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Abstract. We consider how mode (such as input and output) and ter- 
mination properties of typed higher-order constraint logic programming 
languages may be declared and checked effectively. The systems that we 
present have been validated through an implementation and numerous 
case studies. 

1 I n t r o d u c t i o n  

Just like other paradigms logic programming benefits tremendously from types. 
Perhaps most importantly, types Mlow the early detection of errors when a pro- 
gram is checked against a type specification. With some notable exceptions most 
type systems proposed for logic programming languages to date (see [18]) are 
concerned with the declarative semantics of programs, for example, in terms of 
many-sorted, order-sorted, or higher-order logic. Operational properties of logic 
programs which are vital for their correctness can thus neither be expressed nor 
checked and errors will remain undetected. 

In this paper we consider how the declaration and checking of mode (such as 
input and output) and t e rmina t ion  properties of logic programs may be extended 
to the typed higher-order logic case. While we do not cast our proposal as a 
type system in the traditional sense, our design choices were motivated by the 
desirable characteristics of type systems. In particular, it should be uniform, 
intuitive, concise and efficiently decidable. Furthermore, relatively few natural 
and correct programs should be rejected as ill-moded or non-terminating. 

We present a system for mode and termination properties of Elf programs. 
Elf [17] is a higher-order constraint logic programming language based on the LF 
logical framework. Although Elf encompasses pure Prolog, it has been designed 
as a recta-language for the specification, implementation, and meta-theory of 
programming languages and logics. We have validated our system through an 
implementation and post-hoc analysis of numerous existing case studies from 
this domain. 

Elf includes dependently typed higher-order functions and proof objects to 
represent the abstract syntax and semantic judgments of many object languages 
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in a concise and natural manner. The presence of these features presents a chal- 
lenge, but  also provides an opportunity. The challenge is to extend previous work 
on modes (see, e.g., [10, 4, 7, 25, 27]) and termination (see, e.g., [24, 1]) to deal 
with types and higher-order constraint simplification. On the other hand it turns 
out that  we can take advantage of the already very expressive underlying type 
structure in our analysis. In order to concentrate our effort on higher-order terms 
and dependent types, we employ very basic but  practical notions for modes and 
termination criteria. 

The principal contributions of this paper are practical systems for mode and 
termination analysis of higher-order logic programs in Elf. Their  correctness 
proofs are only sketched in this paper. In addition we outline a success continu- 
ation passing semantics for Elf and present a subterm ordering for higher-order 
terms which may be of independent interest. We expect a minor variation of 
these systems to be applicable to AProlog [15]. 

The remainder of the paper is organized as follows. We introduce the Logical 
Framework, Elf, and a sketch of its operational semantics based on success con- 
tinuations in Section 2. Mode analysis, including a mode-checking system for Elf 
programs is presented in Section 3. Next we consider a subterm order for higher- 
order terms and outline a termination checker for Elf programs in Section 4. We 
discuss pragmatic aspects of our implementation and provide an assessment in 
Section 5. In the conclusion we discuss some related and future work. 

2 T h e  L o g i c a l  F r a m e w o r k  a n d  E l f  

We give a brief introduction to the Logical Framework, the theory on which Elf 
is based. After an overview of Elf we present some sample programs and a formal 
execution model for the Elf interpreter. 
Log ica l  F r a m e w o r k .  The Logical Framework (LF) [6] is a calculus of dependent 
types consisting of three staged syntactic levels. 

Kinds : K ::= type I I Ix :A .K  
Types : A ::= a M1 . . .  M ,  I IIx:A1.A2 
Objects : M ::= c I x I ~x:A.M I M1 M2 
Signatures : E ::= �9 I 2Y, a : K I ~U, c : A 
Contexts :  F : : = - I F ,  x : A  

Here IIx:A1.A2 denotes the dependent function type or dependent product:  the 
type A2 may depend upon an object x of type A1. Whenever x does not occur 
free in A~ we may abbreviate IIx:A1.A2 as A1 --* A2. In the grammar above, 
a and c stand for type families and object constants, respectively. They are 
introduced through a signature. Below we assume that  we have fixed a signature 
2Y. The types of free variables in a term M are provided by a context. 

