
Linear Time Hierarchies for a Functional
Language Machine Model

Eva Rose
DIKU, University of Copenhagen*

Abstract

In STOC 93, Jones sketched the existence of a hierarchy within prob-
lems decidable in linear time by a first-order functional language based on
tree-structured data (F), as well as for an extension of that language based
on graph-structured data (FSU).

We consider the Categorical Abstract Machine (CAM), a canonical ma-
chine model for implementing higher order functional languages. We show
the existence of such a hierarchy for the CAM based on tree-structured
data (without selective updating facilities), as well as in the case of graph-
structured data (with selective updating). In conclusion we establish two
local robustness results where first-order functional programs and higher
order functional programs define the same class of linear-time decidable
problems.

K e y w o r d s : linear time, complexity hierarchy, CAM, operational se-
mantics, functional languages, selective update, structured data.

1 Introduct ion

There seems to be a gap between functional programming practice and com-
plexity theory. This paper is meant to bridge some of this gap. In particular,
we are concerned with the question of whether functional programs which solve
some problem have a complexity similar to programs solving the same problem
in other paradigms. Clearly, studying problems with a linear t ime-complexity
provides the most fine-grained perspective on this - and, as pointed out by
Jones [Jon93], the practical significance of constant t ime factors is wrongly un-
derest imated, since many practical relevant decision problems can be solved in
linear t ime [Reg94, PH87].

Jones [Jon94] claims the result tha t "imperative programs, first-order func-
tional programs, and higher order functional programs all define the same class
of linear time-decidable problems," and proves equivalence of the first two but

*Address: Universitetsparken 1, 2100 Copenhagen ~, Denmark; emaih evarose@diku.dk;
WWW urh http://www.diku.dk/research-groups/topps/people/evarose.html.

312

not the last. The contribution of this paper is the exposition of the last cor-
respondence, or more precisely: we show that the same class of linear time-
decidable problems is indeed defined when using a canonical machine model for
higher order functional programs. We restrict our attention to CAM [CCM87],
a canonical abstract (environment) machine [Cur90] for implementing higher or-
der functional languages. The CAM is suitable for complexity considerations for
two reasons. First, because it is a uniform device for measuring running times
of different functional languages. Second, because it is a combinator based lan-
guage, e.g., operates without variables, thus side-stepping questions of variable
access times.

Another issue is the widely believed conjecture that the presence of selective
updating (hence cyclic graphs) makes the computational model stronger in an
asymptotic sense [BA95]. In support of this we have found it necessary to show
the hierarchy property seperately for languages with and without such updating.

In order to obtain the same description form of the different semantical lan-
guage descriptions, we present the languages in the style of natural (operational)
semantics c.f. Kahn [Kah87], 1 instrumented with the assumed running times.
Thus the semantics of programming languages is defined through judgements of
the shape

F- program, input ~ value

In Section 2, we start out with an introduction to the hierarchy concept
within linear time-decidable sets. In particular the definition of an e~cient
interpreter is presented in the notation used in this paper. In Section 3, we
proceed by introducing a simple, first-order functional language in two versions:
one which allows selective updating, and one which does not (in concordance
with the above considerations). In Section 4, we introduce the CAM in two
similar versions. In Section 5 and 6 we show our results: there exists a hierarchy
within linear time-decidable sets defined by CAM programs, one for each version
of CAM. Finally, we conclude the work.

2 The linear time hierarchy concept

Taking a programming language approach to complexity implies identifying
an algorithm by a program. This identifies the set of problems which can be
solved on a deterministic computation model with the set of deterministic 2
programs of some programming language, L, which encode the characteristic
functions [Pap94, M+90]. Hence, a decision problem becomes a subset of the en-
coding programming language's data domain, L-data. The following definitions
1-4 and 6 are adopted from [BAJ95].

Defini t ion 1 Any L-program, p, represents a decision problem:

AccL(p) = {d E L-data l P accepts d}

1We insist on compositionality, though.
2By determinism, we mean no parallel facilities available in the programming language.

