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Abstract: We address here the resolution of the so-called inverse problem for IFS. This problem has already
been widely considered, and some studies have been performed for affine IF'S, using deterministic or stochastic
methods (Simulated Annealing or Genetic Algorithm) [17, 10]. When dealing with non affine IFS, the usual
techniques do not perform well, except if some a priori hypotheses on the structure of the IFS (number and
type functions) are made. In this work, a Genetic Programming method is investigated to solve the “general”
inverse problem, which permits to perform at the same time a numeric and a symbolic optimization. The use of
“mixed IFS”, as we call them, may enlarge the scope of some applications, as for example image compression,
because they allow to code a wider range of shapes.
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IFS mixtes: résolution du probléme inverse par programmation
génétique

Résumé : Nous nous intéressons ici a la résolution du probléme inverse pour les IF'S, largement étudié dans
le cadre de la géométrie fractale. Celui-ci a déja été assez bien résolu dans certains cas en ce qui concerne
les TFS affines, par des méthodes déterministes ou stochastiques (recuit simulé ou algorithmes génétiques)
[17, 10]. En revanche, si 'on souhaite aborder le probléme général, c’est & dire mettant en jeu des IFS non
affines, les techniques précédentes sont difficilement utilisables, sauf si I’on pose des hypotheéses a priori sur la
structure des IFS (nombre et type des fonctions). Nous proposons ici I’emploi d’une technique de programmation
génétique pour la résolution du probléme inverse général, qui permet d’effectuer simultanément une optimisation
numérique et symbolique. La résolution du probleme inverse pour les “IFS mixtes” pourra élargir le champ de
certaines applications, comme par exemple la compression d’images, car ceux-ci permettent de coder une plus
large variété de formes.

Mots-clé : Fractales, Programmation Génétique, Probléme inverse pour les IFS
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1 Introduction

IFS (Tterated Functions System) theory is an important topic in fractals. The geometric and measure theoretical
aspects of systems of contractive maps (and associated probabilities) were worked out by J. Hutchinson [14],
and the existence of a unique compact invariant set was proven. These studies have provided powerful tools for
the investigation of fractal sets, and the action of systems of contractive maps to produce fractal sets has been
considered by numerous authors (see for example [2, 3, 8, 12]).

A major challenge of both theoretical and practical interest is the resolution of the so called inverse problem
[20, 26, 25, 4]. An exact solution can be found in some particular cases, but in general, no exact solution is
known.

From a computational viewpoint this problem may be formulated as an optimization problem. A lot of work
has been done in this framework, and some solutions exist, based on deterministic or stochastic optimization
methods. Most of them make some a priori restrictive hypotheses : affine IFS, with a fixed number of functions
[5, 15, 9, 27, 17]. Solutions based on Genetic Algorithms (GA) or Evolutionary Algorithms have recently been
presented for affine IFS [25, 10, 24, 21].

As it will be seen in section 3, non-affine IFS provide an interesting variety of shapes, whose practical interest
might be large. However, in that case, the inverse problem cannot be addressed using the “classical” techniques.
We propose to make use of Genetic Programming in that framework. As far as we know, this is the first attempt
to use Genetic Programming to solve that problem.

We will first recall TF'S theory in section 2, then present some examples of mixed IF'S attractors (section 3),
and finally detail our genetic programming method (section 4).

2 TIFS theory

An IFS (Iterated Function System) U = {F,(wy)n=1,.n} is a collection of N functions defined on a
complete metric space (F,d).
Let W be the Hutchinson operator, defined on the space of subsets of F':

VK c F, WK)= | wa(K)
n€l0,N]

Then, if the w,, functions are contractive (the IFS is then called an hyperbolic TFS), there exists a unique
set A such that:
W(A)=A

A is called the attractor of the IFS.

