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Abstract  

In STOC 93, Jones sketched the existence of a hierarchy within prob- 
lems decidable in linear time by a first-order functional language based on 
tree-structured data (F), as well as for an extension of that language based 
on graph-structured data (FSU). 

We consider the Categorical Abstract Machine (CAM), a canonical ma- 
chine model for implementing higher order functional languages. We show 
the existence of such a hierarchy for the CAM based on tree-structured 
data (without selective updating facilities), as well as in the case of graph- 
structured data (with selective updating). In conclusion we establish two 
local robustness results where first-order functional programs and higher 
order functional programs define the same class of linear-time decidable 
problems. 

K e y w o r d s :  linear time, complexity hierarchy, CAM, operational se- 
mantics, functional languages, selective update, structured data. 

1 Introduct ion  

There  seems to be a gap between functional programming practice and com- 
plexity theory. This paper  is meant  to bridge some of this gap. In particular,  
we are concerned with the question of whether functional programs which solve 
some problem have a complexity similar to programs solving the same problem 
in other paradigms.  Clearly, studying problems with a linear t ime-complexity 
provides the most  fine-grained perspective on this - and, as pointed out by 
Jones [Jon93], the practical significance of constant t ime factors is wrongly un- 
derest imated,  since many practical relevant decision problems can be solved in 
linear t ime [Reg94, PH87]. 

Jones [Jon94] claims the result tha t  "imperative programs, first-order func- 
tional programs, and higher order functional programs all define the same class 
of linear time-decidable problems," and proves equivalence of the first two but  
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not the last. The contribution of this paper is the exposition of the last cor- 
respondence, or more precisely: we show that the same class of linear time- 
decidable problems is indeed defined when using a canonical machine model for 
higher order functional programs. We restrict our attention to CAM [CCM87], 
a canonical abstract (environment) machine [Cur90] for implementing higher or- 
der functional languages. The CAM is suitable for complexity considerations for 
two reasons. First, because it is a uniform device for measuring running times 
of different functional languages. Second, because it is a combinator based lan- 
guage, e.g., operates without variables, thus side-stepping questions of variable 
access times. 

Another issue is the widely believed conjecture that the presence of selective 
updating (hence cyclic graphs) makes the computational model stronger in an 
asymptotic sense [BA95]. In support of this we have found it necessary to show 
the hierarchy property seperately for languages with and without such updating. 

In order to obtain the same description form of the different semantical lan- 
guage descriptions, we present the languages in the style of natural (operational) 
semantics c.f. Kahn [Kah87], 1 instrumented with the assumed running times. 
Thus the semantics of programming languages is defined through judgements of 
the shape 

F- program, input ~ value 

In Section 2, we start out with an introduction to the hierarchy concept 
within linear time-decidable sets. In particular the definition of an e~cient 
interpreter is presented in the notation used in this paper. In Section 3, we 
proceed by introducing a simple, first-order functional language in two versions: 
one which allows selective updating, and one which does not (in concordance 
with the above considerations). In Section 4, we introduce the CAM in two 
similar versions. In Section 5 and 6 we show our results: there exists a hierarchy 
within linear time-decidable sets defined by CAM programs, one for each version 
of CAM. Finally, we conclude the work. 

2 The linear time hierarchy concept 

Taking a programming language approach to complexity implies identifying 
an algorithm by a program. This identifies the set of problems which can be 
solved on a deterministic computation model with the set of deterministic 2 
programs of some programming language, L, which encode the characteristic 
functions [Pap94, M+90]. Hence, a decision problem becomes a subset of the en- 
coding programming language's data domain, L-data. The following definitions 
1-4 and 6 are adopted from [BAJ95]. 

Defini t ion 1 Any L-program, p, represents a decision problem: 

AccL(p) = {d E L-data l P accepts d} 

1We insist on compositionality, though. 
2By determinism, we mean no parallel facilities available in the programming language. 
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Definit ion 2 The class of problems decidable within time given by a total func- 
tion f : N ~ N: 

TIMEL(f) = {AccL(p) I Vd �9 L-data: timeL(d) < (y + o(Y))(Idl) } 

where Idl is the size of the input d, and timeL(d) is the vuntime, determined by 
L's instrumented operational semantics. 

