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Abs t r ac t .  The temporal changes of gray value structures recorded in 
an image sequence contain significantly more information about the re- 
corded scene than the gray value structures of a single image. By incor- 
porating optical flow estimates into the measurement function, our 3D 
pose estimation process exploits interframe information from an image 
sequence in addition to intraframe aspects used in previously investigated 
approaches. This increases the robustness of our vehicle tracking system 
and facilitates the correct tracking of vehicles even if their images are lo- 
cated in low contrast image areas. Moreover, partially occluded vehicles 
can be tracked withoutmodeling the occlusion explicitly. The influence of 
interframe and intraframe image sequence data on pose estimation and 
vehicle tracking is discussed systematically based on various experiments 
with real outdoor scenes. 

1 I n t r o d u c t i o n  

Many computer  vision approaches to pose refinement match  model features only 
to s ta t ionary da ta  features, for example edge elements or edge segments which 
are extracted f rom a single image frame. Applying such an approach to evaluate 
an image sequence, the temporal  aspects of image sequence da ta  appear  to be 
insufficiently exploited. 

In order to avoid matching moving objects to s tat ionary image features tha t  
exhibit coincidentally the same gray value structure as the object image under 
scrutiny we do no longer match  polyhedral vehicle models only to s tat ionary 
image gradients which is described in more detail in [Kollnig & Nagel 95]. Rath-  
er than restricting the update  step only to these intraframe data,  we extend the 
update  step to evaluate optical flow vectors as interframe image contributions. 
Optical flow estimates the apparent  shift of gray value structures. In this contri- 
bution, the est imated optical flow is matched to the motion field (also denoted 
as displacement rate), i.e. the image plane velocity of projected scene points. 

The domain of discourse of our investigations is illustrated by an image se- 
quence recording gas station traffic (see Figure 1). The tracking of vehicle C is a 
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Fig.  1. 350 th frame of an image sequence showing gas station traffic. Vehicle t, 
has stopped in front of the petrol pump area, a dark vehicle B has stopped on the 
rear lane behind the petrol pump area. An additional vehicle C is just  passing 
the vehicle B in order to pull up to the leftmost petrol pump. This significantly 
occluded moving vehicle C will be discussed in more detail. 

challenge since it is significantly occluded by other vehicles as well as by statio- 
nary scene components. In addition, its image is located in a low contrast image 
environment. The image features which provide significant cues for the vehicle 
image cannot, therefore, be found only in the spatial gray value gradients. As Fi- 
gure 2 illustrates, important  information is contained in the optical flow vectors 
estimated from spatio-temporal gray value gradients. This information enables 
the image sequence analysis system to track partially occluded vehicles without 
explicitly modeling the occlusion. 

2 R e l a t e d  P u b l i c a t i o n s  

A review of relevant literature can be found in [Sullivan 92; Koller et al. 93; 
Sullivan et al. 95; Cddras & Shah 95], for optical flow estimation see [Barron et 
al. 94; Otte & Nagel 94; Otte & Nagel 95]. We can, therefore, confine ourselves 
to recent publications. 
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Fig. 2. An enlarged section of Figure 1. The significantly occluded vehicle C is 
moving from right to left. The estimated optical flow vectors shown in (b) are 
better cues for the vehicle image than the gray values of the current image frame 
(a) themselves. The optical flow vectors overlap most of the visible parts of the 
image of vehicle C. 

[Otte & Nagel 94] recorded a three-dimensional polyhedral scene with a mo- 
ving camera on a robot and compared the results of various optical flow estima- 
tion approaches with ground truth about image motion, but did not exploit the 
measured differences in order to update a pose estimate. 

[Schirra et al. 87] as well as [Gong & Buxton 93] track vehicles by clustering 
and chaining displacement vectors. After determining optical flow and its dis- 
continuities using non-linear diffusion, [Proesmans et al. 94] estimate 2D vehicle 
motion parameters. In distinction to our 3D pose estimation and tracking, these 
three groups confine themselves to techniques in the 2D image domain. 

Supposing that an initial value for the object pose is available, for instance 
chosen interactively, [Worrall et al. 94] proposed a pose refinement of active 
models using forces in 3D without an extraction of line segments. [Tan et al. 
94] localize vehicles without feature extraction, too, based on a 1D correlation 
technique. Both use a histogram voting and peak searching process in order to 
determine the vehicle pose whereas we compute the Jacobian of  the measurement  
funct ion  to update the 3D pose with a Maximum-A-Posteriori (MAP) estimation 
process. Moreover, in distinction to the approach of [Worrall et al. 94; Tan et 
al. 94], we obtain initial pose estimates automatically by segmenting an optical 
flow field. The framework of our approach can be seen as analogous to the work 
of [Lowe 87], [Koller et al. 93], and [Kollnig et al. 94]. However, none of the cited 
approaches exploits optical flow estimates in order to update a 3D pose estimate. 
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3 Computing the Motion Field 

The five-dimensional state vector 

~(t)= (px(t), py(t), r  v(t), w(t)) T (1) 

to be est imated by our pose est imation algori thm comprises the position p = 
(p~, py, O) T and orientation r of the vehicle model relative to a reference (world) 
coordinate system in the road plane as well as the magnitudes of the translat ional  
velocity v and angular velocity w. 

