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A b s t r a c t .  In the present paper,  we review and complete the equations 
and the formalism which allow to achieve a minimal  parameterizat ion of 
the retinal displacement for a monocular visual system without calibra- 
tion. 
Considering the emergence of active visual systems for which we c a n  

no t  consider that  the calibration parameters  are either known or fixed, 
we develop an alternative strategy using the fact that  certain class of 
special displacements induces enough equations to evaluate the calibra- 
tion parameters,  so that  we can recover the affine or Euclidean structure 
of the scene when needed. 
A synthesis of what can be recovered for singular displacements in terms 
of camera calibration, scene geometry and kinematics is proposed. We 
give, for the different levels of calibration, an exhaustive list of the ge- 
ometric and kinematic information which can be recovered. Following a 
strategy based on special kind of displacements, such as fixed axis ro- 
tations or pure translations for instance, we describe how to detect this 
part icular  classes of displacement. 
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1 I n t r o d u c t i o n  

The  analys is  of mo t ion  in the  case of an u n c a l i b r a t e d  m o n o c u l a r  image  sequence 
has  a l r eady  been deve loped  by several  au tho r s ,  cons ider ing  po in t  a n d / o r  l ine 
cor respondences  or co r respondences  be tween  p l a n a r  pa tches  and  using e i the r  a 
d iscre te  or a cont inuous  r ep re sen t a t i on  of the  r igid d i sp l acemen t  be tween two or  
more  f rames.  

These  s tudies  a re  m o t i v a t e d  by  the  fact  t h a t  we must not consider an active 
visual system is calibrated [6]. However,  it  has  been  d e m o n s t r a t e d  tha t ,  in t he  
genera l  case, i t  is no t  poss ible  to  se l f -ca l ibra te  t he  c a m e r a  when zooming  or 
modi fy ing  the  in t r ins ic  ca l ib ra t ion  p a r a m e t e r s .  

Cons ider ing  this  fact ,  the  key idea  of the  p resen t  s t u d y  is t h a t  s e v e r a l  s i n g u -  
l a r  d i s p l a c e m e n t s  i n d u c e  e n o u g h  e q u a t i o n s  t o  e v a l u a t e  t h e  c a l i b r a t i o n  
p a r a m e t e r s .  

For  ins tance ,  fixed axis ro t a t ions  of known angles  or pure  ro t a t i ons  [5] al low 
to e s t i m a t e  the  ca l ib ra t ion  p a r a m e t e r s ,  t he i r  u n c e r t a i n t y  and ,  for a given k ind  
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of displacement, which parameters  are optimally est imated,  so tha t  active visual 
strategies can be developed. On the other  hand, pure translations do not allow 
to calibrate the Euclidean geometry of the scene [81, but  its affine geometry [11]. 

Collecting all this information and considering a suitable statistical frame- 
work as in [1], it is then possible to infer which kind of displacement will increase 
at most the information (usually represented by the inverse of a covariance ma- 
trix) on the scene geometry, object kinematics and calibration parameters .  

This is the goal of this paper. 

In order to a t ta in this objective, we are first going to review the theory of 
motion when no calibration: equations, parameter izat ion of motion, etc... 

We then are going to propose a synthesis of what  can be recovered in terms 
of scene geometry and kinematics when calibration is not given as an input: 
describe the different forms of calibration, the different levels of calibration and 
give an exhaustive list of the different geometric and kinematic information to 
be recovered, depending the chosen geometry. 

2 Reviewing  the theory of mot ion  w h e n  no calibration. 

N ot a t ion s .  We write vectors and matrices using bold letters, matrices being 
written with capital-fetters. The duals of vectors are represented as the transpose 
of a vector and scalars in italic. The notat ion x A y = ~ y  corresponds to the 
cross-product, the dot-product  being wri t ten as xTy .  ~ is a 3 X 3 skew-symmetric 
matr ix  1 . The identity matr ix  is writ ten I. Geometric  objects such as points, 
lines, planes are written with capital letters in 3D, and small letters in 2D. We 
represent the components of a matr ix  or a vector using superscripts from 0 to 2, 
e.g.: x = (x ~ z 1 , z ~ )  T .  