We recall the definition of o(,f): 

o(f(n)) = e(n) x ] (n)  where e(n) --r 0 for n ~ cr 

De f in i t i on  3 The class of linear time decidable problems given by a total func- 
tion Q : N --r N defined by Q (n) = an .for any n �9 N: 

LINL(a) = TIMEL(~a) 

Following [Jon93], we can now, in the formalism just quoted, define the con- 
cept of an (infinite) hierarchy within linear time-decidable sets, ordered by con- 
stant,  multiplicative factors, that  partition the set of solvable decision problems 
into non-empty classes: 

Def in i t i on  4 There exists a hierarchy within problems decidable in linear time 
by language L if and only if 

3b > 1Va > 1 : LINL(a) C LINL(a �9 b) 

The constant factor b, can actually be exactly determined for a concrete 
hierarchy, e.g., Hessellund and Dahl determined it to be at least 249 in the case 
of a simple imperative language I [DH94]. 

We need a notion of representation to be able to relate the program and 
da ta  terms of different languages. However, we have to be careful tha t  the 
representation does not allow nontrivial encodings, e.g. (p, d) as p paired with 
the result of running p on d. 

Def in i t i on  5 A map .from one set of terms 7"1 to another T2, - : Tx -~ T2, is a 
representation if it is defined compositionally over the syntactic structure of T1 
such that the number o.f composition-steps is bounded by the depth of the term. 

We now define the notion of an efficient interpretation (c.f. [Jon93]) adapted 
to the notation of this paper and our more general notion of representation: 

Definit ion 6 (efficient interpretation) 

�9 m is an interpreter of L written in M if Vd, p: 

~- p, d time~ ) ?3 iff [- m ,  (p, d) timeM ) 

for some representation, - ,  of L-programs and L-data as M-data,  assuming 
that  a pair/cons-operation in language M takes constant time. When such 
an interpreter exists we write M ~ L. 
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�9 In particular, m is efficient iff 3e _> 1 Vd, p : time M _< e .  time L. Provided 
that  L-data and M-data are defined over the same domain, 3 and time L 
bounded by some linear Ca, with a > 1, this can be formulated as: 

3e, a > 1 : LINL(a)  C L INM(e  �9 a) 

(where it is essential that  e is independent of d and p). 

3 F a n d  F su 

We base our investigation on two Lisp-like languages defined by Jones [Jon93] 
because it is known that  the constant- or hierarchy theorem holds, see Theorem 1 
below. We present the language definitions as natural semantics in Figure 1 and 
Figure 2, instrumented with realistic running times. The languages are very 
restricted in that  they allow only one first-order recursive function (f) to be 
defined, and only one variable name (x), which is thus used to denote both 
the input to the program and the formal parameter of the function. However, 
mutual recursive functions as well as multiple variables can be simulated easily - 
and the languages are both Turing complete. The languages are strict and have 
running times based on standard Scheme 4 implementation technology [CR+91] 
(in fact they can be implemented on a unit-cost RAM in times proportional to 
those given here). Basically, they differ in the data  values on which they operate: 
F manipulates tree-structured data, i.e. finite, directed trees, with "NIL"  for 
leaves, and whose internal nodes, the "CONS-cells", each have out-degree two. 
F su, however, manipulates graph-structured data by allowing selective updating 
as in Scheme. Graph-structured data  are defined as finite and directed graphs 
in the sense of Barendregt et.al. [BvEG+87] with leaves labelled "NIL" ,  and 
where the internal nodes, labelled "CONS",  have out-degree two; further, each 
node is identified by a unique number. In the following, graph-structured data  
are called 'boxes', and each node-identifier, a 'location'. We notice that  the 
definition allows cyclic paths in the graph. We now quote from [Jon93] the 
Theorem on which we develop our results: 

T h e o r e m  1 ( Jones ,  1993) F and F su each have an efficient universal pro- 
gram. Further, the constant-hierarchy theorem and the efficient version of the 
Kleene reeursion theorem hold for F as well as for F ~.  

Defini t ion 7 (Syntax ,  semant ics  and running t imes  of  F) in Figure 1. 

Note that  we have exploited the fact that  in F there are always exactly 
the two bindings of the symbols x and f in the 'environment', which we have 
therefore marked implicitly. Instead of [x ~ d ; f ~-~ E'] we simply write d, E ~. 