The following principal judgments characterize the LF type theory [6]: 

F ~-~: M = M ~ : A and F ~-~ A - A ~ : type - -  type and object equivalences; 
~" E ,  b-~ F,  and F ~-~ K - -  the validity of signatures, contexts and kinds; 
F b~ A : K and/~  ~-~ M : A - -  assigning kinds to types and types to objects. 
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The  equivalence = is equality modulo f~r/-conversion. We will rely on the fact 
tha t  canonical (i.e., long/~r/-normal) forms of LF objects are computable and 
that  equivalent LF objects have the same canonical form up to c~-conversion. 
We assume that  a constant may be declared at most once in a signature and 
a variable at most once in a context, employing implicit renaming of bound 
variables in cases where this assumption would be violated. We also generally 
assume that  all signatures and contexts are valid. Similarly, we write [N/x]M 
and [N/x]A for capture-avoiding substitution in an object or type. We define the 
head of a type hd(Ilxl:A1 . . . .  llxm:A,n.a M1. . .  114,) as a. Since types of valid 
objects are unique up to/37/-conversion we sometimes write AM for the canonical 
type of M. 
Elf .  Using the propositions-as-types and derivations-as-objects correspondences, 
the LF type theory can also be viewed as a logic calculus, for which - - i n  form 
of the language Elf [20, 17]-- we have an implementation in the spirit of con- 
straint logic programming. The Elf interpreter type-checks programs (i.e., LF 
signatures) presented to it and searches for derivations of goals in the manner 
of Prolog, replacing unification by simplification of constraints involving higher- 
order functions. 

Elf employs the following concrete syntax for LF terms: 2 A -> B for A --~ 
B, {x:A} B for IIx:A.B, and [x :h]  M for )~x:A.M. Instead of A -> B we may 
write B <- A. Note that  the former  arrow is right-associative and the latter left- 
associative. A declaration is terminated with "." and capitalized identifiers that 
occur free in it are interpreted as logic variables and implici t ly/ /-quantif ied.  
When a constant is used, its implici t / / -abstract ions do not need to be supplied 
with arguments-- they are determined by type reconstruction. These features are 
responsible in large part for the conciseness and practicality of the Elf language. 
E x a m p l e .  We introduce a signature with several simple relations to be used in 
examples throughout.  These examples also highlight similarities and differences 
between Prolog and Elf. Elf kinds are employed for type declarations, such as 
na t  : t y p e  or ack : na t  -> na t  -> na t  -> type ,  whereas Elf object constants 
are used as syntax constructors and as clause labels. Lambda expressions exp 
are a prototypical example of higher-order abstract syntax [13], where binding 
at the object level is represented as a higher-order term at the meta-level. 

nat : type. 

0 : nat. 

s: nat -> nat. 

% Natural numbers 

ack : nat -> nat -> nat -> type. ~ Ackermannfunction 

ackl: ack 0 u Y. 

ack2: ack (s X) 0 (s 0). 

ack3: ack (s X) (s Y) R <- ack (s X) Y q <- ack X Q R. 

exp : type. 

app: exp -> exp -> exp. 

% Untyped lambda expressions 

2 We will mix Elf and LF syntax below. 



299 

lam: (exp -> exp) -> exp. 

cp: exp -> exp -> type. ~ Copyin 8 lambda expressions 
cpapp: cp (app El E2) (app F1F2) 

<- r E1 F1 <- r E2 F2. 
cpla=: cp (lamE) (lam F) 

<- ({x:exp} cp x x -> cp (E x) (F x)). 

eval : exp -> exp -> type. 
evapp: eva1 (app El E2) V 

<- eva1 E1 (lam El') 

<- eva1 E2 V2 
<- eval (El' V2) V. 

evla=: eva1 (1am E) (1am E). 

Evaluatingla~bda expressions 

The full LF type for cplam is / / E : e x p - . e x p .  IIF:exp-*exp.IIG: ( / /x :exp.  
//D:cp x x. cp (E x) (F x)). cp (lain E) (1am F). 
D y n a m i c  a n d  s t a t i c .  In order to control Elf's search, the programmer specifies 
for every type family a whether a variable of type A = Ilxl :A1 . . . .  Ilxm :Am. 
a M1.. .  M, represents a goal or a logic variable. In the first case we call the 
type A dynamic, and in the second case A is static. In our example above we 
could define that na t ,  exp are static and ack, r and eva1 are dynamic. Since 
a dynamic type a M1 . . .  Mn plays the rSle of an atomic goal a(M1,. . . ,  Mn) in 
Prolog, we will use the terms type family and predicate interchangeably. Similarly, 
we refer to the declaration of a constant with dynamic type as a clause. 
E l f  e x e c u t i o n  m o d e l .  In [17] a nondeterministic state transition system is 
given for Elf execution. This was sufficent to obtain the necessary soundness 
and non-deterministic completeness properties. For our modes and termination 
system the subgoal ordering is critical, so we make it explicit in the form of an 
operational semantics based on success continuations. Backtracking and failure, 
on the other hand, are not modeled explicitly. Specifically, we do not reflect 
clause ordering within the signature E or the context A, since our mode and 
termination system is independent of the clause selection mechanism. The tran- 
sition system for Elf execution uses states of the following form, the components 
of which are explained below. 

