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Abstract. In this paper, the problem of combining estimates provided by multiple 
models is considered, with application to vehicle tracking. Two tracking systems, 
based on the bounding-box and on the 2-D pattern of the targets, provide individ- 
ual motion parameters estimates to the combining method, which in turn produces 
a global estimate. Two methods are proposed to combine the estimates of these 
tracking systems: one is based on their covariance matrix, while the other one 
employs a Kalman filter model. Results are provided on three image sequences 
taken under different viewpoints, weather conditions and varying vehicle/road 
contrasts. Two evaluations are made. First, the performances of individual and 
global estimates are compared. Second, the two global estimates are compared 
and the superiority of the second method is assessed over the first one. 

1. Introduction 

In order to model a physical process, multiple models can often be designed, each of  
which is specialized on a particular aspect of  the problem. This gives rise to the issue 
of  combining multiple estimates, which is often done in two ways: by selecting the 
model providing the best estimate on a particular instance of the process (also called 
hard-switch method), or by constructing a combined estimate which weights the 
results of  the individual ones and adaptively allows smooth transitions between them 
(also called soft-switch method [1]). The availability of  multiple models can be useful 
for a robust vehicle tracking system which has to process data acquired under a large 
variety of  conditions. For instance, weather and light conditions can produce drastic 
changes in the contrast between the road and the vehicles, introducing road reflectance 
and irregularities (rain), shadows (sunny), or the presence of vehicle lights at night. Let 
us assume that several tracking techniques are available. Any given input sequence 
l(x, y, t) can be partitioned along the time dimension into various classes, representing 
characteristic illumination/weather conditions. Each estimator will generally perform 
best on some of  these partitions. Thus, for each data partition or class, several estima- 
tors can provide meaningful information for the tracking task. Since it is not feasible to 
automatically estimate at each time the "best" estimator, an unsupervised combination 
of  the tracking systems is needed. 
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In this work, we first describe two individual tracking systems (section 2), each of 
which independently estimates object motion parameters based on different visual fea- 
tures. The first feature used to represent the target is contour-based, consisting of the 
coordinates of the bounding rectangle obtained from the convex hull approximation of 
a moving-object's profile. The second feature is region-based, consisting of the 2-D 
pattern of the object. Then, two unsupervised methods for combining individual esti- 
mates of the two independent estimators are presented in section 3. Both combining 
methods take into account the instantaneous performance of the individual estimators. 
The first one computes a set of instantaneous weighting coefficients, used to combine 
the individual outputs into a global estimate. The second one provides in addition to 
the global estimate a confidence measure, which in turn is used to gate its own update. 
The performances (section 4) of the global estimates are first compared with the indi- 
vidual ones, then, a comparison is made between the two combining methods, in order 
to favor one. Results have been obtained on three image sequences with different time/ 
weather/illumination conditions, acquired from different cameras. Finally, conclusions 
are reported in section 5. 

2. Two Independent Tracking Systems 

Traffic surveillance on urban and highway scenes has been widely studied in the past 
five years. One of the most popular methods, called model-based tracking, uses a 3-D 
model of a vehicle and is structured in two steps: (i) computation of scale, position and 
3-D orientation of the vehicle (pose recovery), and (ii) tracking of the vehicle by fitting 
the model in subsequent frames by means of maximum-a-posteriori techniques [2] or 
Kalman filters [3] [4]. The vehicle model being quite detailed (3-D model), model- 
based tracking provides an accurate estimate of the vehicles 3-D position, which might 
not be needed for most applications, especially for highway surveillance. A simplified 
model of the vehicle is proposed in [5] by means of a polygon with fixed number of 
vertices, enclosing the convex hull of some vehicle's features. This approach dramati- 
cally reduces the model complexity. In [5] Kalman filters are used in order to estimate 
a vehicle's position and its motion using an affine model, which allows for translation 
and rotation. Although the method has shown good results, the fixed number of poly- 
gon vertices allows little variations on the objects shape. Some improvements on this 
point are proposed in [6] through the use of B-cubic splines, instead of polygons. In 
this case, a Kalman filter is used in order to track the curve in subsequent frames with a 
search strategy guided by the local contrast of the target in the image, i.e. with no use 
of motion information. In the context of traffic scenes, especially in the case of high- 
ways, vehicle's motion may be a powerful cue to direct the search for the target's posi- 
tion in subsequent frames. Another system that combines active contour models with 
Kalman filtering has been presented in [7]. In this case, the use of separate filters for 
the vehicle position and other motion parameters (affine model: translation and scale), 
has been shown to provide better results. 
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2.1 The Features Choice 