313

Definit ion 2 The class of problems decidable within time given by a total func-
tion f : N ~ N:

TIMEL(f) = {AccL(p) I Vd �9 L-data: timeL(d) < (y + o(Y))(Idl) }

where Idl is the size of the input d, and timeL(d) is the vuntime, determined by
L's instrumented operational semantics.

We recall the definition of o(,f):

o(f(n)) = e(n) x] (n) where e(n) --r 0 for n ~ cr

De f in i t i on 3 The class of linear time decidable problems given by a total func-
tion Q : N --r N defined by Q (n) = an .for any n �9 N:

LINL(a) = TIMEL(~a)

Following [Jon93], we can now, in the formalism just quoted, define the con-
cept of an (infinite) hierarchy within linear time-decidable sets, ordered by con-
stant, multiplicative factors, that partition the set of solvable decision problems
into non-empty classes:

Def in i t i on 4 There exists a hierarchy within problems decidable in linear time
by language L if and only if

3b > 1Va > 1 : LINL(a) C LINL(a �9 b)

The constant factor b, can actually be exactly determined for a concrete
hierarchy, e.g., Hessellund and Dahl determined it to be at least 249 in the case
of a simple imperative language I [DH94].

We need a notion of representation to be able to relate the program and
da ta terms of different languages. However, we have to be careful tha t the
representation does not allow nontrivial encodings, e.g. (p, d) as p paired with
the result of running p on d.

Def in i t i on 5 A map .from one set of terms 7"1 to another T2, - : Tx -~ T2, is a
representation if it is defined compositionally over the syntactic structure of T1
such that the number o.f composition-steps is bounded by the depth of the term.

We now define the notion of an efficient interpretation (c.f. [Jon93]) adapted
to the notation of this paper and our more general notion of representation:

Definit ion 6 (efficient interpretation)

�9 m is an interpreter of L written in M if Vd, p:

~- p, d time~) ?3 iff [- m , (p, d) timeM)

for some representation, - , of L-programs and L-data as M-data, assuming
that a pair/cons-operation in language M takes constant time. When such
an interpreter exists we write M ~ L.

314

�9 In particular, m is efficient iff 3e _> 1 Vd, p : time M _< e . time L. Provided
that L-data and M-data are defined over the same domain, 3 and time L
bounded by some linear Ca, with a > 1, this can be formulated as:

3e, a > 1 : LINL(a) C L INM(e �9 a)

(where it is essential that e is independent of d and p).

3 F a n d F su

We base our investigation on two Lisp-like languages defined by Jones [Jon93]
because it is known that the constant- or hierarchy theorem holds, see Theorem 1
below. We present the language definitions as natural semantics in Figure 1 and
Figure 2, instrumented with realistic running times. The languages are very
restricted in that they allow only one first-order recursive function (f) to be
defined, and only one variable name (x), which is thus used to denote both
the input to the program and the formal parameter of the function. However,
mutual recursive functions as well as multiple variables can be simulated easily -
and the languages are both Turing complete. The languages are strict and have
running times based on standard Scheme 4 implementation technology [CR+91]
(in fact they can be implemented on a unit-cost RAM in times proportional to
those given here). Basically, they differ in the data values on which they operate:
F manipulates tree-structured data, i.e. finite, directed trees, with "NIL" for
leaves, and whose internal nodes, the "CONS-cells", each have out-degree two.
F su, however, manipulates graph-structured data by allowing selective updating
as in Scheme. Graph-structured data are defined as finite and directed graphs
in the sense of Barendregt et.al. [BvEG+87] with leaves labelled "NIL" , and
where the internal nodes, labelled "CONS", have out-degree two; further, each
node is identified by a unique number. In the following, graph-structured data
are called 'boxes', and each node-identifier, a 'location'. We notice that the
definition allows cyclic paths in the graph. We now quote from [Jon93] the
Theorem on which we develop our results:

T h e o r e m 1 (Jones , 1993) F and F su each have an efficient universal pro-
gram. Further, the constant-hierarchy theorem and the efficient version of the
Kleene reeursion theorem hold for F as well as for F ~.

Defini t ion 7 (Syntax , semant ics and running t imes of F) in Figure 1.