( A']~-0;a;~F) &K 

G o a l  f o r m u l a s .  We need goal formulas F to represent success (T),  conjunction 
(F1 A F2), subgoals (M E A, provided the type A is dynamic) and unification 
between objects (M - N : A) or types (A - B : type). Constraints ~ are charac- 
terized through a subclass of formulas. They arise during Elf "unification" which 
is implemented as constraint simplification [17]. Every solution to the constraints 

returned after simplification will unify the indicated equation. The only equa- 
tions permit ted in constraints are so-called flex-flex and flex-rigid pairs where 
at least one of the flexible terms is not a generalized variable (see section 3). 
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As long as the terms Mi and M2 are first-order or higher-order pat terns after 
application of O (see [12]), this guarantees most  general unifiers. It  should be 
noted that  constraint simplification either fails or succeeds with a unique answer 
constraint.  

Goal formulas F ::= T [ M - N : A [ A -  B : type [ M E A [ Ft A F2 
I Vx:A.F [ 3x:A.F 

Constraints ir ::= T I M - N : A I ~z A a2 I Vx:A.~ I 3x:A.a 

M i x e d - p r e f i x  c o n t e x t s .  Variables A and A I denote mixed-prefix contexts in 
the sense of Miller [14]. They allow us to model existentially and universally 
quantified variables (i.e., logic variables and parameters,  respectively) as well 
as dependencies between them. The substitution 0 relates these contexts: W t- 
9 : A. I t  maps  the goal formula F defined in the context A to a formula over 
W. We obtain the LF context A corresponding to a mixed-prefix context A by 
dropping all quantifiers. 

Mixed prefix A ::= �9 I A,Vx:A I A ,3x:A 
Substitutions 0 : := .  I 9 ,Vx /x  I O,3M/x  

Substi tutions A '  F 0 : Zi on mixed-prefix contexts are built with the axiom 
A' t- �9 : �9 and the two following rules. 

A ' I - O : A  A ' ~ - , v M : g A  A ' ~ - O : A  
A' t- (0, 3 M / x ) :  (A, 3x:A) A 1, Vx:OA F (0, Vx /x ) :  (.4, Vx:A) 

S u c c e s s  c o n t i n u a t i o n .  A success continuation K is used to enforce an execu- 
tion order among the subgoals of a clause. For a given state (A' l~-0;a ;nF)  &K,  

% J 

the continuation K is a (meta-level) function that  takes as arguments a new 
mixed-prefix A ' ,  a new substitution A" F- 01 : A, and new constraints ~1 and 
yields a new state. The initial continuation initiala,,;o,;~, takes the same argu- 
ments  and returns them as the final answer. 

State Sa';O;, ::---- /AIII"-O;a;,F ) & K  where W I- O: A 

Continuations K ::= initiala;0;~ [ AA.AO.A~.Sa;o;~ 

T r a n s i t i o n  s y s t e m .  The possible Elf execution sequences are given by a tran- 
sition system S ) S I on states. Although we do not have space for the full 
transit ion system here, we summarize  the effects on different goal formulas and 
examine in detail the rule responsible for backchaining. Formulas T and M E A 
with A static succeed immediately  and invoke the success continuation K.  For 
Vx:A.F and 3x:A.F the respective quantifier is added to the mixed-prefix con- 
text A and later removed before the remainder of the search is started with 
K .  The success continuation is also used to enforce that  conjunctions Fz A F2 
are solved from left to right. Unification M - N : A is performed through Elf 
constraint simplification. A higher-order goal M E I Ix:A.B can be reduced to 
Vx:A. (M x E B), while a tomic goals are solved by backchaining. 
B a c k c h a i n i n g .  For a goal M E a M0 . . .  Mn, where a is dynamic,  we nondeter- 
ministically pick a residuation clause h : IIxl:Ax . . . .  l lxm:A,~.a Nz . . .  Nn from 
Z' or (V-quantified) from A. The corresponding transition is 
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(A'I~-0;a;~M E a M r . . .  M n ) ~ K  ~ (A'l~-0;a;~F) &K 

where F stands for the following residuation formula 

Bzl:AI.(3x2:A2 . . . .  (gzm:A,~. 
(a N1 . . .Nn  - a M1 . . . M n  : typeA h x l . . . X m  - M : a  M1. . .M,~)  

