allow for the possibility of non-termination, even if a function is in fact total. 
Similarly, the general parametricity theorems that follow from polymorphic types 
(popularized by Wadler as "Theorems for Free" [15]) are rather weaker than in 
the pure simply-typed A-calculus. 

Parametricity was introduced by Reynolds to express the limits on behaviour 
that  polymorphism induces [11]. For example, a function that has the type 
V a. ot ---* a can do nothing interesting to its argument: it can only return it. 
However, in a language like Haskell in which 3_ is an element of every type, a 
function of type V a.  a ---* a could also ignore its argument, and call itself in 
infinite recursion, i.e. return .l.. To allow for this, parametricity results must 
be weakened; the usual treatment is to require that  all relations be strict (and 
inductive--if  elements of two chains are related, then so are their limits). For 
example, consider the following polymorphic typings in which the quantification 
is given explicitly: 

r eve r se  : V a .  L i s t  a --,  L i s t  a 

f o l d r  : V (x, ft.  (e~ ~ fl  ~ /3) --*/3 ~ L i s t  a --* fl  
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The parametricity theorem for reverse, in the simplified form where the relation 
is a function a, is 

reverse o map a = map a o reverse for a strict 

However, this assertion can easily be proved by induction without assuming 
strictness for a. 

Similarly, the parametricity theorem for foldr is 

b ( f  x y ) =  f '  ( a x ) ( b y ) ~ b o ( f o l d r f  c ) = f o l d r f '  ( b e ) o m a p a  
for a and b strict 

but, again, a direct proof requires only b to be strict. In each case the para- 
metricity theorem has given a significantly weaker result than a direct proof. 

1.2 Operational Issues 

There are also implementation costs associated with allowing all types to con- 
tain a bottom element. In a non-strict language, any expression that could be 
3_ cannot be evaluated before it is known to be needed. Hence arguments are 
boxed, that is passed as pointers to (delayed) computations. Then, even some- 
thing as straightforward as addition becomes costly: the arguments have to be 
evaluated, extracted, added, and reboxed. This compares rather poorly with a 
single machine instruction in C. 

The bottom element has also been used to give the programmer some control 
over evaluation order, and hence also over space behaviour. It is well known that 
if a function is strict, an argument whose type is either primitive or an algebraic 
data type may be safely pre-evaluated. Hence, some languages have a sequencing 
operator, such as strictify or seq, intended to force evaluation of one expression 
before going on to another. 

Unfortunately, an operator like seq is not as sensible for other argument 
types, even though they contain 3_. In the case of product types, seq would 
require some sort of interleaved evaluation; for function types this would be 
prohibitively expensive. Furthermore, because the implementation of such an 
operator depends to some extent on the argument type, it cannot be made 
polymorphic without weakening parametricity: all relations would have to be 
strict and bottom-reflecting. Optimization techniques that rely on parametricity 
would be lost. 

Efforts to extend this sequencing effect to other types tend to complicate 
the denotational description. For example, instead of true products, Haskell has 
lifted tuples whose evaluation may be forced. While products satisfy a simple 
set of equations, lifted tuples are more difficult to reason about. 

1.3 This Paper 

In this paper we show how modern domain theory may be used in practice to 
influence the design of a lazy programming language like Haskell. In particular, 
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we will not accept that 2_ is an element of every type, but will allow unpointed 
domains also. When recursion is used, that fact will be recorded in the type, 
stating which type parameters must be pointed. 

There are two major consequences of all this. First, parametricity is repaired 
and returns to its former glory. When recursion is not used, there is no strictness 
side-condition on the theorems. Secondly, unpointed types can be used to control 
both evaluation order and unboxing of values, subsuming earlier work by Peyton 
Jones and Launchbury [9]. 

2 P o i n t e d  a n d  U n p o i n t e d  D o m a i n s  

Domain theory was developed originally in order to provide solutions to recursive 
domain equations. Such solutions are needed to model the untyped A-calculus, 
but also for recursively-defined data types in languages like Haskell and ML. As 
these solutions always exist for equations over pointed CPOs, the theory is often 
presented in exactly that framework. 

