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Abs t rac t .  We provide a complete analysis of the geometry of N points 
in 1 image, employing a formalism in which multi-frame and multi-point 
geometries appear in symmetry: points and projections are interchange- 
able. We derive bilinear equations for 6 points, trilinear equations for 7 
points, and quadrilinear equations for 8 points. The new equations are 
used to design new algorithms for the reconstruction of projective shape 
from many frames. Shape is represented by shape descriptors, which are 
sufficient for object recognition, and for the simulation of new images 
of the object. We further propose a linear shape reconstruction scheme 
which uses all the available d a t a -  all points and all frames - simulta- 
neously. Unlike previous approaches, the equations developed here lead 
to direct and linear computation of shape, without going through the 
cameras' geometry. 

1 Introduction 

The geometry of multiple primitives in multiple frames, where a 3D model con- 
sisting of many primitives is projected to a sequences of images via unknown 
cameras, has two inherent unknowns: the camera geometry, and the shape ge- 
ometry. We do not know in advance the parameters  of the projection from 3D 
to 2D in each image, and we do not know the parameters  of the 3D shape (po- 
sition) of each point in the model. Depending on the application at hand, we 
may want to compute shape, or camera geometry, or both. For example,  tracking 
requires the knowledge of camera geometry, whereas object recognition requires 
the knowledge of shape. 

Very often, the sequence of computat ions had been argued to be the follow- 
ing: First, compute the camera geometry (by camera geometry we refer here to 
both  explicit representations, e.g., rotation and translation matrices, or implicit 
representations, e.g., the fundamental  matrix) .  Second, compute the shape us- 
ing the known projection geometry. This order of events makes particular sense 
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when the first task that  one needs to solve is the tracking of features across 
frames. 

But the reverse order of computation is also sensible: first compute shape, 
then compute camera geometry if necessary. This is the logical order when only 
shape is needed, for example, in a pure recognition task. If this is the case, it 
makes sense to compute the shape first, rather than rely in the shape compu- 
tation on an otherwise unnecessary intermediate computation (the computation 
of camera geometry), which may not always be reliable. 

This line of reasoning lead us to consider representations of shape which dif- 
fer from the traditional Cartesian coordinates (whether in a Euclidean, affine, 
or projective basis). We seek shape representations that can be computed from 
images directly and robustly, and which include sufficient detail to unambigu- 
ously identify and simulate new images of the same shape. These are necessary 
requirements for a shape representation to be "good". Thus we propose below 
new shape descriptors, describing the shape of 6-8 points, which can be directly 
and linearly computed from at least 2-4 images. The computation of these shape 
descriptors does not require the computation of camera parameters (camera cal- 
ibration, see also [13]). 

Most of the literature on the subject followed the first path, namely, comput- 
ing camera calibration first using techniques derived from multi-frame geometry 
(see, e.g., [6, 7, 10, 4]). Much less is known about multi-point geometry under 
perspective projection with uncalibrated cameras, and this gap is filled by our 
paper. We present here a complete analysis of the multi-point geometry, describ- 
ing relations between the projections of many points in an image (each relation 
has a dual relation in multi-camera geometry). This analysis provides the foun- 
dation for a computation where shape is computed first, and camera geometry 
second. A similar analysis was presented by Carlsson in [1] (see also [15]). 

More specifically, in Section 2 we show dual results to the ones obtained 
by computing camera geometry first. We first observe that a projection matrix 
from a 3D projective world to a 2D projective image is really a point in :p3 (a 
geometrical interpretation of this point is given in [1]). We then observe that  
the relations between models, projections, and images can be written in a sym- 
metrical form where models and projections are interchangeable. Using these 
observations, for every known relation between images and projection matrices 
we can derive a dual relation between images and models. 