Several choices are possible for the target's features, such as its color, its contour or a 
pattern defining its spatial layout. The major tendencies in the existing literature corre- 
spond to representations of the target's contour and to its description as a region. Both 
representations have advantages and drawbacks. Contour-based approaches [8] are 
fast, since they are based on the (efficient) detection of spatio-temporal gradients. 
Their major drawback is that, they may not have a physical meaning. Indeed, contour 
extraction depends on the local intensity variation between an object and the back- 
ground, so that changes in their relative intensity may cause the appearance/disappear- 
ance of a contour. This type of features is thus reliable only when the contrast between 
the target and the background is sufficiently high, and constant in time. On the other 
hand, region-based approaches [9] represent the target through a 2D-pattern; they are 
quite accurate and do not depend on the background. Their drawbacks are the high 
computing time required for their manipulation (such as pattern matching [10]) and the 
sensitivity of pattern matching techniques to changes in scale and rotation. Contour- 
and region-based approaches thus appear to be complementary. 

In this paper, both types of representations have been implemented. The contour- 
based feature is based on the bounding rectangle of the convex polygon and is repre- 
sented through its center of gravity computed through its two characteristic corners 
(upper-left and lower-right). The region-based feature is the spatial pattem of the tar- 
get, which is stored in a rectangular window. For both types of features, the tracked 
position remains the same: the center of the bounding box which is also the center of 
the 2D-pattern of the vehicle. An affine motion model (translation and scale changes) 
is used and ruled by Kalman filters. 

2.2 The Kalman Filters 

The two tracking systems are based on similar Kalman filter equations described in 
[3][7]. For both systems, the Kalman filter is used to track each visual feature of the 
moving target. For each feature we use a state vector, x_ k to represent its position x~, y~ 
and instantaneous motion parameters u k, v k, s k . An affine motion model is used, which 
takes into account the translations along the x and y axes: Uk, v k , as well as the scaling 
factor s k representing the shrinkage/magnification of the target as it moves away or 
gets closer from/to the camera: ~-k = (Xk' Yk, Uk, Vk' $k )T" 

The measurements z k are the features positions, as computed from the k-th image 
frame. Therefore, the co/~espondence between the measurements and the position state 
vector is given by Equation (1), where w_ k is the measurement error and where the 
o b s e r v a t i o n  m a t r i x  H k for a given feature at a given time is defined in Equation (2). 

Z_k = H~_k(- ) + w k , (1) 

1 0 1 0 5Ck(-)-Xck ] 
n ~  = . ( 2 )  

o 1 o 1 5,kC-)-Yck ] 
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The last column of the matrix H k represents the vector joining the center of gravity of 
t T the targe (x~.,  y~.)  to one of the corners of the bounding rectangle. A change in 

�9 t . .  t . r ~  

this vector indicates a change in the target's scale, and allows the estimation of the 
scale factor s k . T h e  tracking system is decoupled into two inter-dependent subsystems 
composed of the position coordinates of the target on the one hand, and of the velocity 
parameters on the other hand. This decomposition allows for a dimensionality reduc- 
tion of the system which is advantageous for low rank matrix inversion and also for the 
association of a covariance matrix to each one of the sub-system state variables. 