Note that we have exploited the fact that in F there are always exactly
the two bindings of the symbols x and f in the 'environment', which we have
therefore marked implicitly. Instead of [x ~ d ; f ~-~ E'] we simply write d, E ~.

3Actually, a structure-preserving isomorphism between them is sumcient.
4Like traditional Lisp implementations, but with e.g. hd 'nil (and t l 'nil) defined to nil.

315

S y n t a x

P 6 Program

E 6 Expression

S e m a n t i c sor t s

S e m a n t i c ru les

::= E whererec f(x) = E'

::= x I 'nil I hd E I tl E I cons(E'.E")

I if E then E' else E" I f(E)

d, v 6 Value ::= NIL] CONS (v,, v~)

I- P, d ~ v : The program P, given input d, evaluates to the output v with a
t ime cost of t.

d, E ' I - E ~ v : The expression E evaluates to the value v with a t ime cost t
where the variable x is bound to the data structure d, and the function f
has body E ' .

d, E' I- E ~ v
(F1)

k Ewhererec f (x) =E',d t+~ v

(F2)
d, E' ~- x = ~ d

d , E ' ~ - E , = ~ v l d , E ' ~ ' E 2 ~ v 2 d , E ' I - ' n i l ~ N I L (F3, 4)
d, E ' ~- cons(E1 , E2) t,+.~+l CONS (vl, v2)

d, E' ~- E ~ CONS (vl, -)
d, E ' F- hd E t+==~ v,

d,E' ~- E = ~ CONS (_,v~)

d, E ' t- t l E ~ v~

d, E' F E ~ CONS (-,-)

d, E' ~ E ~ NIL
d, E ' ~- hd E t+~ NIL

d, E' F E =i~ NIL

d, E ' ~- t l E t+~ NIL

d, E ' F E, = ~ Vl

d, E' ~ i f E then E1 e l s e E2 t1+~+1 vl

d,E' ~" E ~ NIL d,E' F E2 ~ v2

d, E ' ~- i f E t h e n E1 e l s e E2 ~,+=~+1 v~

d , E ' l - E ~ d ' d ' , E ' F - E ' ~ v

d,E' t" f (E) t1+~+1 v

(FS, 6)

(FT, 8)

(F9)

(F10)

(F l l)

F igure 1: F semant ics and running t imes.

316

F su is defined as a store-based version of F following Plotkin [P1o81], extended
with s e t cax ! and s e t c d r ! , with the same meaning and running times as in
Scheme s. This means that the variable binding description becomes a two-
level description, introducing graph-structured data (boxes) as the intermediate
step. Hence, the variable binding x ~-~ v becomes x ~-~ l ~+ v in F su, where
I is a location 6 and a is a store, mapping locations to boxes (where a location
identifies the root of its box in that store). We introduce a special notation, a
partial function, a@l, to denote the tree-structured value obtained by unravelling
the box a(l) from its root l in the store a. We notice that _4_ is only defined
when no cyclic paths are reachable from I.

Defini t ion 8 (Syntax , semant ics and running t imes of F su) in Figure 2.

We notice, that the bindings of the symbols x and f in the 'extended environ-
ment ' has also been made implicit. Instead of Ix ~-~ l ; ~ ~-~ E ~] we simply write
l, E ' . Also, we remark that the constant location, [/nil ~-~ NIL], is invariantly
part of any store since it is part of the initial one, a0.

The only place where the store is updated is in the CONS-rule (where a new
memory location,/fresh, Can be allocated in constant time) and in the s e t c a r ! ,
s e t c d r ! rules, where cyclic structures might be introduced. Hence only these
rules have been explicitly stated. We notice that F and F su correspond through
the relations: a ~ l = d, a ~ l ~ = v exactly when a program is terminating.