We use the dual results to develop new algorithms for the direct computation 
of shape, without first computing camera geometry. In particular, we describe 
a linear algorithm to compute the fundamental shape matrix of 6 points from 
at least 4 images, a linear algorithm to compute the fundamental shape ten- 
sor of 7 points from at least 3 images, and a linear algorithm to compute the 
fundamental shape tensor of 8 points from at least 2 images. Experiments with 
real images are described in Section 3. In Section 4 we show how to enhance 
the shape computation to include many points simultaneously. The computed 
shape descriptions are sufficient for the identification of novel images of the same 
object, and for the prediction of new images, as described in Section 5. 
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2 A l g e b r a i c  a n d  G e o m e t r i c a l  d e r i v a t i o n  o f  R e s u l t s  

In this section we derive bilinear, trilinear, and quadrilinear relations using a 
formalism analogous (but dual) to [3]. We show duality between multi-frame 
and multi-point geometries: every relation between the vector coordinates of one 
point in many images has an almost identical equivalent here, a relation between 
the vector coordinates of many points in 1 image. This duality follows from 
the employment of a symmetrical formalism to describe multi-point and multi- 
camera geometry, where 3D coordinates of points and projection parameters are 
interchangeable (see Section 2.2). 

2.1 P r o b l e m  de f in i t i on  

Consider a model which includes more than 5 3D points in 7)3 (all 5 point sets 
are projectively equivalent). W.l.o.g. (assuming uncalibrated cameras) we choose 
a coordinate system where the first 5 points are the standard projective basis, 
and Mi = [Xi, Y~, Z~, W~] denotes the coordinates of the (i+5) point. Thus the 
shape matrix of the model M, a 4 x n matrix, is: 

i 0 0 0 1 Xl ... Xn) 
1 0 0 1 Y~ ' Y'~ (1)  

R =  0 1 0 1 Z1 . . .  Z~ 

0 0 1 1 W1 . . .  W, 

Similarly and again w.l.o.g, we choose the image coordinates of the first 4 points 
to be the standard projective basis in 7 )2. Let i n /  = [ai,bi, ci] C 7)2 denote 
the vector of homogeneous coordinates of the (i + 5) point in the image. The 
projected shape matrix m, a 3 x n matrix, is: 

( i 0 0  a0 
m =  1 0 1 b0 . . .  b~ 

0 1 1 co . . .  c,~ 

Since the image shape matrix m is a projection of the shape matrix M, there 
exists a 3 x 4 projection matrix P such that the following equality holds in 7)2: 

p .  M = m (2)  

Given our particular selection of projective bases, and using the fact that the 
first 4 points are transformed from a basis in 7)3 to a basis in 7)2, the projection 
matrix P is of the form [2]: 

P =  3 0  

0 7  

We define a corresponding projection vector in 7)3 (a geometrical interpretation 
of this vector can be found in [1]): 

p = ( a  /3 7 8) 
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2.2 M u l t i - f r a m e  a n d  m u l t i - p o i n t  g e o m e t r y  

Using Eq. (2) with the 5 + i model point Mi and the j - th  frame obtained by the 
projection camera pj ,  producing the image point ( x j i ,  y j i ,  1) gives: 

x j ~ -  7 r  ' yj~ - 7 ~ z i + 5 ~ w ~  

Clearly these equations are completely symmetrical with respect to Mi and 
pj:  if we interchange the 2 vectors, we will get exactly the same image point. 
With k frames and n + 4 points, we get the 2k x n measurements matr ix W whose 
j i  element is x j i  for j < k, and Y ( j - k ) i  for k < j < 2k (ef. [11, 14]). Now if we 
read W by columns, the i-th column gives us multi-camera geometry; if we read 
it by rows, the j - th  and ( j  + k )  - t h  rows give us multi-point geometry in a single 
image. 

We use this symmetry to obtain dual relations to those obtained for multi- 
camera geometry, by reading the data-matrix by rows instead of by columns; 
there are the following role changes: 

- The solution vector in p3 is a projection operator pj  in multi-point geometry, 
and a 3D point Mi in multi-camera geometry. 