2.3 The Features Measurement 

The first feature to be considered is the bounding rectangle of the moving vehicles. Its 
computation is based on the convex hull approximation of the targets profile [7]. The 
convexity assumption is not restrictive in the case of vehicles because in most projec- 
tions their profiles are pretty compact. It also considerably simplifies the matching step 
required by the tracking procedure, since it allows to by-pass problems such as contour 
regularization [11] [13]. Furthermore, an extensive literature is available describing 
efficient methods for convex hull computation [14]. The measurement of the convex 
hull can be summarized as follows. At each step k, a search window is obtained by 
translating the previous bounding rectangle, according to the predicted motion and to a 
tolerance margin for safety. The spatial and the temporal gradients are computed inside 
the search window, and points where the gradient exceeds two fixed thresholds respec- 
tively, are used for the convex hull computation[10] (cf. Figure 1). It is then straight- 
forward to derive its bounding rectangle, whose center is the tracked feature. This 
feature leads to a considerable information compression and avoids the problem of 
tracking vectors of varying size (variable number of vertices). 

Figure 1: The tracked features: (a) the convex hull approximation of the targets' contours, shown 
in white; (b) and (c) representations of the target 2D patterns, with different scaling factors. 

During the computation of the convex hull, some errors may occur. For instance, 
those introduced by an incorrect estimation of the predicted motion. In this case, the 
computed convex hull may exclude part of the target. Another source of errors degrad- 
ing the measurement step is the fact of processing odd and even image fields (image 
parity change) resulting from an error in the image video sampling. This produces arti- 
ficial temporal gradients at locations of a high spatial gradients, causing a deterioration 
in the shape of the convex hull. 

The second feature representing the tracked objects is its 2-D pattern, stored as a 
gray-level mask. Given the target mask at a given frame, two scaled versions are com- 
puted by bilinear interpolation: Ma(x,  y ) .  These two masks provide an approximation 
of the object's appearance, caused by the objects's approaching or getting further away 
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from the camera (positive or negative scale parameter). For each target, three scaled 
patterns are thus available for matching, corresponding to the scaling parameters 
a = {0.8,1,  1.15 } (cf. Figure 1). The measurement is performed by the correlation 
of the masks Ma(x, y) and a window of interest in the next image frame. For each 
scaled mask Ma(x, y),  a recognition rate R a is computed based on the correlation 
peak value, and the autocorrelation of the scaled masks: 

[~u ~v (l(x+u,y+v,t+ l ) - I (x+u,y+v, t+ l ) ) . ( M a ( u , v ) - - -  " Ma(u, v)) 
R = max . . . . . . . .  = ~ : : - ~  (3) 
a u, v ~.~(Ma(m, n) - Ma(m, n)) 

m n 

where l(x, y, t + 1 ) is the frame used for the correlation, and the sign ' - ' denotes the 
average value. The value of R a quantifies the similarity between each scaled pattern 
and the target in the next frame. The locations of the highest peaks of the correlation 
surfaces (obtained with the masks Ma(x, y) yielding the highest value of R a ) are 
retained as measurement candidates. When a scaled mask Ma(x, y),  a ~ 1 yielding the 
highest recognition rate has been selected for a sufficient number of consecutive 
frames, the 2-D pattern of the target is updated, its new scaled versions are computed, 
and the scale parameter of the motion model is updated. The mask update is achieved 
by copying into the new 2-D pattern window (with a new size), the values of image 
l(x, y, t + 1 ) around the selected correlation peak. As the size of the targets 2D pattern 
gets smaller, its correlation generally becomes unstable, giving rise to wrong measure- 
ments. In order to prevent these problems, a minimum size for the target is fixed, below 
which shrinkage of the 2D pattern is prevented. One of the advantages of this region- 
based tracking system is its immunity to incorrect temporal sampling (image parity 
change). The dynamic equations defining the tracking process require an initialization 
step, performed by a motion detection system described in [15]. 