We write a = b if a is equal to b up to a scale factor, i.e. qk, a = k b. 

2.1 Setting the equations 

C a m e r a  m o d e l  a n d  f r a m e  o f  r e f e r e n c e .  We use the standard pinhole model 
for a camera,  assuming the camera performs a perfect perspective transform 
with center C (the camera  optic center) at  a distance f (the focal length) of 
the retinal plane. The pinhole model can still be used for a zoom lens if the 
object-to-image distance is not considered as fixed. 

All coordinates are related to an affine frame of reference T~ = (C, x, y,  z) 
attached to the retina, z being aligned with the optical axis, x and y being 
aligned with the horizontal and vertical axe in the image. The retinal plane is 
thus perpendicular to the optical axis Cz,as shown in figure 1. 

1 Remember that a 3 x 3 skew-symmetric matrix has 3 parameters and can always be 
represented by the crossproduct of a vector, i.e. is of the form ~ for some x. 
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3D-Structure 

Z //l~etinal plane 
plane 

Fig. 1. Elements used in the definition of the problem 

U s i n g  p o i n t s  as p r i m i t i v e s .  We represent a 3D-point M by the vector M = 
C M  = ( X ,  Y, Z )  T using Euclidean coordinates. Points in the retina, with pixel 
coordinates coordinates (u,v)  will be represented as homogeneous 3-D vectors: 
3~ m = A C m  = )~ (u, v, 1) T, corresponding to lines of a given direction passing 
through the optical center (2-D projective space). 

Other  primitives will be represented using set of points. This will be discussed 
in the sequel. 

A s u i t a b l e  m o d e l  o f  t h e  in t r in s i c  p a r a m e t e r s  of  t h e  c a m e r a .  In this 
study, we do not assume the sys tem is calibrated. However, we are in a specific 
situation because we have chosen a "canonical" frame at tached to the retina. 
Therefore, we consider only the matr ix  of the intrinsic parameters  (called A- 
matr ix)  in the projection and write: 

(o'i-o) Z m : A M  , A: vo 

0 1 

(1) 

A complete review can be found in [1]. 
In the present model, (u0, v0) is the principal point, and f the focal length; fol- 

lowing 18], we assume tha t  we k n o w  t h e  r a t i o  b e t w e e n  t h e  h o r i z o n t a l  a n d  
v e r t i c a l  f oca l  l e n g t h  and that  we assume tha t  t h e  t w o  r e t i n a l  c o o r d i n a t e s  
a r e  o r t h o g o n a l .  It  has been shown experimentally tha t  these assumptions are 
valid for s tandard cameras I8] and also for high-level visual sensors [10]. Using 
this simple model will allow us to improve the obtained results. 

We also assume tha t  the intrinsic parameters  are different for each camera  
position, as during a zoom. In the consecutive frame ~P = (CP,x~,y p, z t) we 
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write: 

Z'  m ' =  A ' M '  (2) 

R e p r e s e n t a t i o n  of  rigid displacements .  We consider motion of rigid objects 
and the ego-motion of the camera, in the discrete case. We thus represent motion 
through rigid displacements. 

It means that  the tokens in the scene are undergoing a rigid displacement 
parameterized by a rotation matr ix R and a translation vector t: 

M ' = R M + t  (3) 

2.2 Par ame t e r i za t ion  of  m o t i o n  w h e n  no cal ibration.  

The goal of the parameterization of motion is the following: given a set of points 
in correspondence between two views, i.e. a set of matches {m.m ~} we want to 
analyse all constraints which relate the two points i.e find the equations of the 
form V{m.m'}, f ( m ,  m')  = 0. In particular, we would like to predict the location 
of a point given its correspondent, i.e. a relation of the form V{m.m'}, m'  = g(m). 
Having such parameterization allows to exact all information available from the 
retinal displacements, which is measured through the set of matches. 

The  Qs-representa t ion  and the  F - m a t r l x .  Considering the 2D correspon- 
dences between two points m and m ~ in two different frames, we obtain, com- 
bining equations (1),(2) and (3): 

z' m'= Z ,A'R3-1m+ (4) 
Hem 8 

where the Q-matrix H ~  corresponds to the "uncalibrated rotational compo- 
nent of the rigid displacement", or more geometrically the eoUineation of the 
plane at infinity, while the s-vector corresponds to the "uncalibrated transla- 
tional component of the rigid displacement", also called "focus of expansion" by 
some authors, and more geometrically the epipole. These notations have been 
introduced in 18] to analyse the motion of points and lines in the general case. 