- In multi-point geometry the data vectors are the 2 row-vectors [ x l j , . . . ,  x,~j] 
and [Yl j ,  �9 �9  Ynj] - the image coordinates in the j - th  frame of all the points. 
In multi-frame geometry, the data vector is the column-vector [x i l , . . . ,  xlk, 
yil, �9 �9 Yik] - the trajectory of the i + 5 point in k frames. 

2.3 M u l t i - p o i n t  g e o m e t r y  

From now on we fix the frame and ignore the subscript j .  Every 3D point 
Mi = [Xi, Yi, Zi, Wi] from the 5th on (i > 0), which is projected to an image 
point [ai, bi, ci], defines 2 constraints on the projection matr ix P. We write these 
as linear homogeneous equations constraining the projection vector p, V i > 0: 

[ci:  0 
c i ] ~ - b i Z i  c i W i - b i W i  " p = 0  

(3) 

(note that  X0 = Y0 = Z0 = W0 = 1). Using these equations, we obtain relations 
between models and images. 

Given n + 4 points, including the 4 image basis points and n additional 
points, (3) expands to 2n linear equations for p. The matr ix representing this 
over-constrained linear system is 2 n  • 4. Since the linear system is homogenous 
and has a non-trivial solution p, the rank of this matr ix must be smaller than 4. 
Thus the determinant of every subset of 4 rows of this matr ix must be 0. This 
gives us ( ~ )  constraints on p. 
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B i l i n e a r  e q u a t i o n s  Given 6 points (or n = 2), the constraints matr ix  is 4 x 4 
and of rank 3; thus we have 1 constraint - the determinant  of the mat r ix  must  
be 0. This gives us the following equation: 

( - a0b l - l - a0c l ) (W1X1-Y1Z1)  -k- (a lb0-b0cl ) (W1](1  - Y I Z 1 )  -F 
( - - a l  C0 - ~  b l  c o )  ( W 1  Z l  - Y1  Z l )  -{- (4) 

(--aocl q-b0cl)(Xa Ya -Y1 Zl) q- (aob~ - b l  c0)(Xl Za - Ya Za) = 0 

We propose the following shape vector as a shape descriptor, "good" in the 
sense discussed in the introduction, and fully describing the projective shape 
of the 6 points. In other words, the projective coordinates of the 6th point can 
be computed from this vector (if the shape representation is needed for some 
purpose other then recognition or the generation of new images)3: 

V 6  = [ W l  X l ,  W l  Y 1 ,  W l  Z l ,  X 1  Y 1 ,  X 1  Z 1 ]  - Y 1  Z 1 1 5  ( 5 )  

This representation can be computed from at least 4 pictures (or directly from 
the 3D model). 

We can rewrite (4) in a matr ix  form, in a dual way to the use of the funda- 
mental  matr ix  to describe the epipolar geometry: 

m ~ G 0 1 m l  = [ao,b0,c0] W 1 Y I - Y 1 Z 1  0 X 1 Y 1 - W 1 Y  1 b 1 = i f 6 )  

e l  
LY1 Z1 - W 1 Z1 - - X  1 Z 1 ~- W 1 Z1 

Whereas the fundamental  matr ix  depends on the camera calibration, the fun- 
damental  shape matr ix  G01 here depends oil the 3D shape of the object. It has 
only 4 degrees of freedom in it (up to scale), since its elements sum to 0. 

T r i l i n e a r  e q u a t i o n s  Given 7 points (or n = 3), the constraints mat r ix  is 6 • 4, 
giving us (~ )=  15 constraints. Using algebraic tools, we show that  there are 
only 7 independent equations: 3 bilinear equations involving subsets of 6 points, 
and 4 new trilinear equations. The 4 new constraints give us the following set of 
equations: 