It has long been noted that this makes for an asymmetrical category: domains 
are required to have a least element, but functions need not preserve it. As a 
consequence a number of constructions fail, the most important being sums. 
The theory of pointed CPOs comes equipped with two kinds of sum: coalesced 
sum, in which the bottom elements of the summands are merged; and separated 
sum, in which a completely fresh bottom element is introduced. Unfortunately, 
neither of these is a true (categorical) sum. The first introduces "confusion", the 
second contains "junk". 

However, plain CPOs (that is, CPOs which do not necessarily have bottom 
elements, of which sets are a special case) do possess a categorical sum, namely 
the disjoint union of a pair of CPOs. The two summands are independent of 
each other and no extra elements have been introduced. Notice however that, as 
all domains are non-empty, a sum domain cannot have a bottom element. 

CPOs also combine very well with the rest of domain theory, so long as 
recursive-domain equations (and recursive values likewise) are restricted. We 
shall give a brief account here; details may be found in standard texts [12, 2], 

The first thing to note is that the category is still cartesian closed. That 
is, the one-point domain is terminal: for each other domain there is exactly 
one function from that domain to the one-point domain; products are built by 
cartesian product as before, with each component of the product completely 
independent of the other; and function spaces are constructed exactly as before, 
with currying an isomorphism. All this is the same as in the category of pointed 
CPOs. 

The earlier separated sum, so widely used for data types in languages like 
Haskell, can be viewed as a categorical sum followed by an additional operation 
called lifting, which adds a fresh bottom element to a domain. Thus a data type 
definition like 

da t a  Univ -~ Ch Char [ Nu Inl 
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():1 
/st : v~ ,8 . (~  x 8) --. 
snd : V a,  8. (a  x 8) "~ 8 
(,) : v o , , 8 . , ~  ~ 8 ---* (o, x 8 )  

inl:  V a , 8 .  a ---* (a + 8)  
inr:  V a , 8 . 8  ~ (a + 8)  
choose: V ,~, 8, 7. (,~ - ~,) - (8 --+ 7) - - .  (,~ + 8) ~ "r 

fai l :  V a . a •  
lift: Va.a  --* aa. 
ext: Ya, Poin tedS .  (a  ~ t3) ~ aj .  --* 8 

_1_ : V Pointed ~. 

Fig. 1. Constants 

will be modelled by the domain (abusing notation slightly): 

Univ '= ( C h a r  + In t )  j. 

This lifting construction also arises naturally, as the left adjoint of the (implicit) 
inclusion of the subcategory of pointed CPOs and strict functions. 

This is all rather pleasant from a categorical perspective, because the five 
domain constructions above arise directly from adjunctions. What  this means 
in practice is that  the operations satisfy a rich and clean set of algebraic laws, 
making reasoning about them easier than if the laws were clouded with special 
cases and side-conditions. 

A lazy functional language may be viewed as a form of the meta-language 
used in denotational semantics to talk about this category of CPOs. In the 
following, we shall introduce a tiny language of this sort. 

3 P o i n t e d  a n d  U n p o i n t e d  T y p e s  

We shall consider a typed A-calculus with the following types: 

t : : = l l l t x t  I t - - * t  I t + t  [ t x  I s  

where a and other Greek letters are type variables. We shall not discuss ex- 
plicit le t  polymorphism here, but the extension to include that  case is entirely 
standard. 

The first three type constructors are those of a cartesian closed category. As 
in the previous section, in the CPO model, the type 11 consists of a single value, 
x constructs products, and ~ constructs function spaces. The last two type 
constructors yield disjoint union and lifting. 