3. C o m b i n i n g  E s t i m a t e s  

Independently from motion tracking applications, estimates combination techni- 
ques are widely used in domains such as forecasting (see [16] [12] for a survey), statis- 
tics and neural network for problems such as regression, classification and time-series 
prediction, which require robustness to noise and the capability to cope with missing 
features. The most popular combination techniques are probably the "winner take all" 
and the averaging schemes. Despite its simplicity, averaging can provide interesting 
results [17]. For instance, the averaged output of a set of n unbiased and uncorrelated 
estimators, perturbed with uncorrelated noise, yields a mean squared error which is n 
times smaller than the mean squared error produced by individual estimators. In next 
section an overview of other more sophisticated combining techniques is presented. 

3.1 Related Work 

Although estimate combination is an intuitively attractive idea, some considerations 
must be made in order to quantify its actual efficiency. The work described in [18] con- 
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siders the consequences of combining a set of individual estimates into a global one, in 
terms of global bias and variance for regression. Here, the computation of weighting 
factors multiplying the estimators' outputs is not addressed, the focus being on the per- 
formances that can be reached by combining estimates. Some general conclusions can 
be stated. The bias depends exclusively on single-estimator properties. The variance is 
composed of two additive terms: the first one depends exclusively on each estimator 
and thus grows as the number of estimators increases. The second term depends on the 
covariance of the different estimators. Thus, uncorrelated estimators should be used in 
order to decrease the variance. 

An interesting method for combining estimates, called generalized ensemble 
method (GEM) was originally introduced for regression problems [17]. It consists of a 
linear combination of a population of n individual estimators weighted by normalized 
factors c~ i . It is shown that weakly correlated estimators provide large weighting fac- 
tors. The performance of the GEM saturates as the number of individual regression 
estimators increases, that is, when individual estimators start violating the uncorrela- 
tion assumption. Therefore a small enough number of independent estimates generally 
provides the best performances of the GEM. Another formulation of the problem leads 
to similar conclusions [19]. In combining methods, it is useful to introduce the notion 
of ambiguity, which quantifies the disagreement of an ensemble of estimators, i.e. how 
a single estimator's output differs from the averaged output of all estimators [20]. It 
has been shown that the largest the ambiguity, the smaller the quadratic ensemble error. 
As it has already been pointed out, it is important to choose estimators which do not 
agree (i.e. are not correlated) in order to increase the ambiguity term and so decrease 
the ensemble error. 

The fusion of data issued from individual sensors through a formalism called hier- 
archical estimation is presented in [21]. Its goal is to merge n local estimates produced 
by n different sensors (or "local agents"), into a single global estimate. The assumption 
underlying this formulation is the linearity of the modeled dynamic process. The pro- 
posed architecture is shown in Figure 2. 

~ Global estimate -I 

I Global agent [ Ii . 

Localestimatel@Localestimate2@ Localestimaten@ I Feed'baCkl I 

ILocal Agent 1 I ]Local Agent 21 ]Local Agent n I I 

Figure 2: The fusion system is composed of n sensors, n local agents and one global agent. The 
feedback switch can be set on or off. 

Global and individual (local) estimators are all ruled by Kalman filters. Local equa- 
tions update is performed according to the customary Kalman equations, whereas the 
global equations update is achieved by the integration of local information. Therefore, 
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the global equations are updated according to the performances of individual estima- 
tors, that is inversely proportional to their respective measurement error. This method 
for computing the global estimate has two advantages: it builds a global covariance 
matrix which provides a confidence measure, and it prevents from updating the esti- 
mate when individual measurement errors are too large. Several methods for comput- 
ing normalized weighting funct ions  depending on the input data have been presented in 
[1]. Here we only report the variance-based method. The main idea is to use the esti- 
mators which are the most certain of their estimation: Under the assumption that indi- 
vidual estimators are uncorrelated and unbiased, it can be shown that the combined 
estimator is also unbiased and has the smallest variance, if the weighting functions are 
inversely proportional to the variance of the individual estimator. 