3Actually, a structure-preserving isomorphism between them is sumcient. 
4Like traditional Lisp implementations, but with e.g. hd 'nil  (and t l  'nil) defined to nil. 
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S y n t a x  

P 6 Program 

E 6 Expression 

S e m a n t i c  sor t s  

S e m a n t i c  ru les  

::= E whererec f(x) = E' 

::= x I 'nil I hd E I tl E I cons(E'.E") 

I if E then E' else E" I f(E) 

d, v 6 Value ::= NIL ] CONS (v,, v~) 

I- P, d ~ v : The program P, given input d, evaluates to the output  v with a 
t ime cost of t. 

d, E ' I - E  ~ v : The expression E evaluates to the value v with a t ime cost t 
where the variable x is bound to the data  structure d, and the function f 
has body E ' .  

d, E' I- E ~ v 
(F1) 

k Ewhererec f ( x )  =E',d t+~ v 

(F2) 
d, E' ~- x = ~  d 

d , E ' ~ - E , = ~ v l  d , E ' ~ ' E 2 ~ v 2  d , E ' I - ' n i l ~ N I L  (F3, 4) 
d, E '  ~- cons(  E1 , E2 ) t,+.~+l CONS (vl, v2) 

d, E' ~- E ~ CONS (vl, -) 
d, E '  F- hd E t+==~ v, 

d,E' ~- E = ~  CONS (_,v~) 

d, E '  t- t l  E ~ v~ 

d, E' F E ~ CONS (-,-) 

d, E' ~ E ~ NIL 
d, E '  ~- hd E t+~ NIL  

d, E' F E =i~ NIL 

d, E '  ~- t l  E t+~ NIL 

d, E '  F E,  = ~  Vl 

d, E' ~ i f  E then E1 e l s e  E2 t1+~+1 vl 

d,E' ~" E ~ NIL d,E' F E2 ~ v2 

d, E '  ~- i f  E t h e n  E1 e l s e  E2 ~,+=~+1 v~ 

d , E ' l - E ~ d '  d ' , E ' F - E ' ~ v  

d,E' t" f ( E )  t1+~+1 v 

(FS, 6) 

(FT, 8) 

(F9) 

(F10) 

( F l l )  

F igure  1: F semant ics  and  running  t imes.  
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F su is defined as a store-based version of F following Plotkin [P1o81], extended 
with s e t cax !  and s e t c d r ! ,  with the same meaning and running times as in 
Scheme s. This means that  the variable binding description becomes a two- 
level description, introducing graph-structured data  (boxes) as the intermediate 
step. Hence, the variable binding x ~-~ v becomes x ~-~ l ~+ v in F su, where 
I is a location 6 and a is a store, mapping locations to boxes (where a location 
identifies the root of its box in that  store). We introduce a special notation, a 
partial function, a@l, to denote the tree-structured value obtained by unravelling 
the box a(l)  from its root l in the store a. We notice that  _4_ is only defined 
when no cyclic paths are reachable from I. 

Defini t ion 8 (Syntax ,  semant ics  and running t imes  of  F su) in Figure 2. 

We notice, that  the bindings of the symbols x and f in the 'extended environ- 
ment '  has also been made implicit. Instead of Ix ~-~ l ; ~ ~-~ E ~] we simply write 
l, E ' .  Also, we remark that  the constant location, [/nil ~-~ NIL], is invariantly 
part of any store since it is part of the initial one, a0. 

The only place where the store is updated is in the CONS-rule (where a new 
memory location,/fresh, Can be allocated in constant time) and in the s e t c a r ! ,  
s e t c d r !  rules, where cyclic structures might be introduced. Hence only these 
rules have been explicitly stated. We notice that  F and F su correspond through 
the relations: a ~ l  = d, a ~ l  ~ = v exactly when a program is terminating. 

4 C A M  

Our target machine is the environment-based, categorical abstract machine CAM, 
developed on a categorical foundation by Cousineau, Curien, Mauny [CCM87]. 
Its instructions form a fixed set of (categorical) combinators, constructed to be 
faithful to/~-reduction in the )~-calculus, and acting on a graph-environment 
(stack). It is the binding-height which defines a variable binding - since no vari- 
ables are explicit in the model. As described in [Jon93], it is essential for program 
independent interpretation, that  the number of variable names is bounded. This 
is why we approach a model like CAM (and the reason for which we cannot ap- 
proach higher-order functional languages in general). The CAM implements a 
call-by-value evaluation strategy, and is suitable for implementing ML, an eager 7, 
higher-order functional language [CCM87],[W+87]. Originally there are two ver- 
sions: one where recursion and branching are implicitly represented [CCM87, 
Table 1], hence operating on tree-structured values, and one where general recur- 
sion and branching facilities have been made explicit [CCM87, Table 6], that  is 
working on graph-structured values. We use this classification for our CAM ver- 
sions: C o r e - C A M  in the first case, E x t - C A M  in the latter. However, we present 
the languages as natural semantics following Kahn [Kah87]. Actually, Ext-CAM 