Axm E A m ) . . . A z 2  E A~) Axl E A1 

which is responsible for unifying goal and clause heads, for building a derivation 
object, and for solving the newly introduced subgoals Zm E A m , . . . ,  zl  E A1 
from the inside out. 
Example. The execution of (3Pl~-3p/e;3p;-rP E r (lain)tx.x)(lain )~y.y)) & 

initiala,;0;~ results in A' -- ~, 0 -- q (r (Ax.z) (Ay.y) (Az.AD.D)) /P,  and 
~----T. 

3 M o d e  A n a l y s i s  

M o d e s .  Modes have been proposed for expressing aspects of the operational 
semantics of logic programs (see, e.g., [7, 25, 27]). The simplest and most useful 
modes declare the input and output arguments of a predicate. The input argu- 
ments to a predicate should be ground when it is called. Upon successful return, 
the output arguments should be ground. This is often strengthened by requiring 
the output arguments to a predicate to be free logic variables when the predicate 
is called. In this paper we employ the first, most basic notion of modes - -  it offers 
sufficient characterization of the meta-theoretic relations that  we are interested 
in and can be obtained in a direct manner even in the presence of higher-order 
terms, dependent types, and constraints. Also, since Elf does not offer the cut 
control operator, an identification of free variables is not as essential to us. 

Thus we assign polarities p ::= + [ - [ , for input, output,  and don't  care 
arguments, respectively, and a mode ma = (Po,... ,pn) for every dynamic type 
family a : IIxl:A1 . . . .  / /xn:An.type E 22. 3 We also use the following abbreviation 

for the input positions of the predicate a: m + ae /{ i  [ ma - (Po,... ,pn)Api = +}. 
Similarly defined are m~- and m~. For our example signature we might declare 
modes such as: 

mac k '~i s (--, +, +, -), rncp dis (--, +, --), etc. 

The corresponding ~,mode-pragmas that  declare these modes in an Elf program 
are more perspicuous: 

~tdaode -ack +X +Y -Z 
~mode -cp  +E -F 

3 The polarity p~ refers to the i-th argument of a and p0 refers to the polarity of the 
derivation object. 
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In order to characterize the consistent goal invocations that  respect such mode 
declarations, we first need to define ground terms�9 The judgment A F M : 
A g r o u n d  is straightforward--it  holds if all variables in the canonical form of 
M are parameters, i.e., universally quantified in A. 
Cons i s t ency .  The consistency conditions before and after subgoal invocation 
are as follows. ,4 i- M 6 a M1 . . .  Mn is input consistent (output consistent) wrt. 
mode ma if ,4 t- Mi : AMi g r o u n d  for i 6 m + (respectively 6 ma)  and ,4 F 
M : a M1 . . .  Mn g r o u n d  for 0 6 m + (respectively 6 m~-). 
A p p r o x i m a t i o n s .  In order to check a given signature against a set of mode spe- 
cifications for its predicates we perform an abstract interpretation using abstract 
substitutions which note - - in  addition to the substitution domain--  whether an 
existential variable 3x:A is known to have been instantiated to a ground term 
(gnd x:A) or whether its status is still indeterminate (ttk x:A). 

Abstract substitution 0 ::= " I T/,Vx:A I 0, ak x:A I rl, gnd x:A 

The domain of T/, written ~/: ,4, can be read off immediately�9 The approximation 
judgment ,4' b (7/~ 8) : ,5 between an abstract substitution 7/: `4 and a concrete 
substitution 8 with `4' b 8 : ,5 is defined below. This judgment is intentionally 
nondeterministic (i.e. a t? may be approximated by different T/, 7/') and relies 
heavily on canonical forms. 

wF(.~ . ) : .  