If we eliminate Z and Z' in equation (4) (by taking the cross-product with s 
and multiplying by m 'T) we obtain: 

m '~" [ t Hoo] m = 0 (5) 

F 

The matr ix F = ~ H ~  is the Fundamental matrix and is also called the "es- 
sential matr ix in the uncalibrated case". If we consider tha t  the only information 
available is related to the retinal correspondences between points, without any 
knowledge about  the depths Z,  equation (5) is the only equation that  can be 
derived [8]. 
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Considering a set of matches  related by equat ion (3) the equat ion (5) is well 
defined if and only if (i) s # 0 and (ii) there  is no linear relations between all 
m '  and m. The  degenera ted  cases occur  only if the t ranslat ion is zero, or if all 
points belong to the same plane [8] 2 . This par t icular  case will be analysed in 
detail. 

As discussed in [12] an efficient cri terion is the average retinal Euclidean 
distances between each point  and its epipolar  line. The  following symmetr ic  
least-square sum is minimized: 

[ { m }  " v w m  
f ~ ( F )  2 

[~F ~11 ~ 

(6 )  

where Wm is a weighted corresponding to the precision of the match ,  in fact the 
inverse of the variance of the precision of the  match.  The  quant i ty  Wm is given 
in pixe1-2 ,  while eF(F),  the average distance to the epipolar, is in pixel. 

A camera  for which F has been c o m p u t e d  is called a weak calibrated camera. 

The vector  s is defined as the basis vector  of the  kernel of F T. 

T h e  c a s e  o f  a p u r e  r o t a t i o n ,  a n d  t h e  p l a n a r  c a s e .  As pointed out previ- 
ously, in the case of a pure ro ta t ion or if the set of points  belongs to a unique 
planar s t ructure ,  we cannot  est imate the  F - m a t r i x  because all points  in one view 
are related to points in the other  view by a relation of the form: 

m '  ------ H In (7) 

which corresponds to two equations for each match.  
There,  if the mat r ix  F is undefined, we still can es t imate  the mat r ix  H as in 

[81, using H = I as initial value. 
Following the same me thod  as for the  F -ma t r ix ,  an efficient criterion is to 

minimize the residual dispari ty again, as in [8] and obta in  H through:  

H aT  inH[ wmm Hm t 1 �9 ((h2) T In)  I / Wm (8) 
Y 

f r o ( H )  2 
�9 I 

2 From algebraic point of view, equation (5) has singular solutions if and only if there 
exist a linear relation between m and m ' ,  i.e. a relation of the form m'  = H m. This 
situation corresponds to the case were the points are related by a collineation, i.e. 
correspond to a planar structure as reviewed in the sequel. 
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where  we wr i te  H = (h  ~ h 1 , h 2) in o rde r  to  have a c o m p a c t  n o t a t i o n  3. 

The  er ror  ~rx(H), given in pixel,  will be  cal led residual  disparity af ter  mo t ion  
reduction in the  sequel.  

Reciprocal ly ,  as soon as t he  po in t s  be longs  to  a t  leas t  two planes ,  we can 
defined a F - m a t r i x  [3]. This  d e g e n e r a t e d  s i tua t ion  thus  on ly  exists  in the  case 
of an unique plane.  

3 Using specific displacements for motion analysis. 

Let  us now discuss s i tua t ions  for which the  F - m a t r i x  or  the  H - m a t r i x  have a 
pa r t i cu l a r  form. Cons ider ing  a robo t i c  sys t em,  i t  is very of ten t h a t  a d i sp l acemen t  
is not  a genera l  d i sp l acemen t  b u t  a cons t r a ined  mo t ion  such as  a pure  t r ans l a t ion ,  
a fixed axis ro t a t ion ,  etc.. ,  as i l l u s t r a t ed  in f igure 2. 

a I / / /  

0 

/ /  

A robotic arm A mobile robot A Un'ret 

Fig .  2. Examples of robotic mechanism which generates pure translations, pure rota- 
tions or fixed axis rotations. If, on the robotic arm, (a) and (b) have opposite values 
a pure translation occurs. Applying the same command (c) on both wheels of  a mobile 
robot induces also a translation. A motion of  (a) alone, or (b) alone, on the robotic 
arm induces a fixed axis rotation. A displacement (c) applying the opposite commands 
on both wheels of a mobile robot also induces a fized azis rotation. Turrets for  camera 
can induce pure rotations in pan (e) or tilt ( f)  around the optical center. 