The constants of our language, and their types, are given in Fig. 1. The type 
a•  includes a primitive non-terminating value fail .  
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Some types are qualified by a Pointed condition, indicating that  they have 
a least element I .  We can describe this class, and when the type constructors 
construct types that  belong to it, with the following pseudo-Haskell: 

c l a s s  Pointed c~ w h e r e  • : 

i n s t a n c e  Pointed II w h e r e  • ~ 0 

i n s t a n c e  Pointed ~ A Pointed fl ~ Pointed (~ • fl) w h e r e  • -~ (• • 

i n s t a n c e  Pointed 13 ~ Pointed (a  .--* 13) w h e r e  • x ~ _l_~ 

i n s t a n c e  Pointed ~ •  w h e r e  • ~ fai l  

Note that  a sum type is never Pointed. Also note that  lifted types and Pointed 
types are not the same thing. All lifted types are Pointed but, while products of 
Pointed types are Pointed, they are not lifted. 

With these definitions and rules, the Pointed restrictions are inferred by the 
usual Haskell algorithm [6, 16]. 

Functions that analyse a lifted type are defined using ext, and thus have a 
Pointed  result. For example, suppose that the type of lifted integers Int  is defined 
to be In t# •  where Int  # is the type representing the (unlifted) set of integers. 
Then a primitive addition function, say 

(+#) : I n t  # -- ,  I n t #  ~ I n t  # 

operating on unlifted integers would be extended to the type of lifted integers 
as follows: 

(+) : Int  ~ Int  ~ Int  

x + u g u. v. tilt (u +" U) 

That  is, the arguments to + are "evaluated" using ext, then their values are 
extracted and added together by +#.  Finally, the result of the addition is lifted, 
to make the result an element of the type of lifted integers. The type system 
would prohibit a function which attempted to return an unlifted integer, as the 
result type of ext must be pointed. 

Similarly, the Haskell case operation on lifted sums is given by 

case: V a ,  13, Pointed 7. (a  --+ 7) --* (/3 ~ 7) --* (~ +/3)• ~ 7 
case f g x a= ext (choose f g) x 

Of course, the full case  construct is much richer, allowing nested pattern match- 
ing with guards. What  we have here corresponds to the simplified version from 
Haskell's core language. 

We can also use ext to define a polymorphic seq operation, as follows. 

seq : V a,  Pointed 13. a.t. ~ fl ~ fl 

seq x y ~ ezt ( )~ u. y) x 

The argument x is evaluated and if it is non-• its value is thrown away by the 
constant function which returns y. Notice the restrictions on the type of seq. 
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Vx:  :l.x = 0 

Va,# .V~ :a ,  y : # , p : a x # .  
/st (~, y) = 
snd (x, y) = y 
p = ( f s t  p, sn d  p)  

Vc~,)3,7. V f : ( ~ - * 7 ,  g :~- -*7 ,  x : ~ ,  y : ~ ,  z : a + / 3 .  
choose f g ( i n l x )  = f x 
choose f g (inr y) = g y 
(3 �9 : 4 .  z = i.I ~) v (3 y :  ~. z = i , ,  y )  

V a, Pointed l3. V f : a ---, 13, x : 4, z : a j.. 
ext f fail  = _L 
ext f (lift z) = f z 
( z  = f a i O  v(~:~  : ,~.z = l i ~ )  
f a i l  < l i f t  x 

Fig. 2. Axioms 

First, the x argument must be drawn from a lifted type, as produced by a d a t a  
declaration, for example. As noted in Sect. 1.2, it is not sufficient for x merely to 
be of pointed type. Secondly, the result type must be Poin ted  as the evaluation 
of the whole expression will not terminate if x is _L. 

3.1 Axioms  

The axioms of our language are given in Fig. 2. The first two groups, plus the 
/3 and 0 rules for h-abstraction, are the usual axioms of a well-pointed carte- 
sian closed category (that is, a category in which the axioms can be presented 
element-wise). 

The forms of the axioms demonstrate their origins. While the type construc- 
tors 11, • and ---, are defined as right adjoints, + and (-)j_ are defined as left 
adjoints, and so their axioms have a different structure. 

P r o p o s i t i o n  1. The ax ioms  o f  Fig. 2 hold in the (general)  C P O  model. 

A simple consequence is the following theorem: 

V Poin ted  c~. V z : a..1_ <_ x 

That  is, I is the least element of the types that  have it. 