Recall: A mapping w: F — F, from a metric space (F,d) into itself, is called contractive if there exists
a positive real number s < 1 such that:

d(w(z), w(y)) < s.d(z,y) Va,yeF
The uniqueness of an hyperbolic attractor is a result of the Contractive Mapping Fixed Point Theorem for W,
which is contractive according to the Hausdorff distance:

e Hausdorff distance :

du(A,B) = max[gleaj((;%lg d(z,y)), %aé‘(ﬁlﬂ d(z,y))]
e Contractive Mapping Fized Point Theorem:

if (F, d) is a complete metric space, and W : F — F is a contractive transformation, then W has a unique
fixed point.

RR n 2631
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From a computational viewpoint, an attractor can be generated according to two techniques:

e Stochastic method (toss-coin)
Let zy be the fixed point of one of the w; functions. We build the points sequence z, as follows:
ZTnt1 = w;i(zy), ¢ being randomly chosen in {1..N}.
Then |J,, z,, is an approximation of the real attractor of U. The larger n is, the more precise the approxi-
mation is.

e Deterministic method :
From any kernel Sy, we build the sets sequence {5}

St = W(Sa) = U, wa(Sh)
When n tends to oo , S, is an approximation of the real attractor of U.
The inverse problem for 2D IFS can be stated as follows:
for a given 2D shape (a binary image), find a set of contractive maps whose attractor resembles more this shape,

in the sense of a pre-defined error measure.
Our error measure will be described in section 4.

sin (cos 0.90856 — log(1 + |z
e = I ST+ )
ws(z,y) = cos(cos(+/|z|))
’ cos(log(1 + [y[))
_ ( log(1 + | cos(log(1 + |y + =[))])
ws(,9) = ( \/|3i10.084698]
wao,y) = (180T | sin(1/]0.565372])|)
Y=\ /]0.81366 — ((log(1 + [0.814259])) * cos y)|
log(1 + |4/]0.747399 + cos
ws(z,y) = ( sir%( |\/| 0.73624 vl )
0.0001+]0.264553+y+0.581647+z]

Figure 1: A Mixed IFS, left, and its attractor, right.

3 Mixed IFS

In the case of affine IF'S, each contractive map w; of U is represented as:
a; bi x e;
wen=| a3

The inverse problem corresponds to the optimization of the values (a;, b;, ¢;, d;, e;, f;) in order to get the attractor
which resembles more the target.

When the w; are not anymore restricted to be affine functions, we call the corresponding IFS Mixed IFS.
The first point we have to address is the one of finding an adequate representation of these mixed IFS: the more
natural one is to represent them as trees.

INRIA



Mized IFS : resolution of the inverse problem using Genetic Programming 3

Figure 2: Other examples of attractors generated with mixed IFS.

The attractors of figures 1 and 2, are random mixed IFS: the w; functions have been recursively built with
help of random shots in a set of basic functions, a set of terminals (z and y), and a set of constants. In our
examples, the constants belong to [0, 1], and the basic functions set is:

o+ e cos
o — e sin
* X o root(z) = +/|z]

z)
o div(z,y) = e loga(z) = log(1 + |z|)

__x
0.0001+]y]

@
& WO (L)

06 ©

Figure 3: The function ((cos(z) + 2 xy) = (1 + z)). Figure 4: Representation of a mixed IFS.

We thus represent each w; as a tree (see for example figure 3). The trees of the w; are then gathered to
build the main tree which represents the IFS U (figure 4). This is a very simple structure which allows to code
IFS with different numbers and different types of functions. The evaluation of such a structure is that of a
simple mathematical expression evaluation. However, note that the evaluation is recursive, and thus may be
time consuming.

RR n 2631
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As we have seen, generating a mixed IFS is done via simple recursive random shots. The set of possible IFS
depends on the choice of the basic functions set and constants set. A difficult problem for mixed IFS is to verify
that the w; are contractive, in order to select hyperbolic IFS. On the contrary to affine TFS, this verification
is not straightforward, and is in fact computationally intractable. We thus propose to use some heuristics that
reject strongly non-contractive functions. The simplest way to do that (see section 4.3 for a finer criterion) is
to verify the contractivity on some sample points, for example vertices of a grid placed on the domain.