4 C A M

Our target machine is the environment-based, categorical abstract machine CAM,
developed on a categorical foundation by Cousineau, Curien, Mauny [CCM87].
Its instructions form a fixed set of (categorical) combinators, constructed to be
faithful to/~-reduction in the)~-calculus, and acting on a graph-environment
(stack). It is the binding-height which defines a variable binding - since no vari-
ables are explicit in the model. As described in [Jon93], it is essential for program
independent interpretation, that the number of variable names is bounded. This
is why we approach a model like CAM (and the reason for which we cannot ap-
proach higher-order functional languages in general). The CAM implements a
call-by-value evaluation strategy, and is suitable for implementing ML, an eager 7,
higher-order functional language [CCM87],[W+87]. Originally there are two ver-
sions: one where recursion and branching are implicitly represented [CCM87,
Table 1], hence operating on tree-structured values, and one where general recur-
sion and branching facilities have been made explicit [CCM87, Table 6], that is
working on graph-structured values. We use this classification for our CAM ver-
sions: C o r e - C A M in the first case, E x t - C A M in the latter. However, we present
the languages as natural semantics following Kahn [Kah87]. Actually, Ext-CAM

SThe same meaning as rplaca and rplacd in traditional Lisp.
6Following Plotkin, a location is independent of any concrete machine technology.
7We hereby understand applicative-order evaluation to weak head normal form.

317

S y n t a x same as F but extended with

E E Expression ::= . . . [s e t ca r !

S e m a n t i c sor t s same as F hut extended with

a E Store =

I E Location =

Box ::=

S e m a n t i c func t i ons

_ ~ _ : Store x Location -~ Value

EE' I setcdr! E E'

Location -," Box

Nat

NIL [CONS (11,12)

Extract value (partial function)

S e m a n t i c ru les as F modified to use a store:

l, E ' ~- a, E ~ a ' , l' : The expression E evaluates in store a to location l' and
store a ' , with a time cost t, assuming x is bound to location l and f is bound
to E ' .

l, E' ~- 0"o, E = ~ 0"'m, l' (FSUl)

E.hererec :f(x) ffi E' ,d ~ v

where ao@ l,il = NIL, ao~ l = d, a' @ l' = v
t2

l ,E ' F a, E1 = ~ a l , l l l ,E ' I- 0"l,E2 =e~ 0"2,12 (F~,4)

l, E ' }- 0`, c o n s (E1 , E2) t , + ~ § 0"2[lfresh ~ C O N S (l l , 12)], /fresh

where/fresh r Dom(0"2)

l ,E ' l- 0",El = ~ a l , l l l, f f b 0`l,E2 ~ a2,12
(F""12)

l ,E ' ~" a, se tcax! E1 E2 t l+~+l a2[ll ~-~ CON8 (l~,l~')], 11

where al (l l) CONS ' " ---- (11, ll)

l,E ~-a,El ~a l , l l l,E'~-al,E2=~,a2,12 (FS"13)
l, E ' I -a , s e t cd r ! E1 E~ t l ~ + l a2[ll ~-+ CONS (l~, 12)], Ii

where al (l l) CONS ' " ~-~ (l l , 11)

Figure 2: F su semantics and running times.

has been slightly extended: the original wind-instruct ion is replaced by the iden-
t ically defined rplacd, s and we add its symmetr ica l instruct ion, rplaca, which
has no counte rpar t in CAM originally; this is of no complexi ty-consequence since
the one can simulate the other efficiently (see Rose [Ros96]).

SKahn's recursion operator rec [Kah87], is essentially defined in terms of rplacd.

318

S y n t a x

P E Program

Cs E Commands

C E Command

S e m a n t i c s o r t s

S e m a n t i c r u l e s

::= p r o g r a m (C s)

::= ~ [C;Cs

::= q u o t e (a) I car

I c u r (C s) l a p p

I cdr [c o n s [p u s h [s w a p

s E S t a c k ::= s . a [a

a ,~ ,pEValue ::= (a, fl) I [Cs, a] [0

b program(Cs),a ~ / 3 : The program program(Cs) with input a evaluates to
the output/3 with a time cost of t

s b Cs ~ a : Commands Cs evaluates to the output a with a time cost of t on
input stack-value s.