0 0 - - a  0 c I c 2 + b 0 c 1 c 2 0 

- - "0  a2 e l  Jr a2 co Cl 0 a 0 b 2 c 1 -- b 2 c 0 c 1 0 

e o  a2 c l  -- "0 e l  c 2  0 - - a  o b 2 c 1 + a o c 1 c 2 0 

0 - -a  o c 1 c 2 + b o c 1 c 2 0 0 

0 - - a 2 b o c  1 + a 2  c o c  1 0 --bO b2 Cl + b 2 c o c  1 

o a 2 b 0 c 1 -- b 0 c 1 c 2 0 b 0 b 2 c 1 -- b 0 c I c 2 

a O a l C 2 - - a l C O C  2 a o b l C 2 - - b l C O C 2  0 0 

0 0 - - a l b o c 2 , 4 - a l C O C  2 b o b l  c2  -- 51 c o c  2 

- - ~ 1  a 2 c o  4 - a l  cO c 2 - - a 2 b l C O J r - b l C O C 2  . 1  b2 co -- . l  CO C 2 - - b l  b 2 c O  + b l  cO c 2 

--GO a 1 c 2 + aO c 1 c 2 - -e  0 b 1 c 2 + a 0 c 1 c 2 0 0 

0 0 a l b O C 2  -- b O C l C  2 - -bo  b l  c2  -~- bO Cl c 2 .  

3 1~ below deontes the vector of length 

X l  Y2 - W1 Z 2  
X 1 Z2 -- W 1 Z2 
X I  W 2  -- W 1 Z 2  
Y1 X 2  -- W I  Z 2  
Y1 g 2  -- W 1  Z 2  
"Y1 W 2  -- W I  Z 2  
Z 1  X 2  -- W 1 Z 2  

Z 1 W 2  -- W 1 Z 2  

n, whose elements are all 1. 



222 

The "good" shape descriptor of the 7 points is the following shape vector: 

V7 = [X~ Y2, X~ Z2, X~ W2, Y~ X~, Y~ Z2, Y~ W2, Z~ X2, Z~ Y~, 

z~ w~, w~ x2, w~ Y~] - w~ z ~  (7) 

As in multi-camera geometry, we can write each new trilinear constraint in 
a tensor form, using a 3 x 3 x 3 fundamental shape tensor T. More specifically, 
we have: 

E T i j k ( m ~  = 0 (8) 
i , j ,k 

Each of the 4 constraints has a different shape tensor. For example, the tensor 
of the first constraint is: 

T = [i~ ] [i~ [i ] 0~ x, 0 x2 0~ 00 00 
However, there are only 11 unknowns in all 4 tensors, and writing the con- 

straints as above allows us to compute the shape vectors from 3 images or more. 

Q u a d r i l i n e a r  e q u a t i o n s  With 8 points we have (48)= 70 constraints. Using 
algebraic tools, we show that there are only 15 independent equations: 3 bilinear 
equations involving subsets of 6 points, and 12 trilinear equations involving 7 
points. However, there are new quadrilinear equations that  define 22 independent 
constraints on a new 41-dimensional shape descriptor. 

V 8  ~ ~ W I W 2 Z 3 ,  W I X 2 Z 3 ,  W I X 2 W 3 ,  WIY2X~.  , Z I W 2 y I j  , . ~ . 1 W 2 2 3 ,  Z I W 2 W 3 ,  W I X 2 Y ~  , 2 1 X 2 W 3  ' 

Z I Y 2 X 3 ,  W I Z 2 W  $, W I W 2 X 3 ,  W I W ~ Y 3 ,  W I Y 2 Z  3, W I Y 2 W  3, W I Z 2 X 3 ,  W | Z 2 Y 3 ,  W I Z 2 Z 3 ,  

Yl Z 2 X 3 ,  Y I Z 2 Z  3,  Y ~ Z 2 W 3 ,  Y ] W 2 X  3, Y IW2Z2 , ,  Y I W 2 W 3 ,  Z l X 2 Y  3,  Z I X 2 Z 3 ,  Y I X 2 Z 3 ,  (9) 

%h X2 W3, Z l  Z2 Y 3, ZI Z2 W 3, ZI W2 X 3, ZI Y2 Z2~, ZI Y2 W3, ZI Z2 X a, XI Y2 W a, X I Z 2 Y  3, 

X I Z 2 Z $ ,  X 1 Z 2 W  s, X 1 W i Y 3 ,  X 1 W 2 Z  ~, X 1 W $ W 3 ]  -- X l y 2 z . ~ l , l l  

The derivation of the equations constraining this shape descriptor are omit- 
ted. Using more than 8 points does not lead to any new equation. 