4 P a r a m e t r i c i t y  

So far, we have taken the types of the language and interpreted them as domains 
in a fairly standard way. However, that 's  not the ortly interpretation of types 
that is interesting. In particular, types may be interpreted as relat ions  between 
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I (~) g true 
(A x B) (~) A A (fst~)AB (snd'~) 

(A ~ B) (7) ~- V~. A (~) ~ B (7 ~) 
(A + B) (~) ~= ( ~ . ~ =  i . t~  ^ A (y)) V ( 3 ~ . ~ =  i . ~ ^ B  (~)) 

A~. (~) ~ ( ~ =  T) V (B~.~= l i l t~AA (~)) 

where (h x)i ~ h x, and ( f  ~'), ~ f, xi 

Fig. 3. Actions on relations 

domains ,  i.e. as logical formulas. It is this relational interpretation of types that  
allows us to derive the parametricity results. 

The actions of the various type constructors on relations are given in Fig. 3. 
The relations are defined inductively over vectors of elements drawn from the 
corresponding types. If the vectors are all of length 1, then the relations sim- 
ply define subsets. More commonly, we take the case where the vectors are of 
length 2, giving binary relations. 

The following result is standard. 

P r o p o s i t i o n 2 .  In  any  mode l  sa t i s f y ing  the a~:ioms o f  Fig. 2, the ac t ions  on 
re la t ions  preserve  i den t i t y  relat ions.  

An action that  preserves identity relations is said to be un i ta ry  [10], or to 
have the Identity Extension Property [11]. 

We can also add other base types, in particular fiat integers, etc, with their re- 
lational action being an identity relation on that  type. Then as a consequence of 
this proposition, the relational interpretations of the types of primitive monomor- 
phic constants will be theorems. This is not a great surprise: for example, the 
binary relational interpretation of the type of +#  is 

V x l , x 2 ,  y l , y 2  : I n t # . X l  : x2 ::*" (Yl = Y2 ::r Xl all-# Yl = x2 + #  y2) 

The real power of parametricity comes from polymorphic types. In the relational 
interpretations of such types, free type variables 3 may stand for any relation 
between any tuple of domains. The parametricity theorem [11] states that  if all 
the constants satisfy the relational interpretation, then so do all )~-expressions 
built from them. 

For example, suppose n is a A-expression with type V (~. (c~ --+ a)  ~ c~ --. c~. 
Then the following theorem holds: 

V -ff . V A : R e l (-ff ) . V -g : c~ ---* a , z : (~ . ( Y ~ : ~.  A ~ => A (-g ~ ) ) =~ A -~ => A ( n -g -~ ) 

In other words, from its type alone we can tell that  n satisfies some sort of 
induction principle. 

In our notation we have been using universal quantification as a sort of "recta- 
notation" to emphasize which variables are free. 
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This much is standard. What  is new here is a subclass of types, namely the 
Pointed class. Now • has type V Pointed a. o~, and the relational interpretation 
of this type is 

V'5. V Pointed A : Rd(~). A(•  

To achieve this, we define 

Pointed A ~- A ( i )  

That  is, applied to relations, the Pointed constraint specifies strictness. 
The following extension of a standard result is easily verified. 

P r o p o s i t i o n 3 .  The relational interpretations of the types of the constants of 
Fig. 1 are provable from the axioms of Fig. 2. 

As a consequence, the parametricity theorem holds for any term of this cal- 
culus, i.e. any term satisfies the formula that  is its relational interpretation. 

5 R e c u r s i v e  F u n c t i o n s  

To make our language useful, we must allow recursive functions. We introduce 
a new constant 

fix : V Pointed a. (~ ~ ol) ~ a 

defined by the usual Kleene construction: 

c o  

f i x f ~ U  k = f (.I_) 

k=O 

This definition makes sense only if the base type has a least element _L, hence 
the Pointed restriction in the type. 