3.2 Our Contribution 

In consideration of these previous works, the following points should be emphasized: 
(i) it is important to combine only uncorrelated estimators, and (ii) a small number of 
estimators must be selected, in order not to increase the global bias and variance. Thus, 
a reduced number of independent estimators is considered. In particular, the two inde- 
pendent tracking systems based on different visual features (cf. section 2) are used as 
individual estimators. Two combining methods based on the literature are tested. 

Method 1: The Co-variance Method. The first combination method applied to our 
problem is derived from the method introduced in [17], where the i-th constant weight- 
ing factors IX i is obtained from the covariance matrix C of the misfit functions m i " 

= Zc;;,'ZZc  J 
j k j 

C O = E[mi(x ) .mj(x)]  (5) 

mi(x ) = f ( x )  - f i ( x )  (6) 

where f(x) is the target function and fi(x) is the i-th estimation. However, in the con- 
text of object tracking, target functions are not available and therefore the misfit func- 
tions cannot be computed. An alternative error function able to quantify the adequacy 
of the estimate to the target function is thus required. The measurement error, i.e. the 
error between the estimate prediction and its measurement, is proposed as the alterna- 
tive error function: 

-~k = - z k - ~ - k ( + )  �9 ( 7 )  

This approximation is valid as long as the measurement is close to the target func- 
tion and it becomes biased as soon as the measurement is not exact. In this case, our 
misfit functions will be worst-case estimates of the original misfit functions and it will 
be best-case when both, the measurement and the prediction, are equally biased. The 
advantage is that the error function of the individual estimates is computed at each time 
k, yielding an instantaneous covariance matrix of the misfit functions, and providing 
the instantaneous weights. 
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Method 2: The Hierarchical Estimation Method. The second combination method 
applied to our tracking problem is derived from [21]. Local agents provide measure- 
ments at each time t, modeled by the following equation: 

z i ( t  ) = H i �9 x ( t )  + v i ( t  ) i = 1 . . . . .  n ( 8 )  

where zi(t) is the measurement vector of agent i,  x(t) is the state vector to be esti- 
mated, v i ( t  ) is the zero-mean Gaussian measurement noise, with covariance matrix 
R i ( t  ) , and H i is a known measurement matrix. The fusion agent, collecting all indi- 
vidual measurement equations yields a global observation equation: 

z ( t )  = n .  x ( t )  + v( t )  (9) 

where: 

z(t) [zT(t) ..... 7" 7" = zn(t)] (10) 

H = . . . . .  n jT" (11 )  

v(t) = [vT(t) ..... Vn(t)]T r (12) 

The individual estimate and covariance matrix are updated according to the customary 
Kalman equations [3], whereas the global estimate ~ and the global covariance matrix 
P are updated by integrations of local agents information: 

n 

P-l(t l t)  = P - l ( t l t -  1) + Z [PTl(tl t ) -PTt l ( t l t -  1)] (13) 
i = I  

n 

P-l( t l t ) .  9c(tlt) = P- l ( t [ t -  1). Yc(tlt- 1) + ~ [eT~l(tlt) �9 9el(tit ) -pT~l(tl t -  1) . 3ci(tlt- 1)] 
i = 1  

4. Experiments 

In this section the tracking performances of the individual and global estimators are 
analyzed. The two methods described in section 3 are used to combine estimates. In 
order to accurately quantify the position error of individual and global estimates, the 
"true" position of the vehicles at each frame has been manually extracted for each 
vehicle foral l  image sequences. In some cases, the decision of assigning a true posi- 
tion to a x(ehicle is not obvious, especially when vehicle shadows appear or disappear 
from one ~rame to the next. Two comparisons are made. The first one is between the 
position error of  the individual methods vs. the global one, in order to quantify the gain 
introduced by using global estimates. The second comparison is between the two com- 
bining methods, in order to make a selection between them. 