Besides, as we have chosen to generate IFS whose attractors are in the [0, 1] x [0, 1] domain, we verify at the
same time that each grid vertex remains in the domain.

a0 a3 @D
al a2
0,0 X

Figure 5: The domain constraint is tested on each vertex, the contractivity constraint, on each couple of vertices.

4 Genetic Programming to address the inverse problem

4.1 Introduction

Since John Koza [16] first proposed to extend the GA model to the space of computer programs, in order to
create programs able to solve problems for which they haven’t been explicitly programmed, a lot of very different
applications have arisen: robotics, control, symbolic regression for example.

Compared to Genetic Algorithms approaches (GA), the individuals in a GP population are not any more
strings of fixed length, but are programs that, when they are executed, give a possible solution to the problem.
Typically, these programs are coded as trees.

The populations programs are built from elements of a set of functions and of a set of terminals which
are typically symbols selected as being appropriate to the kind of problems we are solving. The “crossover”
operation is performed by exchanging sub-trees between the programs and generally the “mutation” operation
is not used in GP. When it is used, mutation consists in sometimes (with a weak probability) modifying a
symbol of the tree.

The evolution of a program inside a GP algorithm is done simultaneously on its size, its structure and its
content : the search space is the set of all recursively possible (sometimes according to some restriction rules)
structures, built from the functions, terminal and constant sets (see figure 6),

When applying GP (or GA) to the resolution of a given problem, one generally has to deal with several
points, namely :

e coding of the individuals,
e evaluation function of the individuals (fitness),

INRIA



Mized IFS : resolution of the inverse problem using Genetic Programming 5

e (enerate an initial population of random compositions of the functions
and the terminals of the problem (computer programs).

o Tteratively perform the following sub-steps until the termination criterion
has been satisfied :

— FEzecute each program in the population and assign to it a fitness
value according to how well it solves the problem.

— Create a new population of computer programs by applying the follo-
wing two primary operations. The operations are applied to computer
programs in the population chosen with a probability based on fitness
(selection).

* Copy some existing computer programs in the new population.

x Create new computer programs by genetically recombining ran-
domly chosen parts of two existing programs.

e The best computer program that appeared in any generation (i.e the best
s0 far individual) is designated as the result of genetic programming. This
result may be a solution (or an approzimate solution) to the problem.

Figure 6: Structure of a GP algorithm.

e definition of the genetic operators,
e choice of the parameters.

Concerning the first point, as we have already seen, the individuals of the population (i.e the Mixed IFS),
are coded as trees. It allows to code a variable number of functions (dynamically), and it is an appropriate data
structure for the mutation and the crossover.

In the following, we will address the other points, and insist on the original ones for our application : the use
of two different types of mutation and the integration of the contractivity constraints in the fitness.

4.2 The fitness function

From a general viewpoint, the fitness function is a major procedure in GP or GA applications, because fitness is
evaluated a large number of times at each generation. Moreover, in most complex problems, as the one we deal
with, the fitness evaluation step is time consuming. For these reasons, the fitness evaluation procedure must be
very carefully implemented: it can severely influence the computational time and results accuracy.

In our application, we have to characterize the quality of an IFS, that means to evaluate how far is its
attractor from the target image.

4.2.1 Fitness based on Collage theorem versus fitness based on toss-coin algorithm

Among people dealing with inverse problem for IFS with GA, it is largely admitted that the fitness function
based on the so-called collage theorem is preferable to a fitness based on a direct evaluation of the attractor

RR n 2631
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via the toss-coin algorithm. Indeed, the first method is very attractive and can be less time consuming than
toss-coin evaluation algorithm.

Collage theorem: Let A be the attractor of the hyperbolic IFS U = {wy, ..., w,}:

€
1—-2A

VK C F, du(K,W(K))<e = dg(K,A) <

) being the smallest number such that: Vn,V(z,y) € F2, d(w,(z), w,(y)) < \.d(z,y)

This theorem means that the problem of finding an IFS U, whose attractor is close to a given image I, is
equivalent to the minimization of the distance:
n
du (I, | wi(I))
i=1

under the constraint that the w; are contractive functions.