SThe same meaning as rplaca and rplacd in traditional Lisp. 
6Following Plotkin, a location is independent of any concrete machine technology. 
7We hereby understand applicative-order evaluation to weak head normal form. 



317 

S y n t a x  same as F but extended with 

E E Expression ::= . . .  [ s e t ca r !  

S e m a n t i c  sor t s  same as F hut extended with 

a E Store = 

I E  Location = 

Box ::= 

S e m a n t i c  func t i ons  

_ ~ _  : Store x Location -~ Value 

EE' I setcdr! E E' 

Location -," Box 

Nat 

NIL [ CONS (11,12) 

Extract value (partial function) 

S e m a n t i c  ru les  as F modified to use a store: 

l, E '  ~- a, E ~ a ' ,  l' : The expression E evaluates in store a to location l' and 
store a ' ,  with a time cost t, assuming x is bound to location l and f is bound 
to E ' .  

l, E' ~- 0"o, E = ~  0"'m, l' (FSUl) 

E.hererec  :f(x) ffi E' ,d  ~ v 

where ao@ l,il = NIL, ao~ l = d, a' @ l' = v 
t2 

l ,E '  F a, E1 = ~  a l , l l  l ,E '  I- 0"l,E2 =e~ 0"2,12 (F~,4) 

l, E '  }- 0`, c o n s  ( E1 , E2 ) t , + ~ §  0"2[ lfresh ~ C O N S  ( l l ,  12) ], /fresh 

where/fresh r Dom(0"2) 

l ,E '  l- 0",El = ~  a l , l l  l, f f  b 0`l,E2 ~ a2,12 
(F""12) 

l ,E '  ~" a, se tcax!  E1 E2 t l+~+l  a2[ ll ~-~ CON8 (l~,l~') ], 11 

where al ( l l )  CONS ' " ---- (11, ll ) 

l,E ~-a,El ~a l , l l  l,E'~-al,E2=~,a2,12 (FS"13) 
l, E '  I -a ,  s e t cd r !  E1 E~ t l ~ + l  a2[ ll ~-+ CONS (l~, 12) ], Ii 

where al ( l l )  CONS ' " ~-~ ( l l ,  11 ) 

Figure 2: F su semantics and running  times. 

has  been slightly extended:  the original wind-instruct ion is replaced by the iden- 
t ically defined rplacd, s and we add its symmetr ica l  instruct ion,  rplaca, which 
has no counte rpar t  in CAM originally; this is of  no complexi ty-consequence since 
the  one can simulate the other  efficiently (see Rose [Ros96]). 

SKahn's recursion operator rec [Kah87], is essentially defined in terms of rplacd. 
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S y n t a x  

P E Program 

Cs E Commands 

C E Command 

S e m a n t i c  s o r t s  

S e m a n t i c  r u l e s  

::= p r o g r a m ( C s )  

::= ~ [ C;Cs 

::= q u o t e ( a )  I car  

I c u r ( C s )  l a p p  

I cdr  [ c o n s  [ p u s h  [ s w a p  

s E S t a c k  ::= s . a  [ a 

a ,~ ,pEValue  ::= (a, fl) I [Cs, a] [ 0 

b program(Cs),a ~ / 3 :  The program program(Cs) with input a evaluates to 
the output/3 with a time cost of t 

s b Cs ~ a : Commands Cs evaluates to the output a with a time cost of t on 
input stack-value s. 