(o~o) :`4 
,4' I- (O, Vz:A " O, V z / x )  : ,4,Vx:A 

A'  l- (t 1 ~  O) : A A '  l- M : SA g r o u n d  
A' I- (~/, gnd z:A ~ 8, 3 M / x )  : `4, 3x:A 

,4' F (o "" O) : ,4 
,4' t- (Tl, uk z:A ~ 0, 3 M / x )  : ,4 ,3x:A  

An initial approximation r/(A) with A t- (q(A) .~ ida)  : A is given by 7(') de_=.y ", 

y(A, Vx:A) de___/~](A), Vx:A, and rI(A, 3x:A ) ~ ~]( A ), uk x:A. 

M o d e  checking .  To ensure that  all Elf execution sequences (starting from an 
input consistent goal) obey modes, it is sufficient to show that  the abstract 
execution of all clauses in the signature ,U and the goal context F respects 
modes, i.e. all subgoal invocations are input consistent and - -upon  re turn--  
output  consistent. 

Due to space constraints we omit the formal system for mode checking and 
just  exhibit an example of the abstract interpretation. Consider the body of 
the clause cplam with respect to the mode cp +E -Y under an empty abstract 
substitution. 

We can view cplara as a clause whose head cp (lata E) (lara F) characterizes 
its call parameters. Assuming that  it is invoked in a mode-consistent manner, 
we know that  the input lata ~. and therefore the term ~. is ground, although at 
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this point we have no information about F. Once cplam returns, however, we 
need to establish that  F has become ground. 

grid g:exp--*exp, uk F:exp--*exp 
({x:exp} cp x x --* cp (E x) (V x)) -~ cp (].am ~.) (].am F) 

The term {x:exp} cp x x ---+ cp (v. x) (F x) represents the only subgoM of our 
clause. The goal head cp (E x) (F x) is executed once the local parameter  x 
and the local program clause cp x x have been introduced. Obviously, we need 
to check the local clause cp x x for well-modedness before we can assume it: 
since x is a parameter and thus ground, the output  argument of cp x x is always 
ground. Now consider the goal 

gna E:exp--*exp,~ F:exp---+exp,Vx:exp, VD:cp x x }- cp (E x) (F x). 

Since this may resolve with any clause for cp we now have to show that  the call's 
input argument E x is ground (which is the case), while we may safely assume 
that  its output  F x has become ground once it returns. 

Fortunately, we can obtain more information about F from this fact. The 
term F x is a gvar (generalized variable) under a mixed prefix A (see [14]) since 
F is an existential variable that is applied to distinct universal variables declared 
to the right of F. Unification of a gvar with a ground term always returns a most 
general unifier (if it succeeds), instantiating the gvar to a ground term. Without  
the restriction to generalized variables this property may be violated - -  consider 
for example F G -- ].am (Ax.x) which has a solution where F = Ay. Xam (Ax.x) and 
G is arbitrary and not necessarily ground. On the other hand, the application of 
two ground terms (as in the first subgoal of the clause evapp) can be recognized 
as ground. This is an example where a program outside the L~ fragment [12] is 
verified as mode correct, which means that / /0  unification and no constraints are 
generated for well-moded queries. 

Returning to the example, since the gvar F x is known to be ground we may 
now also conclude that  F is ground, thus finally demonstrating groundedness of 
the output  argument 1am F in the original program head cp (lain E) (].am F) 
of cplam. 
M o d e - c o n s i s t e n c y  fo r  Elf. A computation sequence ,$1 , . . .  Sn , . . .  is 
mode-consisienf whenever for every state Si of the form (i.e. for a subgoal call) 

( A']~0;a;~M E a M 1 . . .  Mn)  & K  

we have A'  F- OM E O(a M1. . .  Mn) is input consistent, and furthermore for 
every subsequence (i.e. for a subgoal return) 

s ,  - -  , , K 0 ' , '  

- -wi th  F a residuation formula for 81--  we have A" b O'M E O'(a M1 . . .  Mn) is 
output  consistent. 
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T h e o r e m .  If S and Zl are mode-checked and A t-" M E a M1 . . .  Mn is input 
consistent then all possible Elf execution sequences from 

(Al~-idA ;a;'r M E a MI . . .  11//,) &initiala,;0;~ 

are mode-consistent. 
P r o o f  sketch:  For every state SA,;O;s (where A I t- O : A) in an Elf execution 
sequence there is a corresponding abstract state in the mode checking system 
which is characterized by an abstract substitution ~ with A I ~- (r/,~ 8) : A. We 
then show via induction over the computation sequences that  the groundedness 
properties established during mode checking will also hold at the Elf level. 
R e l a t e d  work .  Many properties of logic programs can be derived by abstract 
interpretation [3], including the inference of mode declarations [10]. Contrary to 
Debray and Mellish [4] we view mode declarations as part of a logic program's 
specification rather than as a property to be inferred. Our system distinguishes 
between ground and possibly non-ground terms, which makes mode information 
in a higher-order setting manageable while still being very useful. As a result our 
mode analysis requires neither fixed-point constructions nor a sharing analysis - -  
a single pass over a program suffices, possibly with backtracking if several modes 
are permitted for a given predicate. Mode systems for logic programs often rely 
on type information and also consider more precise modes, such as partially 
instantiated terms [26]. In our case we directly exploit Elf's type system. 