But if dg (I, Ui, wi(I)) is to be used as the fitness function in a GA (or a GP algorithm), then:

e The fitness depends on the contractivity of the maps; if one of the maps is weakly contractive, then the
term ﬁ may become very large, and the bound becomes meaningless. Moreover, in the case of affine
IFS, it is possible to estimate A and thus to minimize L5dg (I, U;-; wi(I)) to overcome this difficulty.
For mixed IF'S, the contraction factor may not be uniform over the domain and is almost impossible to

estimate.

e The Hausdorff distance itself is CPU-time consuming, and may also appear as counter-intuitive in many
cases: on the figure 7 are represented two couples of shapes [(a), (b)] and [(a’), (b’)] with dg[(a), (b)] =
dg[(a’), (b’)]. While (a) and (b) are perceived as similar, (a’) and (b’) look quite different.

0

(@) (b) @) (b)

Figure 7: Hausdorff distance may be counter-intuitive.

These drawbacks led us to use the toss-coin fitness, which experimentally provides more precise results.
Moreover, the direct computation of a distance between the target and the estimated attractor, computed using
the toss-coin algorithms allows:

INRIA
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e to have variable accuracy estimations of the attractor, by tuning of the iterations number (see section
4.2.2 below),

e to use a more intuitive distance between shapes (namely pixels difference or quadratic distance), instead
of the HausdorfF distance.

4.2.2 Practical fitness computation

In order to improve the algorithm efficiency, we have modified the fitness computation in two ways:

e As the fitness computation is the most computation time consuming procedure (it is repeated a large
number of time), it must be considered very carefully. The toss-coin algorithm generally needs a lot of
iterations to create the IFS’s attractor. But as we noticed that the population quickly converges to a rough
approximation of the target, only an approximation of the attractor may be needed at the beginning of
the optimization process. We thus make the iteration number linearly increase during the generations, in
order to provide a quickly computed approximation at the beginning of the GP, and then progressively
tune fine details along the computation.

e In order to guide the research of the optimum, we use distance images. This allows to consider “smoother”
functions to be optimized, as in [19]. A distance image is the transformation of a black & white image into
a grey-level one, where the level affected to each image point is a function of its distance to the original
shape. It can be easily computed by a simple algorithm (see [6]), based on the use of two masks (see figure
8): the resulting images are parameterized by d1 and d2 which represent the two elementary distances on
vertical/horizontal and diagonal directions. This parameterization allows to use distances which are more
or less “abrupt”. For practical reasons, we use here grey level values which are proportional to the inverse
of a distance. White pixels (value 255) are inside the attractor. Pixels get darker when their distance to
the attractor increases (values between 254 and 0).

f - 1
d2| d1 Q i-1 o | ar]i
di| o i ’dz di| d2| j+1
1 g
mask 1 mask 2
Original image Distance Masks
Distance ( Distance (10,14) Distance (20,28)
Figure 8:

The computation of the fitness of the current IFS is thus based on a measure of the difference between
its attractor and the distance image of the target. The simple byte-to-byte difference (i.e. a counting of

RR n 2631
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coinciding white pixels) is thus completed by the mean value of the grey levels of the points belonging to
the evaluated IF'S attractor. This yields to the algorithm more “local” informations about the resemblance
between the attractor and the target.

We improved this technique by varying the distance image parameters (d1 and d2) along the generations:
we begin with a very fuzzy distance image. Every x generations we modify it so that at the end it becomes
the real B&W attractor. Tolerance to small errors, and computation times have been thus improved.

4.3 Contractivity constraints

Before each individual evaluation, we have to verify if it is an hyperbolic IFS (thus yielding an unique attractor).
As we have seen before, this verification is uneasy on mixed IFS, mainly because of the non linearity of the
mappings. We have proposed in section 3 to simply verify the contractivity conditions on some sample points of
the domain, and reject the individuals which does not verify it. This is a way to discard a lot of non-contractive
IFS from the current population. But we have to notice that it may not discard some pathological mappings,
even if we use a lot of sampling points.