().a~- Cs =~ s./3
I- p r o g r a m (C s) , a =~ /3

t I
s ~- C =~ sl sl ~- Cs ~ s2

s ~- ~ ~ s s ~- C;Cs t~, s2

s . /3 b q u o t e (a) =~ s . a

s . (a,/3) t- car A. s . a s . (a,/3) ~- cd~ =~ s . /3

s . a . /3 ~- cons =~ s . (a , /3)

1 1
s . a l- p u s h =~, s . a . a s . a . /31- s w a p =~, S . ~ . a

s. (p,a) I- Cs ~ sl

s . p ~- cur(Cs) ~ s. [Cs, p] s. ([Cs, p], a) b a p p t=~l s l

(C-CAM 1)

(C-CAM 2, 3)

(C-CAM 4)

(C-CAM 5, 6)

(C-CAM 7)

(C-CAM 8, 9)

(C-CAM 10, l l)

Figure 3: Core-CAM semantics and running times.

To ease the proof developments, we omit integers and integer operations since
they can be encoded in F (F su) and in Core-CAM (Ext-CAM) in the same way
(with respect to complexity) e.g. as Church numerals or using Peano arithmetic.
We present Core-CAM in Figure 3, and Ext-CAM in Figure 4, instrumented
with the assumed execution times. These are based on an analysis of CAM by
Hannan [Han91] (for details refer to Rose [Ros96]).

319

Def in i t i on 9 (S y n t a x , semantics and r u n n i n g t i m e s o f C o r e - C A M) in
Figure 3.

We notice that the constant locations, [l 0 ~ 0], is invariantly part of any
store since it is part of the initial, ao.

In Definition 10, we present the Extend-CAM as a store-semantic version
of Core-CAM following Plotkin [Plo81]. We have adapted the notation from
section 3.

Definition 10 (Syntax, semantics and running times of Ext -CAM) in
Figure 4.

Note that the constant locations [/0 ~ (),/false ~4 fa/se, ltrue ~ true] are
invariantly part of any store since they are part of the initial store a0. The
quote rule (E-CAM 4) deserves special mention. Its purpose is to add a value
to the store. In Core-CAM without selective updating, this can be done in time
1 because constant values remain constant. However, in Ext-CAM a quote(a)
command takes time lal since the model must allocate a fresh copy each time
(this is represented by the requirement that (a l \a)@ 11 = a) to allow selective
updating of this copy without destroying any data (this is represented by a C al
which incidentally implies that we cannot do "garbage collection"). In analogy
with F su, we only list those rules which have an effect on the store.

5 A linear t ime hierarchy for C o r e - C A M

Here is our main result for Core-CAM:

T h e o r e m 2 There exists a linear-time hierarchy for Core-CAM.

The proof thereof is based on the existence of efficient interpretations F _ Core-
CAM and Core-CAM ~_ F.

L e m m a 1 There is an efficient interpretation F ~" Core-CAM

Proof. An F-interpreter of Core-CAM is shown in Figure 5. To ease readability,
we introduce a finite number of atoms: ' seq, 'quote , etc., to abbreviate distinct
F cons-patterns, and some macros, whose expansions are explained below. At
run time, the input variable is bound to (Pc, d), where Pc is some Core-CAM pro-
gram and d some Core-CAM input value. The actual interpretation is performed
by an interpretation loop in the LooP macro.

The abbreviations used are the following:

Simple definitions of the form 'LET pattern = v . . . IN E ' mean that each
name defined by the pattern is replaced with an appropriate decomposition
of the value v inside E; since we only decompose subterms of the original
value this cannot result in code duplication. Furthermore _ denotes a new
name for each use. Since the decomposition is performed into a finite
number of names, matching can be done within a constant time-bound.

320

S y n t a x same as Core-CAM but extended with

C E C o m m a n d :: [opis_false I branch(Csl ,Cs2)

I rplaca [rplacd

S e m a n t i c so r t s same as Core-CAM but extended with

a E Value :: [false [true

a E Store = Location -4 Box

l E Location = Nat

s E S t a c k ::= s . l [l

Box ::= (11,12) I [C s , l] I

S e m a n t i c f u n c t i o n s

0 [false [t rue

_@- : Store x Location -4 Value Extract value (partial funct ion)

S e m a n t i c ru les as Core-CAM modified to use a store:

s ~- a, Cs ~ a ' , s ' : Commands Cs evaluates on stack s in store a to the store a t
and output stack s t with a time cost of t.