4 T e r m i n a t i o n  A n a l y s i s  

For termination we need to demonstrate that  arguments to (possibly mutu- 
ally) recursive subgoals decrease in some well-founded ordering with respect to 
the original program call. For example, in the ack function we can show a de- 
crease in ack3 if we consider both input arguments lexicographically: (s X, Y) < 
(4 X , s  Y) and (X,Q) < (s X , s  Y). 

In order to obtain termination we assume that  the termination conditions 
are defined only on input arguments to a well-moded predicate [2]. This avoids a 
much more complicated analysis--consider, for example, a program containing 
the clauses p (s X) <- p X and p z in this order. Elf(and Prolog) search for the 
goal ?-  p Y will not terminate. In this case our mode anMysis would reject the 
goal since Y is not closed. Due to this and other current restrictions, the system 
for termination is less accurate than the mode system, yet still exceedingly useful, 
especially for establishing meta-theoretical properties of the object languages we 
encode in Elf (see Section 5 for further discussion). 

In a first-order setting it is straightforward to determine whether a term 
is a subterm of another. Consider now higher-order terms in Elf, e.g., in the 
clause cplam for the copying function cp on A-expressions. We want to show 
that  in a suitable sense (E x) is a subterm of (lain E) when x is a newly in- 
troduced parameter. Another important aspect of higher-order subterms can 
be demonstrated, e.g., from a formalization of predicate logic as it is used 
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in the cut-elimination proof for the sequent calculus [22]. We have type fam- 
ilies i for individuals and o for formulas, and--among others--a  constructor 
f o r a l l  : ( i  ---* o) ---* o. The proof requires A T (which represents [ t /x]A)  to be 
strictly smaller than f o r a l l  A (which represents Vx.A). In the informal proof 
we count the number of quantifiers and connectives, noting that a term t in 
first-order logic cannot contain any logical symbols. Thus we may consider A T 
a subterm of forall A as long as there is no way to construct an object of type 
s from objects of type o. 
M u t u a l l y  r ecu r s ive  t y p e  famil ies .  We define a type family a to be subordinate 
to a type family a' (a <~ * a') whenever a term M : A with hd(A) = a may be used 
in constructing a term N : B with hal(B) = a' (see [29]). If additionally a'  ~* a 
we say that  a, a' are mutually recursive. We write a <)* a' if a is subordinate to 
a', but not mutually recursive with a. 

Subordination of type families is the transitive closure of the immediate sub- 
ordination relation (a _<1 a') which can be directly read off the signature ,U. E.g. 
our sample signature contains nal;~ na t  (from s), n a t ~  aek (from aek), ack<J aek 
(from ack3), ,xp~ cp (from cp), c p 9  cp (from cpapp, cplam), exp<] eval (from 
eval) ,  and eva1 <1 eva1 (from evapp, evlam). 
S u b t e r m s .  We now define a judgment for the subterm relationship between 
higher-order terms. In the system below the use of abstract substitutions 7/ap- 
pears superfluous. However, mixed-prefix contexts A alone cannot supply the 
groundedness information obtained from mode-checking and necessary for defin- 
ing a well-founded term measure in the termination proof. In the rules we use long 
fiT/normal forms throughout and we assume re-normalization after every substi- 
tution. Variables C, C'  denote atomic types, i.e., types of the form a M1 . . .  Mn 
and we have h : Ah 6 ,~ or Vh:Ah 6 rl. 