We propose to address this problem in a different way, which will allow at the same time to use an a prior:
information in the target image, and to reduce the computation time. Our approach is based on the fixed point
theorem.

For an hyperbolic IFS U = |Jw; whose attractor is A, each mapping w; is contractive, and thus admits an
unique fixed point X;. We must then have:

Vi, X; € A
The verification of the existence of the X;’s and their estimation can be easily performed : we built two suites

of points z, = wi(z? ) starting from two points of the domain (for example (0,0) and (1,1)):

1. Within a few iterations we can estimate the fixed point or decide that the function is not contractive. The
use of two sequences allows to speed up the fixed points estimation.

2. We then check if the X;’s belongs to the target shape. This test yields a rough estimation of the chance
of U to correctly approximate I.

Notice that 1 only gives a necessary condition for the mapping to be contractive.

Practically, we compute a constraints function: C(U) which is the mean distance value (measured on the
distance image of the target) of the X;’s to the target. If C(U) has too low a value, the fitness computation
using the toss-coin algorithm can be pruned.

The fitness computation integrates the contractivity constraints in the following way :

1. If there exists a w; which is not contractive, then fitness(U) = —1 and the individual is directly
discarded from the population.

2. If C(U) < Cy then fitness(U) = C(U)

3. If C(U) > Cy then the attractor A of U is computed using the toss-coin algorithm, and fitness(U)
measures the difference between A and the target.

4.4 Genetic operators

Crossover : we use the classical GP crossover which performs exchanges of randomly selected nodes between
the parent-trees (see figure 9).

Mutation : we decided to use mutation in our algorithm, which is a common operator in GA, but a quite rare
one in classical GP.

INRIA



Mized IFS : resolution of the inverse problem using Genetic Programming 9

Indeed,

FA AN

Parents _
— U

Nodes 1 & 2 selected for crossover

A~ —
i Offsprh

Figure 9: GP Crossover: nodes 1 and 2 are selected for crossover.

mutation in a GA is a small change in the genetic code of the chromosome, for example, in the case

of binary codes, mutation is a bit flip of one of the genes. In the case of GP, mutation has to slightly perturb a
tree structure. In this view, we have to differentiate the nodes and the leaves of the tree:

e The nodes belong to the basic functions set, which is finite. A node mutation could be to replace one node
by another basic function randomly chosen in the basic functions set. Since such a perturbation may have
too drastic effects, we have preferred not to use it.

e The

leaves are chosen in a terminals set (z or y) or in a constants set, which is a continuous interval

([0, 1]). We also have to separate the mutation of constants to the mutation of variables, because they are
of different nature. Of course we could also imagine a mutation process which transforms a constant into
a variable and reversely. However, it seems to be too violent, except in the case of variables, as we will

see.

RR n 2631

Constants: mutation is the only mean to make constants evolve. This is very important in our case,
because we need to perform a numerical optimization of the constants. We perturb the constants with
a parameterized probability (see the parameters summary, section 4.5). A constant is replaced by a
new value obtained from an uniform random shot inside a disk of fixed radius (another parameter of
our algorithm) around it (see figure 10).

Variables: an “internal” mutation, i.e. changing a = to a y and reversely is again possible, but we
preferred a mutation which changes a variable into a randomly chosen constant (see figure 11).
We have made this choice on an empirical basis: we noticed that in some cases constants tend
to disappear from the current population. Once they have disappeared, they cannot reappear in the
offsprings populations. We thus propose to use a constants creation process, via mutation of variables,
to maintain a minimal proportion of constants in the population.

The constants vanishing effect we have experimentally noticed may be explained as follows: the
numerical optimization of the constants is a more difficult task than the symbolic optimization of the
other nodes. The selection operator thus tends to eliminate too rapidly IFS having bad constants.
This difference is due to the fact that the search spaces of the nodes and variables is a finite one
while the search space of the constants is theoretically infinite.
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S

\ Node muted

Node to be muted

Figure 10: Mutation of constants.