O" l I- ao, Cs =g a', s . l'
so@ l = a, a'@ l' = f/ (E-CAM 1)

t- p r o g r a m (C s) , a ~

where a o ~ lt~se = false, so@ l~rue = true, a o ~ l 0 = 0

a C_ a l , (a l \ a) @ l l = a (E-CAM 4)
s " l ~- a, quote (a) ~ a l , S . 11

S" l l" /2 [- O', cons =~ O'[/fresh ~ (l l ,12)] , S'/fresh

S" [~- O', cur(Cs) :~ 0"[/fresh ~ [Cs, l]], S" ~fresh

S [- a, Cs1 :~ al,S1

s . true I- a, branch(Cs l , Csz) t=~l a l , s l
t

s [- a, Cs2 =:~ o~1,s2

s . false b- a, branch (CsI, Cs2) t=~1 al , s2

s . l . 12 b a, rplaca ~ a l l ~-~ C O N S (12, l")], S . l

S . l . 12 F a, rplacd ~ a[l ~-~ C O N S (I ' , I ~)] , s . l

s . l I- a, op is_false =~ a[l ~-~ true], s . l

s . l b a, op is-false =~ a[l ~ false], s . l

/fresh • Dom(a) (E-CAM 7)

lfresh ~ Dom(a) (E-CAM 10)

(E-CAM 13)

(E-CAM 14)

a(l) = C O N S (I ' , I ') (E - C A M 15)

a(l) = C O N S (I ' , I ") (E-CAM 16)

a@l = false (E-CAM 17)

a@ l ~ false (E-CAM 18)

Figure 4: E x t - C A M semantics and running times.

321

Run F-program
f (t l x,hd x) whererec f(x) = LOOP

on input data cons(~, ~), where LooP is

LET stack.(instruction.arg) = x IN

CASE instruction OF

'empseq -> stack

'seq -> LET ci.c2 = arg IN f(f(stack.cl).c2)

'quote -> LET rest._ = stack IN rest.arg

'car -> LET rest.(a._) = stack IN rest.a

~cdr -> LET rest.(_.b) = stack IN rest.b

'cons -> LET (rest.a).b = stack IN rest.(a.b)

~push -> LET rest.a = stack IN rest.a.a

'swap -> LET (rest.b).a = stack IN (rest.a).b

'cur -> LET rest.rho = stack IN rest.(rho.ar E)

'app -> LET rest.((cs.rho).a) = stack

IN f((rest. (rho.a)).cs)

(see the text for the expansion of the CASE, LET-IN,., and ' a tom macros).

Invaxiant: (~,C),LooP t T- Loop ===~ ~ iff ~ ~ C ==~

F-representation of Core-CAM programs:

program(Cs) = Cs

= cons('empssq, 'n i l)

C;Cs = cons('seq,cons(C , Cs))

quote(a)=cons('quote,~)

~-~= cons(~car , ,n i l)

cons = cons('cons,'ns

push = cons('push,'nil)

cur(Cs) = cons ('cur, Cs)

c d r = c o n s (' c d r , ' n i l)

swap = cons('swap,'nil)

app = cons('app,'nil)

F-representation of Core-CAM values:

S . a = c o n s (S , ~)

[Cs, a] = cons (Cs, ~)

(a,/~) = cons (~ , ~)

= 'nil

Figure 5: ifC(p, a): interpreting CAM-prograzn p on input c~.

322

�9 'ChSE v OF atomi -> Ei . . . ' denotes the nested i f s tatement obtained
by testing the value v and selecting Ei when the value is equal to atomi
(we exploit the convention of F that ' n i l -- false and everything else is
true). Since the number of atoms is finite, mathing can be done within a
constant time-bound.

�9 For brevity we use E1 �9 E2 instead of cons (E1 , E2).