In order to compute the global position estimate, two individual estimates issued 
from the tracking systems are available: the bounding rectangle, and the 2-D pattern of 
the target. For the combining method 2, the covariance matrix of the position needs to 
reflect the confidence of the bounding rectangle center-of-gravity position. A worst- 
case approach is used by choosing the position covariance matrix of the corner present- 
ing the largest trace (highest uncertainty). For the motion parameters, three individual 
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estimates are available: two provided by the corners of  the bounding rectangle, and one 
originated by the correlation peak, 

Figure 3: Three image sequences used in the experiments. In the first and third rows, the convex 
hull measurement is presented in white, while in the second row the correlation peak appears as 
a single white dot. The global prediction is represented (only for the second row) by a black rec- 
tangle. For all sequences, position predictions are reported by gray rectangles. 

4.1 Input Image Sequences 

The results obtained from three different image sequences are presented. They have 
been recorded at different locations, with different cameras, each of  them with its own 
relative position to the road (cf. Figure 3). Of  the three sequences, the latter two have 
been taken on a sunny day, which produces strong vehicles shadows. The first 
sequence has also been recorded with sunshine, but immediately after a rainstorm. The 
road thus appears partially wet and shadows are noticeable only where the road has 
dried. Moreover, shadows due to neighboring trees darken parts of  the road. It should 
be noticed that the contrast between the cars and the road changes significantly 
between these three sequences. 

In the third sequence (frame 3c), a wrong parity image occurs. This produces a 
noticeable deformation of  the convex hull due to the artificially introduced strong spa- 
tio-temporal gradients on the white lane marks. Objects moving far away from the 
camera present weak gradients which produce an unstable convex hull shape. This 
effect can be observed in the third row of Figure 3, especially for the group of  cars 
close to the top of  the image. Finally, two consecutive frames of the third sequence are 
missing. Although this is not noticeable in Figure 3, the effect of  this loss appears as a 
high error peak in the results (cf. Figure 4, i) and j), frame #18). 

4.2 Comparing Global and Individual Estimates 

The comparison of  the error of  the individual vs. global estimates are shown through 
diagrams where three error plots are superposed: those of  the two individual methods 
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e~ = ~(+)-x_ k et 2 = ~(+)-x_ k and the combined o n e  e~ ~ = r162 ' ~-k ~ 'TJ  - -  X-k 

where x_ k are the vector of the hand-entered "true" vehicle position at time k. The first 
plot, shown with circles, represents the instantaneous largest individual estimate posi- 
tion error: e~ ~ax = max(e l, ek 2) , while the second curve (crosses) shows the instanta- 
neous lowest position e r r o r :  e ~  i n  = " 1 2 nun(e k, ek) . Finally, the last curve (diamonds, 
solid line) represents the global estimate position error. For each image sequence, two 
such diagrams will be shown: the left one for method 1 and the right one for method 2. 

The first target to be analyzed is the car in the 1st image sequence (cf. Figure 3, 1st 
row), located at the top the image. In this sequence the difficulty of dealing with vehi- 
cle shadows is manifest. During the initialization step, performed on a darker part of 
the road, shadows were not visible and so were excluded from the vehicle's mask. 
Shadows then appear in frames 12 and 13 producing a significant increase of the error 
(cf. Figure 4, (a) and (b)). In this case, the hand-entered "true" positions did not 
include car shadows. The gradient-based tracking system is highly sensitive to these 
morphological changes of the target, and produces an increase in the estimated scale 
factor and an enlargement of the prediction of the target width and height. This 
strongly affects the tracking process and points out the need for two independent scal- 
ing factors. On these critical frames, the convex hull measurement (including shadow) 
is considerably different from its prediction (no shadow, cf. Figure 4 (a) and (b)). For 
this reason, the measurement error of this tracked feature is high and its associated 
weights remain small, compared to those of the correlation-based method. It can be 
seen that both combining methods yield a global estimate that is close to the best indi- 
vidual estimate, which is the correlation-based one. 