Brate

Figure 11: Mutation of variables.

Node muted

Other techniques (that we have not tested) that allow to avoid the constants to disappear, may be to
reduce the size of the constants search space by allowing only a finite set of constants (via sampling
for example), or separate the symbolical and the numerical optimization (i.e. having a subprocess
which optimizes the constants before each IFS evaluation).

4.5 Parameters setting

As it has be seen before, there are a lot of parameters that have to be tuned to make the algorithm efficient.
We here summarize these parameters, and precise the practical settings for each :

Image size: the method was tested on images from 64x64 to 256x256 pixels.
Population size: Typically 20 to 50 individuals, bigger populations were less efficient.

Maximum number of generations: Typically 1000 to 2000: as small populations sizes are used, a large
number of generations is needed in order to converge. This approach is more efficient than an algorithm
with a large population size and a smaller number of generations.

Crossover probability: Typically 0.7 to 0.9.

INRIA
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Mutations probabilities: Typically 0.1 to 0.2 for the constants, and 0 to 0.01 for the variables.
Range of the constants: [0,1].

Perturbation radius of the constants during a mutation: between 0.05 and 0.15. The mutation of a
constant is thus a uniform random shot inside an interval centered on the constant.

Maximum and minimum allowed number of contractive maps in the mixed IFS: from 3 to 7 maps.
This is the only constraints set on the structures of the evolved IFS’s trees. No depth restrictions are
imposed. However, we experimentally verified that their structures do not excessively expand along the
evolution.

5 Results

We have tested our algorithm on shapes that were actual attractors of IFS, some generated with randomly
chosen contractive maps. The choice of basic functions for the GP is the one presented in section 3. Initial
populations are randomly chosen.

We present here three good convergence results. For each example, we present: the target attractor, the
best image obtained after convergence, the fitness evolution curve, the parameters setting, and the functions
composing the best IFS, compared to the “true” ones (in general, there is an infinite number of IFS leading to
the same attractor).

e Example #1: approximation of a square, see figures 12, 13 and table 1 for the parameters setting.

IFS of the best image: IFS of the target image:
wi(z,y) = sinz wi(z,y) = 0.5z +0.5
n& Y= sin(sin(cos(sin y))) WEY) =\ 05y 405
ws(z,y) = S}n(sm x) wa(z,y) = 0.5z — 0.5
siny 0.5y + 0.5
[ sinz _{ 0.5z +0.5
ws(2:9) = | gin(siny) ws(@.9) = { o5y 03
sin(sin(cos z 0.5z — 0.5
w4($a y) = sin(y ( )) ) w4($a y) = 0.5y — 0.5
_ [ sin(sinz)
ws(2,y) = sin(sin y) )

e Example #2 :approximation of a random IF'S, see figures 14, 15 and table 2 for the parameters setting.

IFS of the best image: IFS of the target image:
1) = (S ueosy)) ) e = (07 )
wate, = ( dnzseostinn)) wae) = 1EG 1)
wse = ( 5n2) waten = 0y )
wa(o.q) = ii);((slixjrzl)yl) ) wa(ory) ( \/Isin(log(1 + lo.g(l + |a?|))) — sin(sin z — 0.118226)|
_ sin(sin(sin z)) * cos(cos ) cos(\/|('y * o —sinz)xsiny|)
ws(@,9) = ( sin(sin y) )

RR n 2631
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e Example #3: approximation of a random IFS, see figures 16, 17 and table 3 for the parameters setting.
TFS of the best image:

cosy

sin ¢

log(1

wa(z,y) = c?é(y *le )
cos T

w3(z,y) = sin y )

walony) = ( 1/ (Isin(log(1 +log(1 + |2]))) = (sin((sin z) — 0.118226))]) )
’ cos(1/(1((y * z) — (sin 2)) * (sin y)]))

IFS of the target image:

=)
log(l + |Cos(sm z) — sin(cos(0.568514 — cos(4/ | cos y])))|)

|cos(cos(sm y) — y * cos( cas(\/\/y — cos(cos(cos(cos(sin(cos 0.473744))))))))|
o= 22

sin y

wa(z,y) = ( \/\/lo 335979 — cos \/_| )

cos y

ws(z,y) =

sm( |cos y| + = — cos(cos(sin z))) >

cos(cos(cos(COS ¥)))

The first point to remark is that the functions of the approximations does not resemble the one of the target
images (especially for the example #1): this is due to the fact that the representation of an attractor by a set
of functions is not unique.