3 E x p e r i m e n t s  

Using a sequence of real images, where features had been automatically detected 
and tracked, we compute the projective shape of the tracked points using the 
following procedure: 

Initially, we choose an arbitrary basis of 5 points. For each additional point: 

1. The corresponding shape vector V6 is computed in 2 ways: 
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L i n e a r  c o m p u t a t i o n :  all the available frames are used to solve an over- 
determined linear system of equations, where each frame provides the 
single constraint given in (4). 

N o n - l i n e a r  c o m p u t a t i o n :  we use 3 frames only: the first, middle, and 
last, and the following non-linear constraint on the elements of V6:  
V61V62V65 - V61V63V64 + V62V63V64 - V62V63V65 - V62V6~V6s 
V63V64V65 = 0 
(where V6, denotes the i-th component of the shape descriptor V6.) A similar 
non-linear constraint was derived in [8]. Optimally, the non-linear computation 
should use the solution of the linear system defined by all the frames, and 
project the result onto the surface defined by the equation above. The non- 
linear computation normally gives 3 solutions. 

2. From the shape vector V6,  the homogeneous coordinates of the point are 
computed as follows: 

X 1  V64 - V65 I/1 V64 Z~ V65 

W1 - V62 - V63 ' ~V1 -- V61 - V63 ' W1 -- V61 - V 6 2  

3. Finally, in order to compare the results with the real 3D shape of the points, 
the projective homogeneous coordinates are multiplied by the actual 3D 
coordinates of the projective basis points, to obtain the equivalent Euclidean 
representation. 

We used a sequence obtained from the 1991 motion workshop. It includes 16 
images of a robotic laboratory, obtained by rotating a robot arm 120 ~ (one f rame 
is shown in Fig. la).  32 corner-like points were tracked. The depth values of the 
points in the first frame ranged from 13 to 33 feet; moreover, a wide-lens camera  
was used, causing distortions at the periphery which were not compensated for. 
(See a more detailed description in [9] Fig. 4, or [5] Fig. 3.) 

We computed the shape of the 32 points as described above, using all the 
16 frames in the linear computation,  and using the non-linear computat ion.  The 
real 3D coordinates of about half the points, the corresponding linearly recon- 
structed 3D coordinates, and the best reconstructed 3D coordinates (among the 
4 solutions provided by the linear and non-linear computations),  are shown be- 
low. We also give the median relative error (where the error at each point is 
divided by the distance of the point from the origin), computed over all points: 

r e a l  s h a p e :  

- 0 . 3 - 1 . 7 - 0 . 3  1.8 5.3 9.9 3.2 -2 .3  1.5 - 0 . 6  0.5 1 . 5 - 0 . 5  

- 4  -2 .6  4.4 6.3 4 . 2 - 1 . 6 - 2 . 8  - 2  5 3 2 0.9 1 

16.4 17.1 19.7 20 25.3 29.8 31.6 15.1 21.7 21.5 21.6 21 21.6 

l i n e a r  c o m p u t a t i o n :  

- 0 . 3 - 1 . 8 - 0 . 6  0.9 2.8 8.9 - 0 . 8 - 2 . 4  0.7 - 0 . 6  0.3 1.3 - 0 . 4 -  

- 3 . 6 - 1 . 3  5 6.2 4 . 4 - 1 . 5  0.7 - 1 . 3  4.8 2.6 1.8 0.4 0.7 

15.8 14.7 21.5 24.9 27.5 30.1 9.7 13.4 23.5 20.2 21.1 21.1 19.2 

median relative error: 12% 
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Fig. 1. a) One frame from the lab sequence, b) One frame from the box sequence. 