This definition also requires a II operation on countable chains, i.e. tha t  
the base domain is complete. Similarly, this operation must be preserved by 
relations: if a relation A relates corresponding elements in a tuple of chains, it 
must relate their lubs. That  is, the relation must be inductive. We have chosen to 
assume that  all domains are complete, and so will also assume that  all relations 
are inductive. These properties are preserved by our type constructors and their 
actions on relations. 4 

Then, by construction, fix is parametric, i.e. it satisfies the relational inter- 
pretation of its type: 

V-~. V Pointed A:  Rel(~). (V~: ~. A ~ =~ A ( ]  ~)) ~ A(fix f )  

This is just  the familiar Scott-de Bakker induction rule. 

4 Alternatively, we could have allowed any domains and relations, and introduced a 
type class Complete for those that must be complete (and in the relational case, 
inductive), but the additional complexity seems to bring little benefit. However, the 
effort might be worthwhile in a specification language. 
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Now when we define functions, Poin ted  constraints are placed only where 
needed. Returning to the examples from the introduction, let us assume a unary 
type constructor List .  We shall discuss recursive type definitions in detail in 
Sect. 7, but for now it suffices to note that since it is defined as a lifted sum, 
Lis t  o~ is Poin ted  even if a is not. The function reverse is the fixed point of a 
function of type 

V a .  (L i s t  a ---* Lis t  a )  --. (L i s t  c~ --~ Lis t  c~) 

Since Lis t  a is always Pointed,  so is Lis t  a ~ Lis t  a .  Hence the inferred type of 
r e v e r s e  is 

reverse : g a .  L is t  ~ --+ Lis t  a 

without any condition on a. Similarly, the type of fo ldr  is 

fo ldr  : V ot, Po in ted  ~. (o~ --+ fl --+ fl) --+/~ ~ L is t  ot --+/3 

which describes the desired property. This time the use of recursion relies on the 
type/~ (but not a) being Pointed .  

6 O p e r a t i o n a l  I m p l i c a t i o n s  

None of the earlier material forces any changes to the operational model. The 
type system guarantees that we could implement unlifted types differently from 
lifted types, but it does not require that we do. In effect, we could model an 
element of an unpointed type by the corresponding element in the corresponding 
pointed type, and lose nothing. All the reasoning ability from the forgoing is still 
entirely valid. 

However, we will claim that the semantically clean language we have pre- 
sented is also ideal for the expression of such low-level concerns as sequencing 
and unboxing. Peyton Jones and Launehbury [9] present a closely related sys- 
tem, with the intention of describing when a value may be passed unboxed. It 
turns out that our system provides a better vehicle for doing the same, and with 
a greater degree of flexibility. 

6.1 Unboxed  Values 

A value is said to be boxed if it represented by an indirection into the heap, 
say, rather than being represented directly by an appropriate bit-pattern. In a 
language like Haskell, there are three distinct reasons why values are boxed (that 
is, placed in the heap and passed by reference). First, it may be more efficient to 
pass around the address of a large data object than the object itself. Secondly, in 
order to implement a polymorphic function as a single piece of generic code, the 
values it manipulates must be packaged so that they all look the same. There 
has been a lot of recent work on minimizing the boxing and unboxing of values 
that arises in this way [7, 3, 14]. Finally, in lazy languages, arguments are not 
to be evaluated until it is known that their results are required, so arguments 
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are passed as pointers to computations (so-called call-by-need). In order to use 
the same function whether the arguments are already evaluated or not (perhaps 
they were shared by some other computation which forced their evaluation) all 
arguments must be passed boxed. It is the last of these that  we will address here. 

6.2 U n p o i n t e d  Types and Unboxed  Values 

The semantic notion of unpointed types and the operational notion of unboxed 
values are closely related: an expression of unpointed type must terminate, and 
thus may be safely evaluated and represented by a value in weak head normal 
form. Operationally this is just right: the value may be stored unboxed. If the 
value has already been evaluated, then it cannot possibly be J_, so does not need 
to live in a pointed domain. 

This relationship was first explored by Peyton Jones and Launchbury [9]. 
They introduce a class of unboxed types corresponding to our unlifted types, 
some primitive (e.g. unboxed integers), and others defined by the user using 
unboxed data type declarations. Also as here, they model these types using 
unpointed domains. 