().a~- Cs =~ s./3 
I- p r o g r a m ( C s ) , a  =~ /3 

t I 
s ~- C =~ sl sl ~- Cs ~ s2 

s ~- ~ ~ s s ~- C;Cs t~,  s2 

s . /3 b q u o t e ( a )  =~ s . a 

s .  (a,/3) t- car A. s .  a s .  (a,/3) ~- cd~ =~ s . /3  

s .  a .  /3 ~- cons  =~ s .  (a , /3 )  

1 1 
s . a l- p u s h  =~, s . a . a s . a . /31- s w a p  =~, S . ~ . a 

s.  (p,a)  I- Cs ~ sl 

s .  p ~- cur(Cs) ~ s.  [Cs, p] s.  ([Cs, p], a) b a p p  t=~l s l  

(C-CAM 1) 

(C-CAM 2, 3) 

(C-CAM 4) 

(C-CAM 5, 6) 

(C-CAM 7) 

(C-CAM 8, 9) 

(C-CAM 10, l l )  

Figure 3: Core-CAM semantics and running times. 

To ease the proof developments, we omit integers and integer operations since 
they can be encoded in F (F su) and in Core-CAM (Ext-CAM) in the same way 
(with respect to complexity) e.g. as Church numerals or using Peano arithmetic. 
We present Core-CAM in Figure 3, and Ext-CAM in Figure 4, instrumented 
with the assumed execution times. These are based on an analysis of CAM by 
Hannan [Han91] (for details refer to Rose [Ros96]). 
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Def in i t i on  9 ( S y n t a x ,  semantics and r u n n i n g  t i m e s  o f  C o r e - C A M )  in 
Figure 3. 

We notice that  the constant locations, [l 0 ~ 0], is invariantly part of any 
store since it is part of the initial, ao. 

In Definition 10, we present the Extend-CAM as a store-semantic version 
of Core-CAM following Plotkin [Plo81]. We have adapted the notation from 
section 3. 

Definition 10 (Syntax, semantics and running times of Ext -CAM) in 
Figure 4. 

Note that  the constant locations [/0 ~ (),/false ~4 fa/se, ltrue ~ true] are 
invariantly part of any store since they are part of the initial store a0. The 
quote rule (E-CAM 4) deserves special mention. Its purpose is to add a value 
to the store. In Core-CAM without selective updating, this can be done in time 
1 because constant values remain constant. However, in Ext-CAM a quote(a) 
command takes time lal since the model must allocate a fresh copy each time 
(this is represented by the requirement that  (a l \a)@ 11 = a) to allow selective 
updating of this copy without destroying any data (this is represented by a C al  
which incidentally implies that  we cannot do "garbage collection"). In analogy 
with F su, we only list those rules which have an effect on the store. 

5 A linear t ime hierarchy for C o r e - C A M  

Here is our main result for Core-CAM: 

T h e o r e m  2 There exists a linear-time hierarchy for Core-CAM. 

The proof thereof is based on the existence of efficient interpretations F _ Core- 
CAM and Core-CAM ~_ F. 

L e m m a  1 There is an efficient interpretation F ~" Core-CAM 

Proof. An F-interpreter of Core-CAM is shown in Figure 5. To ease readability, 
we introduce a finite number of atoms: ' seq, 'quote ,  etc., to abbreviate distinct 
F cons-patterns, and some macros, whose expansions are explained below. At 
run time, the input variable is bound to (Pc, d), where Pc is some Core-CAM pro- 
gram and d some Core-CAM input value. The actual interpretation is performed 
by an interpretation loop in the LooP macro. 

The abbreviations used are the following: 

Simple definitions of the form 'LET pattern = v . . .  IN E '  mean that  each 
name defined by the pattern is replaced with an appropriate decomposition 
of the value v inside E; since we only decompose subterms of the original 
value this cannot result in code duplication. Furthermore _ denotes a new 
name for each use. Since the decomposition is performed into a finite 
number of names, matching can be done within a constant time-bound. 
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S y n t a x  same as Core-CAM but extended with 

C E C o m m a n d  :: . . . .  [ opis_false I branch(Csl ,Cs2)  

I rplaca [ rplacd 

S e m a n t i c  so r t s  same as Core-CAM but extended with 

a E Value :: . . . .  [ false [ true 

a E Store = Location -4 Box 

l E Location = Nat 

s E S t a c k  ::= s . l  [ l 

Box ::= (11,12) I [ C s ,  l] I 

S e m a n t i c  f u n c t i o n s  

0 [ false [ t rue  

_@- : Store x Location -4 Value Extract  value (partial funct ion)  

S e m a n t i c  ru les  as Core-CAM modified to use a store: 

s ~- a, Cs ~ a ' ,  s ' : Commands Cs evaluates on stack s in store a to the store a t 
and output  stack s t with a time cost of t. 