Let's now analyze the second image sequence (Figure 3, 2nd row) by focusing on 
the small car, the one closer to the truck. Individual estimators provide robust tracking 
performance, despite extremely small frame-to-frame displacements, thanks to the 
high vehicle/road contrast. However, its individual estimators present large errors, rela- 
tive to the small target size (= 10 pixels). The estimate of the combining method 1 is 
often between the two individual ones, indicating that individual measurement errors 
are of the same order (cf. Figure 4 (c) and (d)). The estimate of the combining method 
2 (cf. Figure 4, (d)), does not follow any of the individual estimates, indicating that the 
individual measurement errors are large. Its error is almost always smaller than even 
the best individual one. Let's now consider the truck. Individual errors are very small, 
relative to the targets size (=- 27 pixels). Since the 2-D pattern is so large, the correla- 
tion-based method is very reliable. Some errors are introduced by the image crop when 
the truck slowly exits from the upper border of the image (cf. Figure 4 (e) and (f)). It 
can be seen that both global predictors perform well. 

Let's analyze the performances on two vehicles of the third image sequence (Figure 
3, 3rd row). The first object to be analyzed (Figure 4 (g) and (h)) is the group of cars at 
the top of the image. For the correlation-based tracking system, errors are due to a 
wrong mask initialization which includes part of the road. For the other tracking sys- 
tem, the cause of the large errors are the weak spatio-temporal gradients. Similarly to 
the previous experiments, when both individual measurement errors are equally high, 
the estimate of the combining method 1 falls in between the individual ones. For the 
combining method 2, these large measurement errors prevent from updating the global 
estimate, which thus provides almost always smaller error than both individual ones. 
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Figure 4: Position error diagrams: largest individual ( -0 - - ) ,  lowest individual ( + ) ,  and global ( - - 0 - )  with 
solid line. First sequence: (a), (b) car at the top of the image. Second sequence: (c), (d) small car; (e), (f) 
truck. Third sequence: (g), (h) group of  small cars; (i), (j) single car. Left: combining method 1; right: com- 
bining method 2. 
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The vehicle described in Figure 4 (i) and (j) is the large clear car on the right lane of 
Figure 3, 3rd row. The effect of the wrong temporal sampling is clear in frames nos. 7 
and 8, as well as the effects of the missing frames at frame no. 18. These two peaks in 
the error are mostly limited to the gradient-based tracking system, correlation being 
rather insensitive to these accidents. Besides these critical frames, errors are generally 
small relative to the target size (= 50 pixels). The two combining methods are approxi- 
mately equivalent, and both are generally better than the best individual one. 

TABLE 1. Performance of the combining estimates method #1. 

T r a c k e d  % % % better approx, avrg. error avrg. error 

v e h i c l e  ~comb < e~nin ~comb > ~max than targets ize  of  best combined 
~k - ~k - ~k average (pixels) individual est imate 

Fig. 4a) 16 % 8 % 64 % 20 3.0 3.3 

Fig. 4c) 31% 0 % 63 % 50 2.1 2.6 

Fig. 4e) 20 % 0 % 80 % 10 1.1 1.5 

Fig. 3.2 60 % 6.66 % 80 % 36 1.5 1.3 
large car 

Fig. 4g) 40 % 20 % 53 % 27 1.1 1.2 

60 % 0 % 90 % 20 3.5 3.3 Fig. 4i) 

TABLE 2. Performance of the combining estimates method #2. 