However, the big difference comes in the semantics of functions. Because 
they do not track the use of recursion, they are forced to model a function 
whose target is an unboxed type, by a function to the lifted version of that  type. 
So if g has type g : A --* B #, where B # is unboxed, the semantics models this 
by a function A --* (B#• That  is, unboxed values are manipulated in a special 
strict sublanguage. This special treatment of unboxed types complicates the 
semantics, but they were able to salvage the usual transformations by imposing 
two restrictions on expressions, to be enforced by a modified type system: 

1. An expression of unboxed type appearing as a function argument must be 
in weak head normal form. Thus if f is a function f : B # ~ C, their lan- 
guage does not permit the expression f (g x). Rather, g x must be explicitly 
evaluated and bound to a variable, which may then be used as an argument. 

2. Ordinary type variables cannot be instantiated to unboxed types. 

However, once uses of recursion are recorded in the types, these restrictions van- 
ish. One way of expressing the difference between the systems is that,  whereas 
their semantics introduced lifting to model functions to unboxed types, we re- 
quire that  lifting show up in the source language whenever it is actually needed, 
so giving finer source-level control. 

6.3 A n  I m p l e m e n t a t i o n  Scheme 

The only way in which a value of lifted type t• can be constructed is by using lift; 
the only way it can be scrutinized is by using ext. Operationally, lift corresponds 
to a return, leaving an element of type t on the top of the stack or in appropriate 
registers, depending on the convention of the actual implementation. (If this 
value is potentially sharable, it must also be copied into the heap, updating 
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a boxed closure.) Similarly, ext corresponds to a context switch, going off to 
evaluate its second argument. If evaluation of the argument terminates, it will 
have performed a lift. Now ext can immediately (tail-) call its function argument, 
passing it the explicit value that had just been returned. 

This evaluation scheme is reminiscent of the continuation-passing style that 
is rather effective for call-by-value computations [1]. More precisely, there is a 
one-to-one correspondence between elements of a type t• and functions of type 
V Pointed  (~. (t --* a) --* a, given by the functions 

v ~ )~k. e z t k  v f~ -*  f lift 

To implement choose requires some convention about the layout of sums. Perhaps 
the tag is always the top word on the stack, for example. As choose operates 
on a sum, its argument will already have been evaluated, so choose can simply 
perform a branch on the basis of the tag. 

6.4 Source-level Unboxing 

Having outlined a possible implementation mechanism, we shall consider how we 
can take advantage of it in practice. Fortunately there is a lot of direct experience 
we can draw on here. As our mechanisms subsume the methods of Peyton Jones 
and Launchbury, we can use all their techniques; techniques which are used in 
practice every time the Glasgow Haskell compiler is used. 

We will take two examples of the forms of optimization that can be achieved. 
The first concerns removing repeated attempts at evaluation, the second shows 
how to take advantage of simple strictness information. 

At this point it is worth mentioning that it is not our intention that the 
typical programmer should ever see any of this. Mostly it will be done within 
the compiler. On the other hand, there are times when the programmer needs 
control of data layout, particularly when writing library code, or time-critical 
code. In such cases, the form of code presented here may be written by hand. 

E l imina t ing  R e p e a t e d  A t t e m p t s  at  Evaluat ion.  We may define a doubling 
function as follows. 

double : Int  ~ Int  

double x ~= x + x 

When double is called, its argument is represented by a possibly unewluated 
heap closure. When the body is evaluated, the plus function is entered. Because 
+ requires its arguments, the first argument is entered, evaluated, and its value 
extracted. Then the second argument is entered and, because it's already evalu- 
ated, its value is returned directly. Clearly the second evaluation is unnecessary, 
and one might hope that a clever code generator could spot this. 

On the other hand, code generators are already rather complex, so offloading 
extra functionality on to the code generator may not be a good idea. If instead 
it is possible to express unboxing as a source to source transformation, then we 
can move such optimizations to an earlier phase in the pipeline. 