b e s t  o f  l inea r  a n d  n o n - l i n e a r  c o m p u t a t i o n s :  [ 041 - 0 . 3 - 0 . 8 - 0 . 4  1.3 3.8 8.9 3.2 - 2 . 4  1.4 -0 .6  0.2 1.3 

- 3 . 6 - 2 . 4  4.6 7.9 4.4 - 1 . 5 - 2 . 2 - 1 . 3  5.3 3,3 1,9 0.4 0.7 

15.8 18.6 19.4 18 27.5 30,1 31.9 13.6 21.3 20.9 21.3 21.1 19.2 

median relative error: 5.5% 

4 Shape from many points and many frames 

W.l.o.g., consider the trilinear shape descriptor V7  defined in (7). 

L e m i n a  1 r a n k  4. Given 6 + n points,  the 11 x n m a t r i x  whose  i - th  co lumn  is 

~he shape vec tor  V 7  o f  ~he poin ls  < 1 , 2 , . . . , 6 , 6 +  i >,  i = 1 , . . . , n ,  is o f  rank  

4. 

In other words, we first select 6 fixed points and recover the shape vectors 
of the sets < 1 . . . .  ,6 ,7  > , <  1 , . . . , 6 , 8  > , . . . , <  1 , . . . , 6 , 6 + n  >. We then 
concatenate the shape vectors into a 11 x n matrix denoted W. Our claim is that 
the resulting matrix lg is of rank 4 (instead of 11). 

More specifically, let V7  i denote the shape vector of the set of points < 
1 . . . .  , 6 , 6 + i > . L e t l g = [ V 7 1  . . .  V7  n ]. It follows from (7) that: 

W = 

[0 0 0 0 . 1 0 o .  o]T[x x] 
X 1 0 0 0 0 0 0 Z 1 0 0 W 1 Y2 , - -  Y~ 

-W1 X1 - W1 -W1 -W1 Y1 - W1 -W1 -W1 -W1 -W1 -W1 -W1 Z~ ... Z~ 
0 0 X1 0 0 Y1 0 0 Z1 0 0 W2 ...  W,~ 
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Thus W is of rank 4. 
This result gives us the following algorithm for the reconstruction of shape 

using many views and many points, for an object with n + 6 points: 

1. Choose a subset of 6 "good" points (an algorithm on how to choose good 
basis points in described in [14]). 

2. For every additional point Mi, i >__ 7: 
Using all available frames (but at least 3), compute the shape vector 
V7 i of the set of 7 points < 1, 2, 3, 4, 5, 6, 6 + i > 

3. Define the 11 x n matr ix W, whose i-th column is the shape vector V7 i. From 
Result 1, the rank of W is 4. Let W denote the matrix of rank 4 which is the 
closest (in least squares) to W; W is computed using SVD factorization of W 
(see Section 4), with the decomposition: W ~ W = U �9 V, where U is a 11 x 4 
matrix, and V is a 4 x n matrix. 

4. Notice that W = UTT-lV for every non-singular 4 x 4 matr ix  T. Compute T 
such that [O00YIOOZIOOWIOIT 

U T  = X1 0 0 0 0 0 0 Z 1 0 0 W 1 (10) 
- W 1  X1 - W1 - W 1  - W 1  Y1 - W1 - W 1  - W 1  - W 1  - W 1  - W 1  - W 1  

0 0 X 1 0 0 Y1 0 0 Z 1 0 0 

for some constants X1, }I1, Z1, l/V1. This defines a homogeneous linear sys- 
tem of equations, which can be solved using, e.g., SVD decomposition. Note 
that this system can only be solved in a least-squares sense, as there are 40 
equations with only 16 unknowns (the elements of T). 

5. (a) T-1V is the shape matrix of points 7 , . . . , 6  + n. 
(b) the coordinates of point 6 are obtained from UT and (10). 