The parameters adjustment remains an uneasy task, but we empirically noticed the following facts:

e The distance images are very efficient. It is particularly obvious on the fitness evolution curves (figures
13, 15 and even more on figure 17): when updating the distance image, the curve suddenly falls down
and then grows up again. For the new distance image, the value of the fitness becomes lower, because it is
computed on a distance image with has larger dy and ds parameters. This corresponds in fact to a more
precise evaluation of the difference between the current IFS and the target.

e The mutation of the constants is important, it brings diversity and cannot be set to zero.

Finally, the target images which yield good results are rather compact: the convergence to line-shaped targets
is more difficult.
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Figure 13: Example #1: fitness evolution. The maximum fitness of the current population is the continuous
curve, the mean fitness is the dotted one.

Image size 64 pixels

Population size 30

Max number of generations 1500
Crossover probability 0.7
Mutation probability for constants 0.2

Mutation probability for variables 0

Range of the constants [0,1]
Perturbation radius for the constants 0.1

Max and min number of contractive maps 3t06

Table 1: Example #1: parameters setting.
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Figure 14: Example #2, from left to right : original image and best images of generations 50, 300, 500 and 1000.

¥ x16

fmax
fmoy

x
0.00 0.20 0.40 0.60 0.80 1.00

Figure 15: Example #2: fitness evolution. The maximum fitness of the current population is the continuous
curve, the mean fitness is the dotted one.

Image size 64 pixels

Population size 20

Max number of generations 1000
Crossover probability 0.7
Mutation probability for constants 0.2

Mutation probability for variables 0

Range of the constants [0,1]
Perturbation radius for the constants 0.1

Max and min number of contractive maps 4t06

Table 2: Example #2: parameters setting.
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Figure 16: Example #3, from left to right: original image and be

1300.
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Figure 17: Example #3: fitness evolution. The maximum fitness of the current population is the continuous
curve, the mean fitness is the dotted one.
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Image size
Population size
Max number of generations

Crossover probability
Mutation probability for constants
Mutation probability for variables

Range of the constants

Perturbation radius for the constants
Max and min number of contractive maps

256 pixels
30
1300
0.85
0.25
0.001
0,1]
0.1
4to7

Table 3: Example #3: parameters setting.
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We

Conclusion

have proposed a method to solve the “general” inverse problem for mixed IFS within a reasonable compu-

tation time (a few hours on Sparc 10 and Dec 5000 stations). This computation time is similar to computation
times of GA applied to the inverse problem for affine TFS [18], although in the case of mixed IFS the size of the
search space is much more larger. This fact may be explained by the use of variable sized structures in the GP
algorithm, which seems to perform a more efficient search in a large space.

The method may be improved in several directions:

e test a “smoother” transition between distance images: a re-computation of distances images at every
generations would allow to let the parameters d; and ds vary more smoothly,

e test other mutation strategies, as suggested in section 4.4,

e test an adaptive radius for mutation of constants, in the same way as for evolutionary programming tech-
niques, where mutation variance is dynamically adapted, in function of the performance of the individual,

e make the iteration number of the toss coin evaluation algorithm be more adaptive (we can theoretically fix
the iterations number and the probabilities of the toss coin algorithm in order to more rapidly approximate
the attractor within a fixed error),

e modify the storage structure of the IFS in order to reduce the computation time (mainly by avoiding some
useless computations)

Such an approach might be interesting in the field of image compression. IF'S compression techniques are ge-

nerally based on affine IFS. The use of mixed IFS may yield more flexible spatial and grey-level transformations,
and thus may allow to improve the compression ratio for the same number of functions.
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