3 The relation m' = H m is a vectorial form for : 

l u i H~176 u+HOl v+H o2 -~- HZ o u.4.H'~] v-l.HZZ 
H lo ,~_Hll v+H 12 
Hzo u+H2X v + H  ~2 

1 
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Moreover we can make the following assumptions about  this kind of hardware 

- The displacements are reproducible. 

- We can measure the angles of the rotation. For technical reasons we do not 
assume the same thing for translations (it is not sure tha t  we can est imate the 
norm of the linear translation of a zoom for instance [6] while the precision 
of the translation of a mobile robot is not very high). 

- All extrinsic parameters  are unknown, and equations are expected to provide 
unstable est imates of them [1]. 

These part icular  constraints are far from having negative properties.  On the 
contrary, they induce additional equations which help solving the reconstruction 
or calibration problem. 

Furthermore,  the estimation of the displacement are easier in these cases, 
because we have to evaluate less parameters.  

However, the system must  be able to recognize if the displacement corre- 
sponds to such a particular case, so tha t  we must characterize the situation in 
each case. 

Finally, the different class of displacements might have several implications 
on the perception strategy, which is also to be discussed. 

The parameter izat ion of all these different kind of displacements have been 
given in [7] and will not be reported here. 

4 D e f i n i n g  a h i e r a r c h i c a l  m o t i o n  m o d u l e  

4.1 C o m b i n i n g  d i f fe ren t  m o d e l s  o f  d i s p l a c e m e n t s  

Following the previous discussion, when we est imate a rigid displacement,  we 
consider several cases, depending on the nature of the displacement. Collecting 
all constraints proposed in [7], we can describe the following set of models: 

Considering a rigid structure, the following class of displacements can be 
identified, N is the number  of parameters:  
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Clas s  of  
] D i s p l a c e m e n t  

P a r a m e t e r i z a t i o n  
or constraint 

Information 
Recovered 

Pure  r o t a t i o n  F = 0 H c r  t = 0 

Z-axis p u r e  translation F =  o 
0 

(0  0 o _~ F =  

F = , ] I F I I  = z 

F - -  , I I F I I  = z 

(:,0,!) F =  c b - a d = O  
d ' NF[[ = l 

d e t ( r  + F ~ ) = 0, d e t ( F )  ---- 0, [IFII = 

Hor = R = I , t - - z  

H~ =R=I,t----- si~0) 
0 = a t a n ( ~ - )  

Hc~=R=I 

R, t / l i t  H, eq(a) 

R = I , t / J J t [ [ ,  e q ( a )  

1 eq (a )  6 

de~(F) ---- O,s 2 = O,IIFII=z 
/ cos(O) ) 

0 = atan(~) 
eq(a)  ( K r u p p a )  7 

!Pure  r e t i n a l  t r a n s l a t i o n  

P u r e  t r a n s l a t i o n  

R e t i n a l  d i s p l a c e m e n t  

Z o o m  d i s p l a c e m e n t  

F i x e d  a x i s  r o t a t i o n  

R e t i n a l  t r a n s l a t i o n  

G e n e r a l  r i g i d  d i s p l a c e m e n t  

N 

]0i 
l i  

where eq(a) means that  we obtain equations about  the intrinsic calibration 
parameters ,  these equations being either linear equations or the quartic Kruppa  
equations, as specified. In these cases, it is not possible to maintain an estimation 
of all calibration parameters .  