215 

In the case above, for example, we could unfold the definition of + we gave 
earlier to obtain 

double : In t  ~ l n t  

double z ~- ez t  (A u. e~t (A v. l i f t  (u  + #  ,,)) ~)  

Now we can appeal to a law satisfied by ext, namely that  

ext  (Au. ext  ( A v . f  u v) x) x = ez t  ( A u . f  u u) x 

Tha t  is, repeated scrutiny of a value can be replaced by a single one. Using this 
law, we obtain 

double : In t  ---* In t  

double x a_ ext  (A u. l i f t  (u  + #  u) )  ~e 

Now z is scrutinized just once, and its In t  # component used twice. 

W o r k e r s  a n d  W r a p p e r s .  To see how source-level unboxing can be used to take 
advantage of simple strictness analysis, consider the following iterative version 
of the factorial function. 

f a c t  : I n t  ~ In t  ---* I n t  

f a c t  x n ~= i f  z = =  0 t h e n  n e lse  f a c t  ( z  - 1) (n * x) 

Conventional strictness analysis tells us that  f a c t  was strict in each of its argu- 
ments, that  is f a c t  x n = _L if either x or n is .L. This s tatement is not as useful 
for program transformation as the following equivalent form using lifting: 

f a c t  z n = e~et (A u. ez t  (A v. f a c t  ( l i f t  u)  ( l i f t  v ) )  n)  x 

This suggests a restructuring of f a c t  into two functions: a wrapper (still called 
f ac t )  which evaluates and unboxes its arguments, and a worker (called f a c t  # )  
which received unboxed arguments and does the work. Such functions could be 
produced entirely mechanically to give the following. 

f a c t  : I n t  --* In t  ~ In t  

f a c t  z n = e~et (A u. ez t  (A v. f a c t  # u v)  n )  z 

f a c t  # : In t  # ---, I n t  # ~ I n t  
zx 

f a c t  # u v = i f  l i f t  u = =  0 t h e n  lift  v else  f a c t  ( l i f t  u - 1) ( l i f t  v �9 l i f t  u )  

In the body of f ac t  # , the boxed versions of the arguments have simply been 
reconstructed. So far we have gained nothing. But now, let's adopt the principle 
that  all wrappers are to be unfolded. After all, wrappers will be very short, non- 
recursive functions, that is, they recurse via the worker which we do not intend 
to unfold. In addition, let's suppose that  all the "primitive" operations like - - ,  
- ,  * and i f  are also defined in terms of workers and wrappers. For example, 

( = = )  : In t  ~ 1at ~ Bool  
~x 

m = =  n = ext  (A u. ext  (A v.  l i f t  (u  = = #  v)) n) m 
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Unfolding the definition of =--  brings a use of ezt directly against an explicit 
use of lift. From the axioms earlier the two cancel as follows: 

ext f (lift u) = f u 

Unfolding all the wrappers (including fact ,  and 0 whose wrapper is of the form 
0 = lift 0"), and cancelling the explicit lifts yields the result: 

f a c t "  : I n t "  ~ In t  # ---, In t  

f a c t "  u v -~ i f f  u = = "  O" t h e n  lift v else f a c t "  (u  - "  I ' )  (v *" u) 

So, on the initial call to fac t ,  the arguments are evaluated and unboxed. From 
then on the computation proceeds without laziness, passing unboxed values to 
the tail-recursion. Finally, once the function terminates, a lifted integer is re- 
turned. If course the function may not terminate as z could have been negative. 
In this case the result is .1_. If we had tried to avoid the final lifting on the result, 
the type checker would object as we are using recursion--the result type must 
be Poin ted .  

6.5 P r o j e c t i o n - b a s e d  S t r i c t n e s s  Ana lys i s  

Our explicit treatment of lifting is also suitable for exploiting the results of 
projection-based strictness analysis [17]. For example, the image of the head- 
strict projection on lists of integers is exactly the lists of unboxed integers. With 
explicit lifting, this may be formalized by factoring projections as embedding- 
projection pairs, as is done in a related paper [8]. 