O" l I- ao, Cs =g a',  s .  l' 
so@ l = a, a'@ l' = f/ (E-CAM 1) 

t- p r o g r a m ( C s ) , a  ~ 

where a o ~  lt~se = false, so@ l~rue = true,  a o ~  l 0 = 0 

a C_ a l ,  ( a l \ a ) @ l l  = a (E-CAM 4) 
s " l ~- a, quote (a)  ~ a l , S  . 11 

S" l l" /2  [- O', cons =~ O'[/fresh ~ ( l l ,12)] ,  S'/fresh 

S" [ ~- O', cur(Cs) :~ 0"[/fresh ~ [Cs, l] ], S" ~fresh 

S [- a, Cs1 :~ al,S1 

s .  true I- a, branch(Cs l ,  Csz) t=~l a l , s l  
t 

s [- a, Cs2 =:~ o~1,s2 

s . false b- a, branch (CsI, Cs2) t=~1 al ,  s2 

s . l .  12 b a, rplaca ~ a l l  ~-~ C O N S  (12, l" ) ], S . l 

S .  l .  12 F a, rplacd ~ a[l  ~-~ C O N S ( I ' , I ~ ) ] , s .  l 

s . l I- a, op is_false =~ a[ l ~-~ true], s .  l 

s .  l b a, op is-false =~ a[ l ~ false ], s .  l 

/fresh • Dom(a) (E-CAM 7) 

lfresh ~ Dom(a) (E-CAM 10) 

(E-CAM 13) 

(E-CAM 14) 

a(l)  = C O N S ( I ' , I ' ) ( E - C A M  15) 

a(l)  = C O N S ( I ' , I " )  (E-CAM 16) 

a@l  = false (E-CAM 17) 

a@ l ~ false (E-CAM 18) 

Figure  4: E x t - C A M  semantics and  running  times. 
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Run F-program 
f ( t l  x,hd x) whererec f(x) = LOOP 

on input data cons(~, ~), where LooP is 

LET stack.(instruction.arg) = x IN 

CASE instruction OF 

'empseq -> stack 

'seq -> LET ci.c2 = arg IN f(f(stack.cl).c2 ) 

'quote -> LET rest._ = stack IN rest.arg 

'car -> LET rest.(a._) = stack IN rest.a 

~cdr -> LET rest.(_.b) = stack IN rest.b 

'cons -> LET (rest.a).b = stack IN rest.(a.b) 

~push -> LET rest.a = stack IN rest.a.a 

'swap -> LET (rest.b).a = stack IN (rest.a).b 

'cur -> LET rest.rho = stack IN rest.(rho.ar E) 

'app -> LET rest.((cs.rho).a) = stack 

IN f((rest. (rho.a)).cs) 

(see the text for the expansion of the CASE, LET-IN,., and ' a tom macros). 

Invaxiant: (~,C),LooP t T- Loop ===~ ~ iff ~ ~ C ==~ 

F-representation of Core-CAM programs: 

program(Cs) = Cs 

= cons( 'empssq, 'n i l )  

C;Cs = cons('seq,cons( C , Cs)) 

quote(a)=cons('quote,~) 

~-~= cons(~car , ,n i l )  

cons = cons('cons,'ns 

push = cons('push,'nil) 

cur(Cs) = cons ('cur, Cs ) 

c d r = c o n s ( ' c d r , ' n i l )  

swap = cons('swap,'nil) 

app = cons('app,'nil) 

F-representation of Core-CAM values: 

S . a  = c o n s ( S , ~ )  

[Cs, a] = cons ( Cs, ~ ) 

(a,/~) = cons ( ~ ,  ~ ) 

= 'nil 

Figure 5: ifC(p, a):  interpreting CAM-prograzn p on input c~. 
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�9 'ChSE v OF atomi -> Ei . . .  ' denotes the nested i f  s tatement obtained 
by testing the value v and selecting Ei when the value is equal to atomi 
(we exploit the convention of F that  ' n i l  -- false and everything else is 
true).  Since the number of atoms is finite, mathing can be done within a 
constant time-bound. 

�9 For brevity we use E1 �9 E2 instead of cons ( E1 , E2 ). 