The LooP macro represents one iteration of the interpreter. Hence, it is easy
to see by induction that any single step of the interpreted program is realised in
a bounded amount of time. We conclude that the interpreter is efficient. []

L e m m a 2 There is an efficient interpretation Core-CAM ~- F

Proof. A Core-CAM interpreter of F is shown in its entirety in Figure 6. The
code CLooe represents one iteration of the interpreter, consuming one 'level' of
an F-expression. Again, it is easy to see by induction that any single step of the
interpreted program is realised in a bounded amount of time. We conclude that
the interpreter is efficient. []

Proof of Theorem 2. The above combines to 3e, b ~, c, Va > 1 :

L I N C (a �9 n) C_ LINI~ (a �9 e . n)

C L I N F (a �9 e. b'. n)

C L I N V (a . e . b ' . c . n)

by Lemma 2

by Theorem 1

by Lemma 1

Hence L I N V (a �9 n) ~ L INC(a �9 b. n) with b - e . b' . c. []

6 A linear t ime hierarchy for the E x t - C A M

Here is our main result for Ext-CAM:

T h e o r e m 3 There exists a linear-time hierarchy for Ext-CAM.

L e m m a 3 There is an efficient interpretation F 8u ~- Ext-CAM

Proof sketch. Since s e t c a r ! / s e t c d r ! and rplaca/rplacd implements the same
operations on graph-values, it is trivial to see that the interpretation thereof can
be done efficiently. We therefore omit further details. []

L e m m a 4 There is an efficient interpretation Ext-CAM ~_ F su

Proof sketch. Same as the proof of 3. []

Proof sketch of theorem 3. Analogously to that of Theorem 2, with Lemma 3
replacing Lemma 1, and Lemma 4 replacing Lemma 2. []

323

Run CAM-program program(C,mT; CLOOP) on input c~ = (_.P,~ where

C,N,T = push; push; cdr; swap; car; car; cons; swap; car; cdr; cons

CLooe = push; cdr; car; swap; push; car; swap; cdr; cdr; cons; cons; app

CNIL = cdr; car;swap; cons; app

CooNs = cdr; cdr; swap; cons; app

Cx = cdr; car; car

Cni 1 = quote(([CNIL, 0], 0))

C c o n s = cdr; push; push; car; swap; cdr; cdr; cons; swap; push; car; swap; cdr; car;

cons; CLooP; swap; CLooe; cons; push; quote([CcoNs, 0]); swap; cons

Chd = cdr; CLoo,; push; car; push; quote([C.Tsm, 0], [C.TcONS, 0]); cons; app; car

C t l = cdr; CLooe; push; car; push; quote([C.TNIL, 0], [C.TcONS, 0]); CONS; app; cdr

where C.TNm = cdr; push; cons

and C,,,coss = cdr; cdr

C i f = cdr; push; push; car; swap; cdr; cdr; cons; swap; push; car; swap; cdr; car;

cons; CLooP; car; push; quote([C,FNtL, 0], [C,rcONS, 0]); cons; app

where C,~N,L = cdr; push; car; swap; cdr; cdr; cons; CtooP

and C,FCONS = cdr; push; car; swap; cdr; car; cons; CLooP

C c a l l = cdr; push; push; CLooe; swap; car; cdr; cons; swap; car; cdr; cons; Cbooe

Invariant: S.((d,E'),E)F--O-t-#--CLoop ;. S.y_ iff d,E' blr E ==--=--=--=--=--=--=~ v

CAM-representation - of F-program/expression P/E:

E .hererec f (x) = E' = (E', E)
x_ = ([Cx, 0], 0)

' n i l = ([C , n n , 0], 0)

cons(E, , E2) = ([Ccons , 01, (E_!, E_/))

hd E = ([Chd , 0], _.E)

t l E = ([Ct l , 0], E)

i f E then E, e l se E2 = ([Cif , 0], (E, (El, E2)))

f (E) = ([Ccal l , 0] , E)

CAM-representation - of F-value d:

N I L = ([CN,L, 0], O)
CONS(d, , d2) = ([CcoNs, 01, (d__.l, d2))

Figure 6: iF(p,d): interpret ing F -p rog ram P = E w h e r e r e c f (x) = E ' on
input d.