7 Recursive Type Definitions 

To complete the picture of the interaction between Poin t ed  constraints and the 
features of a typical functional language, we now consider recursively defined 
types. The semantics of these types is customarily described using a colimit 
construction [13]. That  is, to construct the fixed point of a type constructor F,  
one constructs the sequence of domains corresponding to 11, F 11, F ( F  1 ) , . . .  with 
each domain embedded in the next. Usually, one assumes that  all domains are 
pointed, but to obtain these embeddings it suffices that  F preserve Poin tedness .  
Then the categorical colimit construction yields a P o i n t e d  type PF, with a pair 
of isomorphisms 

i n r  : F IAF ----4 PF 
OUtF : IlF ----4 F t lF 

The interesting case is where the recursive type has parameters. The following 
treatment follows Pitts [10]. However, instead of assuming all types and relations 
are pointed, we shall use the P o i n t e d  constraint to keep track of exactly which 
types are required to be pointed in Pitts 's proofs. 

To sketch the general situation, we shall assume a single recursive type 
with one parameter. The extension to mutual recursion and more parameters 
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is straightforward. To obtain the most general types [10], we first separate neg- 
ative and positive occurrences of each variable, replacing each with a pair of 
variables. Suppose F a -  a + 13- 13+ is a type constructor, with a -  and 13- oc- 
curring negatively, and a + and 13+ occurring positively. The recursive type will 
be #~, a -  a +. As this type is constructed by iterating F and taking the colimit, 
we need a condition C (either Pointed or nothing) such that 

C a + A Pointed 13 + ~ Pointed ( F  a -  a + 13- /3 +) 

Note that negative arguments play no role in these constraints, as they are 
ignored in the rule making ~ an instance of Pointed. The proofs of Pitts [10] 
are easily extended to establish that for any such F and for any IT+ satisfying 
17, the recursive type/ tF IT- IT+ exists and is Pointed. Moreover py is unitary, 
and there is a domain interpretation for a pair of constants 

inF : V IT - ,C  IT+. F IT- IT+ (ttF IT+ IT-) ( ~ F  IT- IT+) ""4 l-iF IT-- IT+ 
out  F :VIT- ,17  IT+'~F IT- O•'l" ""+ F a -  a + (I~F IT+ IT-) (I~F a -  a +) 

Further, these functions constitute an isomorphism pair, and satisfy the rela- 
tional interpretations of their types (this is a form of structural induction). 

For example, a language might allow definitions like 

t ype  Pointed IT ::*, Seq a ~ a x Seq IT 
A 

t ype  List IT = (11 + a • List  IT)• 

describing infinite sequences and lists. In the former, the Pointed condition is 
required in order to make the whole type pointed. On the other hand, the type 
of lists is lifted, and is thus pointed without any condition on IT. 

Another example is the recursive type used in the definition of the fiix function 
as Curry's Y combinator: 

t ype  Pointed IT+ ~ A a -  a + 13- 13+ a :13- --+IT+ 

fix : V Pointed a. (a ---* a)  ~ a 

fix f ~- z ( ina z) wherez  ~- ~ ix. f (ontA Z Z) 

Here IT+ must be Pointed in order to make the recursive type Pointed, forcing the 
constraint on the type of fiix. We could avoid the need for the Pointed constraint 
in the type definition by lifting it, but then fiix must be defined using eixt, and ends 
up with the same type as before. Both definitions yield fixed points. Together 
with the parametricity property of this type, this uniquely determines fiix, so 
these definitions are equivalent to Kleene's (see section 5). 

8 A c k n o w l e d g e m e n t s  

The fundamental ideas described in this paper have been around for a while. 
Some years ago, Phil Wadler suggested that something like the system in this 
paper might work. 
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We have benefited from discussions with Erik Meijer, and the paper  has been 
improved by feedback from T im Sheard, Andrew Tolmack and Andrew Moran. 

After writing this paper,  we became aware of the work of Brian Howard [4], 
who uses an equivalent t rea tment  of lifting and pointed types to describe a 
language in which initial, final and retractive types co-exist. 
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