In the planar case, we have: 
C l a s s  o f  P a r a m e t e r i z a t i o n  I n f o r m a t i o n  N u m b e r  o f  ! 
D i s p l a c e m e n t  o r  c o n s t r a i n t  R e c o v e r e d  P a r a m e t e r s  

S t a t i o n a r y  s t r u c t u r e  H = I R = I ,  t = 0, a = a '  0 

C o n s t a n t  r e t i n a l  d i s p l a c e m e n t  H = 0 R ---- I ,  t = ( a ,  b, 0) ,  a = a ' ,  n ---= z 2 
0 

R e t i n a l  p l a n a r  z o o m  H : c e q ( a )  4 
0 

R e t i n a l  p l a n a r  r o t a t i o n  H : d c R ,  e q ( a )  4 
0 

P u r e  p l a n a r  r e t i n a l  t r a n s l a t i o n  H : I - { - s y 1  , s  ~ : 1 R : I , s / ] I s [ [  , ~ 5 

P u r e  p l a n a r  t r a n s l a t i o n  H = I + s u  ~', s ~ = 0 R = I ,  s / [ J s [ [ ,  v 5 

R e t i n a l  p l a n a r  d i s p l a c e m e n t  H = d e R ,  t / l i t [ l ,  n ,  e q ( a )  6 
0 0  

G e n e r a l  p l a n a r  d i s p l a c e m e n t  H : 8 

In fact some other variants have also been introduced in order to have al- 
ternative models with very few parameters .  For instance a model with zero pa- 
rameters ,  corresponding to a collineation equal to the identity, i.e. a s ta t ionary 
s tructure is introduced. This allows to have a simple model assuming tha t  points 
are not moving. 

Furthermore,  this set of model has a very interesting structure,  i.e. some 
models are generalizations of others. This allows to take as best  model the first 
model, s tart ing from the bo t tom,  which statistical significance is smaller that  
every models immediat ly higher in the hierarchy. 
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4.2 E x p e r i m e n t a l  r e s u l t s  

A n  e x a m p l e  w i t h  real  data .  We consider a sequence of 16 imagesfor which 
the displacement is an approximative retinal translation, with some erroneous 
rotation because of the actual  set-up. A retinal displacement is thus expected. 

The early-vision module has provided matches between 44 points and the 
errors are given in table (1). 

displacement number of outliers residual error 
stationary structure 
pure retinal translation 
planar retinal displacement 
retinal displacement (F22 = 0) 
retinal displacement (F22 = 1) 
pure translation 
zoom displacement (s2 = 0; s'2 = 0; s0.s'0 != 0) 
zoom displacement linear (s2 - 1; s'2 = 1) 
general rigid displacement 

0 
0 
11 
8 
8 
{} 

0 
4 
11 

17.9633 
17.4948 
6.52437 
1.95843 
0.735489 
14.7264 
11.677 
0.887803 
0.84458 

Table  1. Table of residues for the real scene. 

The model is correctly es t imated also in this real case, which thus allow us 
to conclude on the validity of the proposed mechanism. 

5 C o n c l u s i o n  

In the present paper  we have reviewed and completed the description of a general 
framework which allows not only to es t imate  a minimal parameter izat ion of the 
rigid displacement between two frames, but  also to determine several part icular  
cases which occur in practice and have impor tant  advantages with respect to 
the calibration problem. This is t rue for several s tandard displacement, except 
a zoom displacement which seems to be a singular case, for the proposed model. 

The statistical framework to implement  these equations has been already 
described in 18] and has been applied here to the est imation of collineations from 
a minimal parameterization.  This paper  however generalizes the set of models to 
general rigid displacements, and proposes a complete analysis of the underlying 
rigid displacement in each case. 

Similar a t t empts  to use degenerated models of parameter izat ion of motion 
have been already issued in the past  [8, 4, 9]. However, we collect here new 
results about  the Euclidean representat ion associated to each parameterizat ion.  
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Furthermore, the implementation also integrates two new aspects: (i) clustering 
data and (ii) testing different models to represent the data. 

Finally, this work tries to develop -with a certain degree of completeness- all 
the different singularities which occur for a rigid displacement and which can 
be detected without calibration. A practical motion module has been developed 
and successfully experimented. 

A step further, we will use this hierarchical approach to not only parameterize 
the retinal displacement but also analyse the calibration of the visual system and 
recover the scene structure. A preliminary study has been issued [2] for retinal 
displacements. 
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