When using this algorithm with real images, our first results have been very 
sensitive to noise. Clearly the use of robust statistics (or outlier removal), in the 
solution of the linear system that  defines the trilinear shape vector, is necessary. 

5 S i m u l a t i o n  o f  n e w  i m a g e s :  

Rather than compute projective shape, the shape vectors described above can 
be used directly to simulate new (feasible) images of the object. It follows from 
Section 2.3 that 5 3D points can be projected to any location in the image. 
Moreover, there is only 1 constraint on the location of the 6th point. Thus we 
start by choosing a random location for the first 5 points, and the first coordinate 
of the 6th point. The location of the remaining points can now be computed using 
the shape vectors: 

T h e  6 t h  po in t :  we compute the shape vector V6 of the first 6 points, from 
which we obtain the fundamental shape matr ix Go1. We plug into (6) G01, 
the coordinates of the 5th point in the new frame, and 1 constraint on the 
coordinates of the 6th point. This gives us a linear equation with 1 unknown, 
and we solve for the unknown coordinate of the 6th point. 
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T h e  r e m a i n i n g  po in t s :  for each point Pi, i = 7..n, we compute the shape 
vectors V7 l, / = 1..4, which describe the shape of the first 6 points and 
Pi. From each shape vector we compute the trilinear shape tensor Tz. We 
plug each Tz, the coordinates of the 5th point in the new frame, and the 
coordinates of the 6th point computed in the previous stage, into (8). Thus 
the 4 trilinear constraints give us 4 homogeneous linear equations with 3 
unknowns, the coordinates of the i-th point. For each point Pi we solve this 
system using SVD, thus obtaining the coordinates of all the points. 

To test this algorithm we used a box sequence, which includes 8 images of a 
rectangular chequered box rotating around a fixed axis (one frame is shown in 
Fig. lb). 40 corner-like points on the box were tracked. The depth values of the 
points in the first frame ranged from 550 to 700 mms, and were given. (See a 
more detailed description of the sequence in [9] Fig. 5, or [5] Fig. 2.) 

We rotated the box by up to 4-60 ~ translated it in T~ 3 by up to 4-100 mms, 
and then projected it with uncalibrated perspective projection, to obtain new 
images of the box. The new images differed markedly from the original 8 images 
used for the computation of the shape vectors. We selected a "good" basis of 
5 points, using the procedure described in [14]. In each image, we transformed 
4 of the basis points to the non-standard basis of p2: [1, 0, 1], [0, 1, 1], [0, 0, 1], 
[1, 1, 1]. 

We used the image coordinates of the 5th point, and the x coordinate of the 
6th point, to compute the shape of the remaining points as described above. In 
a typical image, in which the size of the projected box was 83 x 68 pixels, the 
median prediction error was 0.32 pixels; the mean prediction error was 0.46. The 
mean error could get larger in some simulated images, when large errors occurred 
in outlier points. The error at each point was computed in the image, by the 
Euclidean distance between the real point and its predicted location, using the 
original (metric) coordinate system of the image. 

6 D i s c u s s i o n  

When looking at data streams containing sequences of points, we wish to use 
all the available data: all frames, all points, or all frames and all points. Under 
weak perspective projection: [12] showed how to use all the points and 1.5 frames 
to linearly compute affine structure, [13] showed how to use all the frames of 4 
points to linearly compute Euclidean structure, [11] used all the data to lin- 
early compute affine shape and camera orientation, and [14] used all the data to 
linearly compute Euclidean shape. 

The situation under perspective projection is more complex: [6, 7, 10, 4] 
(among others) showed how to linearly compute the camera cMibration from 2-4 
frames using all the points. Here (as well as in [1]) we showed how to linearly 
compute the projective shape of 6-8 points from all the frames. We also showed 
a 2-step algorithm to linearly compute the projective shape of M] the points 
from all the frames. This does not yet accomplish the simplicity and robust- 
ness demonstrated by the algorithms which work under the weak perspective 
approximation. 
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