T r a c k e d  % % % better approx, avrg. error avrg. error 
than target size of best combined 

v e h i c l e  ~comb < eff~ ~comb > ~ma~ 
~k - ~k - ~k average (pixels) individual est imate 

Fig. 4b) 88 % 0 % 96 % 20 3.0 1.8 

Fig. 4d) 73 % 0 % 89 % 50 2.1 2.0 

Fig. 4f) 60 % 0 % 100 % 10 1.1 1.0 

Fig. 3.2 66 % 6.7 % 93 % 36 1.5 1.3 
large car 

Fig. 4h) 13 % 26 % 53 % 27 1.1 1.3 

Fig. 4j) 70 % 0 % 95 % 20 3.5 3.0 

A more quantitative comparison of the performances of individual vs. global estima- 
tors is given in tables 1 and 2, which respectively concern combining methods 1 and 2. 
The comparison between the errors of different estimators is given in terms of several 
table entries. One is the percentage of occurrences where the global estimate performs 
better than the best individual estimate or, in error terms, when ~cornb < ~min Another ~k -- ~k " 
index counts the percentage of occurrences in which the global estimates is worse than 
the worst individual estimates ( e ~  ~ > e ~  ax ). Finally, we compare thegiobal estimates 
with what could be the estimates of a trivial integration method, i.e. the simple average 
of the individual estimates ( ~koc~ -< (e~ + e~)/2 ). The two last columns show the ave- 
rage of the position error, over multiple frames. In order to have an indication of rela- 
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tire importance of these errors, the vehicle size (in pixels) is reported with each set of 
measures. 

In terms of average errors, by looking at table 1, it appears that the estimate of the 
1st combining method, although it remains within reasonable bounds, only outper- 
forms the best individual estimate for one vehicle. The second combining method, 
however, has much better performance, consistently better than the lowest individual 
error. In the only case where this is not true, the individual error is already small (1.1 
pixels), for a target size of approximately 27 pixels. It appears that the global estimate 
provided by the combining method 1 performs well only when the features measure- 
ment does not present major difficulties for neither individual tracking systems, as pre- 
dicted in section 3. Apart from this specific weakness, global estimates of both 
methods are in general sensitive to the following sources of errors: (i) wrong mask ini- 
tialization; (ii) inaccurate mask update; and (iii) consistently wrong feature measure- 
ments in both individual tracking methods (only for the combining method 1). 

5. Conclusions 

In this paper, we introduced the problem of combining multiple models of a dynamic 
process, and presented an application to target tracking using multiple motion estima- 
tors. Two independent tracking systems are used: one is based on the bounding-box of 
the moving object, the other one uses the object's 2-D pattern. Both individual tracking 
systems provide motion parameters estimates which are then combined into a global 
one. Several classes of combining methods presented in the literature are reviewed. 
Tracking performances are evaluated on 6 vehicles, from three different outdoors 
image sequences. To precisely compute each individual and global estimate error, the 
"real" vehicle positions at each frames have been hand entered. 

The first method is based on a linear combination of the individual estimates, 
whose weights are inversely proportional to the covariance matrix coefficients. When 
the two individual methods both provide good estimates, then the results of this com- 
bining method represent an improvement, yielding smaller position error than each 
individual one. When neither individual method performs correctly, however, then 
combining method does not introduce any improvements. This is due to the practical 
need to replace the error function, usually computed through a training set, by the mea- 
surement error, which is a pessimistic estimate when the measurement is not exact, and 
optimistic when both measurement and prediction are equally wrong. Overall, this 
combining method has been shown to be superior to the averaging technique. How- 
ever, only in some cases does this method outperform the best individual estimate. 

The second combining method integrates the estimates of the individual methods 
using a Kalman filtering approach, In this case, the combined estimates clearly outper- 
form both the averaging and the best individual estimate. In five cases out of six, the 
error of the combined method was significantly reduced, while in the sixth case, the 
individual estimates were already very good. The performances of this combining 
method can be further improved by avoiding errors due to wrong mask initialization, 
and improper mask updates. A comparison between the two proposed combining 
methods clearly shows the superiority of the second, Kalman filter-based one, both in 
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terms of average position error, and in the number of frames where the results outper- 
form the best instantaneous individual method. These result are encouraging. 
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