The  LooP  macro represents one iteration of the interpreter. Hence, it is easy 
to see by induction that  any single step of the interpreted program is realised in 
a bounded amount of time. We conclude that  the interpreter is efficient. [] 

L e m m a  2 There is an efficient interpretation Core-CAM ~- F 

Proof. A Core-CAM interpreter of F is shown in its entirety in Figure 6. The 
code CLooe represents one iteration of the interpreter, consuming one 'level' of 
an F-expression. Again, it is easy to see by induction that  any single step of the 
interpreted program is realised in a bounded amount of time. We conclude that  
the interpreter is efficient. [] 

Proof of Theorem 2. The above combines to 3e, b ~, c, Va > 1 : 

L I N C  (a �9 n) C_ LINI~ (a �9 e . n) 

C L I N F ( a  �9 e.  b'. n) 

C L I N V ( a  . e . b ' . c . n )  

by Lemma 2 

by Theorem 1 

by Lemma 1 

Hence L I N V ( a  �9 n) ~ L INC(a  �9 b. n) with b - e .  b' .  c. [] 

6 A linear t ime hierarchy for the E x t - C A M  

Here is our main result for Ext-CAM: 

T h e o r e m  3 There exists a linear-time hierarchy for Ext-CAM. 

L e m m a  3 There is an efficient interpretation F 8u ~- Ext-CAM 

Proof sketch. Since s e t c a r ! / s e t c d r !  and rplaca/rplacd implements the same 
operations on graph-values, it is trivial to see that  the interpretation thereof can 
be done efficiently. We therefore omit further details. [] 

L e m m a  4 There is an efficient interpretation Ext-CAM ~_ F su 

Proof sketch. Same as the proof of 3. [] 

Proof sketch of theorem 3. Analogously to that  of Theorem 2, with Lemma 3 
replacing Lemma 1, and Lemma 4 replacing Lemma 2. [] 



323 

Run CAM-program program(C,mT; CLOOP) on input c~ = (_.P,~ where 

C,N,T = push; push; cdr; swap; car; car; cons; swap; car; cdr; cons 

CLooe = push; cdr; car; swap; push; car; swap; cdr; cdr; cons; cons; app 

CNIL = cdr; car;swap; cons; app 

CooNs = cdr; cdr; swap; cons; app 

Cx = cdr; car; car 

Cni  1 = quote(([CNIL, 0], 0)) 

C c o n s =  cdr; push; push; car; swap; cdr; cdr; cons; swap; push; car; swap; cdr; car; 

cons; CLooP; swap; CLooe; cons; push; quote([CcoNs, 0]); swap; cons 

Chd = cdr; CLoo,; push; car; push; quote([C.Tsm, 0], [C.TcONS, 0]); cons; app; car 

C t l  = cdr; CLooe; push; car; push; quote([C.TNIL, 0], [C.TcONS, 0]); CONS; app; cdr 

where C.TNm = cdr; push; cons 

and C,,,coss = cdr; cdr 

C i f  = cdr; push; push; car; swap; cdr; cdr; cons; swap; push; car; swap; cdr; car; 

cons; CLooP; car; push; quote([C,FNtL, 0], [C,rcONS, 0]); cons; app 

where C,~N,L = cdr; push; car; swap; cdr; cdr; cons; CtooP 

and C,FCONS = cdr; push; car; swap; cdr; car; cons; CLooP 

C c a l l =  cdr; push; push; CLooe; swap; car; cdr; cons; swap; car; cdr; cons; Cbooe 

Invariant: S.((d,E'),E)F--O-t-#--CLoop ;. S.y_ iff d,E' blr E ==--=--=--=--=--=--=~ v 

CAM-representation - of F-program/expression P/E:  

E .hererec f (x) = E' = (E', E) 
x_ = ([Cx, 0], 0)  

' n i l  = ( [ C , n n ,  0], 0)  

cons(E, ,  E2) = ( [Ccons ,  01, (E_!, E_/)) 

hd E = ([Chd , 0], _.E) 

t l  E = ( [Ct l  , 0], E)  

i f  E then E, e l se  E2 = ( [Cif ,  0], (E, (El, E2))) 

f (  E ) = ( [Ccal l ,  0 ] , E )  

CAM-representation - of F-value d: 

N I L  = ([CN,L, 0], O) 
CONS(d, ,  d2) = ([CcoNs, 01, (d__.l, d2)) 

Figure  6: iF(p,d):  interpret ing F -p rog ram P = E w h e r e r e c  f ( x ) = E '  on 
input  d. 
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7 Conclusions 

We have shown the existence of a linear time hierarchy for Core-CAM through 
exposition of an efficient interpreter of Core-Cam by F, and an efficient inter- 
preter of F by Core-CAM. Similarly, we have argued for the existence of a linear 
time hierarchy for Ext-CAM by efficient interpretation to and from F su. Thus we 
have established that LIN is robust with respect to transition between first and 
higher order functional programming models (this is interesting because LIN is 
not generally robust [GS85]). 