7 1 ~ - M : A - < N : B  71:A A ~ - z A - B : t y p e  A ~ - , v M = _ N : A  
y ~ - M : A - < N : B  o F M : A - < N : B  

~1, Vx:A ~- M : B -< N : B '  rl ~- M : C -< Ni : ANi  for some 1 < i < m 
~I P A x : A . M  : I I x : A . B  "< N : B '  71k M : C "< h N1.  . . Nm : C '  

~1 : A Vy:A 6 (A,Vx:A) 
rl, Vx:A I- U : C -< [y / z ]N  : [y /x]B where lad(C), hd(A) mut. rec. 4 
I 1 I- M : C -~ A x : A . N  : I I x : A . B  

~ I : A  A , z : A P z M ' : A  
~, Vx:A ~" M :  C -< [ M ' / x ] N  : [ M ' / x ] B  where lad(A) <)* lad(C)4 
71 }- M : C -< A x : A . N  : I I x : A . B  

The side conditions in the last two rules enforce that  A-bound variables must 
be instantiated with a parameter y unless a term of type A can never contain 
a subterm of type C, in which case it may be instantiated with an arbitrary 
term M'.  It should be noted that in the implementation the choice of M'  or y 
is delayed and determined later via unification. 

4 We have analogous rules for ~1 b M : C -4 Az:A.N : I Iz :A.B.  
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E x a m p l e .  With the subterm judgment in place we can now revisit our examples. 
The following valid judgments arise in the checking of termination. 

End E:exp--+exp, Vx:exp f- (E z) : exp -< (lain (Ay.E y)) : exp 
The derivation uses the crucial fact that z is a parameter (i.e. V-quantified). 
Now consider the predicate logic example where we want to show 

gnd A:i--*o, uk T : i  t- (A T ) :  o -~ ( f o r a l l  ( A x . A  x ) )  : o .  

Here we do not even know whether the logic variable T has been instantiated to 
a ground term. However, since i is n o t  mutually recursive with o we apply the 
second to last rule above to obtain the desired result. 
T e r m i n a t i o n  C heck ing .  Given a mode-checked signature E we can perform 
termination checking by showing that calls to auxiliary predicates terminate and 
that  input arguments decrease wrt. -< in recursive subgoals. We merely need to 
declare which input arguments we consider, and in which lexicographic order 
they diminish, e .g .  

Y, mode -ack +X +Y -Z 

7.1ex X Y 

The additional Y.lex pragma simply gives the lezicographic termination order 
for the preceding mode declaration: the X argument decreases, or - - i f  X remains 
unchanged--  the Y-argument will decrease. In addition, we also use the 7,1ex 
pragma to relate arguments between mutually recursive predicates. 
T h e o r e m .  Given a mode-checked and termination-checked signature Z and 
an input-consistent, well-moded Elf goal So that  does not introduce any new 
type dependencies not found in S .  Then all possible Elf execution sequences 
S o  , ,91 .... ~ . . .  , , 9 ,  , . . .  are finite. Since there are only finitely many 
choices at each step, Elf search will always terminate. 
P r o o f  ske tch :  First we define a term measure which is finite for ground terms 
and consistent with the subterm relationship. Since input (i. e., +)  arguments to 
subgoals are ground, they have a finite measure. 

We can linearize the LF type hierarchy by combining mutually recursive 
type families into a single node. Based on this linear vector, we define a multiset 
measure whose elements contain the lexicographic argument measures of all these 
nodes. We add a bookkeeping measure to ensure that  the decomposition of non- 
atomic goal formulas also decreases their measure. Then we assign a well-founded 
measure to an Elf state S which counts the current goal formula as well as all 
goals postponed in the success continuation and show that this measure decreases 
in each transition step. 
R e l a t e d  work .  Similarly to our mode analysis approach, we have extended a 
rather naive first-order termination analysis based on a subterm property [16] to 
a higher-order setting. Although it would have been straightforward to imple- 
ment, we do not automatically infer an actual lexicographic order - -  we would 
rather consider the termination orderings part of the specification of a logic 
program. For proofs of meta-theorems formalized in Elf that  employ structural 
induction, these orderings correspond directly to the nesting of the inductive 
argument. 
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5 P r a g m a t i c s  

The mode and termination analyses described in this paper were implemented 
for the current Elf interpreter [20] and have proven to be valuable tools in the 
development of Elf programs. 
M u l t i p l e  m o d e s .  Sometimes a predicate may be executed in multiple directions 
and we would like to assign it multiple modes, rather than copy its definition. 
Our mode-checker allows multiple mode declarations for the same type family 
by considering different modes of the same predicate as mutually recursive but  
distinct type families. The mode system remains decidable, although the mode 
assigned to an occurrence of a type family may not necessarily be unique. We 
choose the one which gives us the most information if it exists; otherwise we 
issue a warning and try each mode assignment in turn. 
A p p l i c a t i o n s .  In case of a mode or termination error, the checker pinpoints the 
offending clause and subterm and reports all information needed by the user to 
remedy the problem. The checking of 6 previously defined Elf theories with some 
50 theorems uncovered one mode error. In another instance, however, where an 
Elf novice had 1500 lines of code under active development, the checker revealed 
35 locations with mode problems, of which 20 could be at tr ibuted to mistyped 
variable names. The other most common mistake is incorrect subgoal ordering. 