324

7 Conclusions

We have shown the existence of a linear time hierarchy for Core-CAM through
exposition of an efficient interpreter of Core-Cam by F, and an efficient inter-
preter of F by Core-CAM. Similarly, we have argued for the existence of a linear
time hierarchy for Ext-CAM by efficient interpretation to and from F su. Thus we
have established that LIN is robust with respect to transition between first and
higher order functional programming models (this is interesting because LIN is
not generally robust [GS85]).

Acknowledgements . Thanks are due to my supervisor, Neil Jones, for intro-
ducing me to the subject and for fruitful discussions along. Special thanks go
to Kristoffer Rose, Olivier Danvy, Amir Ben-Amram, Morten S0rensen, and in
particular Peter Sestoft, for their valuable comments.

References
[BA95] A.M. Ben-Amram. Pointer machines and pointer algorithms: an anno-

tated bibliography. Diku-rapport 95/21, DIKU (Department of Computer
Science), University of Copenhagen, September 1995.

[BAJ95] A.M. Ben-Amram and N. D. Jones. Complexity-theoretic advantages
of structured programs and structured data. Personal communication,
October 1995.

[BvEG+87] H. P. Barendregt, M. C. D. J. van Eekelen, J. R. W. Glauert, J. R. Ken-
naway, M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In
J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors, PARLE '87--
Parallel Architectures and Languages Europe vol. H, number 256 in LNCS,
pages 141-158, Eindhoven, The Netherlands, June 1987. Springer-Verlag.

[CCM87] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract
machine. Science of Computer Programming, 8:173-202, 1987.

[CR+91] W. Clinger, J. Rees, et al. Revised 4 Report on the Algorithmic Language
Scheme, November 1991.

[Cur90] P.-L. Curien. An abstract framework for environment machines. Theoret-
ical Computer Science, 82(2):389-402, 1990.

[DH94] C. Dahl and M. Hesse|lund. Determining the constant coefficients in a
time hierarchy. Student report 94-2-2, DIKU (University of Copenhagen),
Department of Computer Science, Universitetsparken 1, DK-2100 Copen-
hagen O, Denmark, February 1994.

[GS85] Y. Gurevich and S. Shelah. Nearly linear time. In Logic at Botik, volume
363 of LNCS, pages 108-118. Springer-Verlag, 1985.

[Han91] J. Hannan. Making abstract machines less abstract. In Functional Pro.
gramming Languages and Computer Architecture, number 523 in LNCS,
pages 618-635. Springer-Verlag, August 1991.

325

[Jon93]

[Jon94]

[Kah87]

[M+90]

[Pap04]

[PH87]

[Plo81]

[Reg941

[Ros96]

[w+sq

N. D. Jones. Constant time factors do matter. In Steven Homer, editor,
STOC '93. Symposium on Theory of Computing, pages 602-611. ACM
Press, 1993.

N. D. Jones. Program speedups in theory and practice. In B. Pehrson
and I. Simon, editors, 13th World Computer Congress 9J, volume 1. IFIP,
Elsevier Science B.V. (North-Holland), 1994.

G. Kahn. Natural semantics. Rapport de Recherche 601, INRIA, Sophia-
Antipolis, France, February 1987.

A. R. Meyer et al. Algorithm and Complexity, volume A of Handbook of
Theoretical Computer Science. Elsevier Science Publishers B.V., 1990.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

R. Paige and F. Henglein. Mechanical translation of set theoretic problem
specifications into efficient ram code - a case study. In Lisp and Symbolic
Computation, volume 4, pages 207-232. North-Holland, August 1987.

G. D. Plotkin. A structural approach to operational semantics. Technical
Report FN-19, DAIMI, Aarhus University, Aarhus, Denmark, 1981.

K. Regan. Linear speed-up, information vicinity, and finite-state machines.
In IFIP proceedings. North-Holland, 94.

E. Rose. Linear time hierarchies for a functional language machine
model. Student report, DIKU, Department of Computer Science, Uni-
versitetsparken 1, 2100 Copenhagen 0, Denmark, 1996.

P. Weis et al. The CAML Reference Manual. INRIA-ENS, version 2.5
edition, December 1987.