Acknowledgements .  Thanks are due to my supervisor, Neil Jones, for intro- 
ducing me to the subject and for fruitful discussions along. Special thanks go 
to Kristoffer Rose, Olivier Danvy, Amir Ben-Amram, Morten S0rensen, and in 
particular Peter Sestoft, for their valuable comments. 

References 
[BA95] A.M. Ben-Amram. Pointer machines and pointer algorithms: an anno- 

tated bibliography. Diku-rapport 95/21, DIKU (Department of Computer 
Science), University of Copenhagen, September 1995. 

[BAJ95] A.M. Ben-Amram and N. D. Jones. Complexity-theoretic advantages 
of structured programs and structured data. Personal communication, 
October 1995. 

[BvEG+87] H. P. Barendregt, M. C. D. J. van Eekelen, J. R. W. Glauert, J. R. Ken- 
naway, M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In 
J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors, PARLE '87-- 
Parallel Architectures and Languages Europe vol. H, number 256 in LNCS, 
pages 141-158, Eindhoven, The Netherlands, June 1987. Springer-Verlag. 

[CCM87] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract 
machine. Science of Computer Programming, 8:173-202, 1987. 

[CR+91] W. Clinger, J. Rees, et al. Revised 4 Report on the Algorithmic Language 
Scheme, November 1991. 

[Cur90] P.-L. Curien. An abstract framework for environment machines. Theoret- 
ical Computer Science, 82(2):389-402, 1990. 

[DH94] C. Dahl and M. Hesse|lund. Determining the constant coefficients in a 
time hierarchy. Student report 94-2-2, DIKU (University of Copenhagen), 
Department of Computer Science, Universitetsparken 1, DK-2100 Copen- 
hagen O, Denmark, February 1994. 

[GS85] Y. Gurevich and S. Shelah. Nearly linear time. In Logic at Botik, volume 
363 of LNCS, pages 108-118. Springer-Verlag, 1985. 

[Han91] J. Hannan. Making abstract machines less abstract. In Functional Pro. 
gramming Languages and Computer Architecture, number 523 in LNCS, 
pages 618-635. Springer-Verlag, August 1991. 



325 

[Jon93] 

[Jon94] 

[Kah87] 

[M+90] 

[Pap04] 

[PH87] 

[Plo81] 

[Reg941 

[Ros96] 

[w+sq 

N. D. Jones. Constant time factors do matter. In Steven Homer, editor, 
STOC '93. Symposium on Theory of Computing, pages 602-611. ACM 
Press, 1993. 

N. D. Jones. Program speedups in theory and practice. In B. Pehrson 
and I. Simon, editors, 13th World Computer Congress 9J, volume 1. IFIP, 
Elsevier Science B.V. (North-Holland), 1994. 

G. Kahn. Natural semantics. Rapport de Recherche 601, INRIA, Sophia- 
Antipolis, France, February 1987. 

A. R. Meyer et al. Algorithm and Complexity, volume A of Handbook of 
Theoretical Computer Science. Elsevier Science Publishers B.V., 1990. 

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 

R. Paige and F. Henglein. Mechanical translation of set theoretic problem 
specifications into efficient ram code - a case study. In Lisp and Symbolic 
Computation, volume 4, pages 207-232. North-Holland, August 1987. 

G. D. Plotkin. A structural approach to operational semantics. Technical 
Report FN-19, DAIMI, Aarhus University, Aarhus, Denmark, 1981. 

K. Regan. Linear speed-up, information vicinity, and finite-state machines. 
In IFIP proceedings. North-Holland, 94. 

E. Rose. Linear time hierarchies for a functional language machine 
model. Student report, DIKU, Department of Computer Science, Uni- 
versitetsparken 1, 2100 Copenhagen 0,  Denmark, 1996. 

P. Weis et al. The CAML Reference Manual. INRIA-ENS, version 2.5 
edition, December 1987. 