It is not surprising that  mode errors outnumber termination errors. Termina- 
tion checks are only performed on well-moded predicates, whereas mode errors 
such as wrong subgoal ordering or variable name misspellings can lead to unin- 
stantiated input arguments and nontermination. 

The combination of mode and termination checking is particularly useful 
when we want to establish that an Elf program constitutes a decision procedure. 
This allows us to make a meta-mathematical  s tatement about  an object language 
formalized in Elf simply by exhibiting a checked program in the same framework. 
Some examples of this approach are: 

- a formalization of linear logic [21], where the linearity of derivations is a 
decidable property, 

- an implementation of the sequent calculus [22] with a terminating cut-elimi- 
nation procedure, 

- a formulation of refinement types [19] for which the subtype property is 
decidable, and 

- a representation of Mini-ML [11] for which type inference is guaranteed to 
terminate. 

L i m i t a t i o n s .  To date we have encountered a sole instance where the mode 
checker rejected an intuitively correct formalization, which, we believe, may be 
rewritten. We thus do not consider this a major limitation of the mode systems. 

Our lexicographically extended higher-order subterm ordering works well for 
structural inductions (on which most meta-proofs in Elf are based on), b u t  
they fail in other cases such as course-of-value induction or recursion over sub- 
lists [5]. In some of these situations one can make the termination proofs apparent 
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through the introduction of additional "measure" arguments (such as the length 
of a list). We also encountered an instance where unfolding of mutually recursive 
predicates was necessary to automatically show termination. 

A more fundamental limitation is that we do not relate measures of input 
arguments to output arguments of predicates, which is sometimes necessary if 
intermediate results are used in recursive calls. The restriction to lexicographic 
orderings is suprisingly flexible, but there are instances where others (such as 
multi-set orderings) would be helpful. It seems feasible to also allow multi-set 
orderings in the termination specification of predicates in future versions. 

6 C o n c l u s i o n  

We have described a practical system for the specification of mode and termi- 
nation properties of programs written in the higher-order language Elf. These 
properties are decidable within our mode system and the implementation checks 
them efficiently and provides useful feedback in case a property is violated. 

While the basic notions of modes and termination have been known for some 
time [30, 1] they have not yet been applied to a higher-order setting that in- 
cludes dependent types, higher-order terms and proof objects. As a pragmatic 
decision, especially since the underlying LF type theory does not prescribe one 
particular operational interpretation, we implemented modes separately from 
types, whereas Reddy [25] proposes to combine mode and type specifications. At 
present, the simplicity of our approach outweighs the benefits of a more flexible 
system such as Reddy's. 

We do not know of any framework logics that perform an analysis similar 
to ours. In the ALF framework [9] only total functions over disjoint patterns 
are definable and --since ALF does not employ higher-order abstract syntax-- 
a first-order subterm ordering is sufficient for showing termination of recursive 
calls. 

Termination proofs in a higher-order setting have been investigated, among 
others, in [28] and [8]. Although our system employs similar ideas, we need to 
additionally make use of type subordination to obtain the desired termination 
ordering. 

We expect mode and termination properties of higher-order logic programs 
to play an important r51e in the compilation of such programs. We need to 
investigate how our ideas can be applied to A-Prolog [15] which presents two 
additional complications: extra-logical primitives (such as cut, or primitives for 
input and output) and higher-order subgoals permitting predicates as arguments 
to other predicates. This means that we may not be able to statically determine 
the call graph of a program. However, this is not as important since predicates 
and types are syntactically separated and, in our approach, mutual recursion 
appears to be more important for types. 

Perhaps the most important extension is to show the totality of predicates: 
not only will every execution sequence terminate, but every execution sequence 
starting from a well-moded goal will succeed. This allows us to verify that certain 
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higher-level judgments implement proofs [23], formally establishing many impor- 
tant  meta-theoretic properties of the object languages under investigation. 

Finally, work on negation has often relied on mode information [27]. We 
plan to take advantage of mode and termination information when considering 
negation in the context of higher-order logic programming. 
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