In our implementat ion,  the trajectory of the vehicle model reference point 
p(t) is assumed to be (locally) described by a simple circular motion model with 
constant magnitudes of the translational and angular velocities: v(sin t) 

p(t) = C +-- -cosr , (2) 
V2 

0 

where C denotes the center of the circular trajectory and # = v/w its radius. 
This model contains a straightforward movement  as special case (infinite radius 
of the circle). 

Let xm denote the coordinates of a point in the (vehicle) model coordina- 
te system, ~w its position vector in the world coordinate system and ~c its 
coordinates in the camera coordinate system, respectively. 

The trajectory of a scene point on tile vehicle surface with the model coor- 
dinates ~,~ is given by the following equation: 

where R~m (r denotes a orthonormal 3 • 3 matr ix  describing the rotation of the 
model coordinate system with respect to the world coordinate system. The 3D 
motion ~w of a scene point with model coordinates ~m is given by 

= = v 

c~162  

( 3 )  

The 2D image coordinates ~ of a 3D point with the world coordinates ~ 
are obtMned by the following chain of operations: 

~c = R k ~  + tk~ , (4) 

( 5 )  
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The rotation matrix Rk~ as well as the translation vector tkw contain external 
camera parameters, whereas the focal length ( f , ,  fy)T as well as the principal 
point (x0, yo) T represent internal camera parameters. External and internal ca- 
mera parameters are to be estimated a priori by a calibration step. 

The derivation of operations given in equations 4 and 5 with respect to 
time expresses the dependence of the 2D motion field vector ~ at the pixel 
location ~ on the 3D motion ~w of the corresponding scene point with the 
model coordinates ~m : 

0~ 0~o ~ ( ~ ( t ) , ~ m )  (6) 

Exploiting equations 4 and 5, we obtain: 

0~c 
= Rk~ , (7) 

0xw 

Zc (8) 
O~ge ~ 0 fy 1 y~ ! " 

In order to estimate the motion field vector ~(a~,(t), ~) at each pixel location 
at time point t, we determine the model coordinates x,~ of the corresponding 

3D scene point by means of a ray tracing algorithm and by exploiting a priori 
knowledge about the scene and the current state vector ~(t). Substituting equa- 
tions 3, 7, and 8 into equation 6 yields the motion field vector ~ at the pixel 
location ~. 

Analogous considerations hold for the estimation of a motion field vector 
~(~(t), ~) at a pixel location ~ which represents the image position of a shadow 
point cast by a vehicle, except that  we have to perform two ray tracing steps: 
one to get the corresponding scene coordinates of the shadow point and a second 
one to get the vehicle point which is projected onto the shadow point. 

4 U p d a t e  S t e p  

Let ~k = ~(tk) denote the state vector (see equation 1) to be estimated at 
halfframe time point tk. We adopt the usual dynamic system notation (see, e.g., 
[Gelb 74]) denoting by (5~-, P [ )  and (~+, P+) ,  respectively, the estimated state 
vectors and their covariances before and after an update which incorporates the 
measurement at halfframe time point tk. 

Let an initial guess ~o about state vector a~0 be provided by a data  driven 
motion segmentation step as described by, e.g., [Bouthemy & Francois 93; Gong 
& Buxton 93; Proesmans et al. 94; Kollnig et al. 94] or by a predicted estimate 
~k exploiting the state vector ~k-1 ^ + at the previous halfframe time point tk-1 and 
a state transition function with respect to a vehicle motion model. A view sketch 
is then generated, i.e. a set of model edge segments, by projecting edges of a 3D 
polyhedral vehicle model from the scene into the image plane and by removing 
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invisible edge segments by a hidden-line algorithm. At each pixel location ~ of 
the frame at time point tk, let hllvgll(Zk, ~) denote the synthetic gradient norm 
as described by [Kollnig ~ Nagel 95] and let (h~(zk,~), hv(~k,~)) T = ~(xk,~) 
denote the motion field according to equation 6. The measurement function 

h(~k,~)  = I hu(z~k,~) (9) 
/ 

\ 

is nonlinear in the state vector xk since the perspective projection is nonlinear. 
At each pixel location ~ of the halfframe at time point tk, we estimate 

( ]]Vgk(')]]2 / 

the Euclidean norm ]lVgk[]2 of the gray value gradient as well as the optical flow 
v) T 
We assume that the measurement zk (~) at the current halfframe time point 

tk at the pixel location ~ is equal to the measurement function h(xk,~) plus 
white Gaussian measurement noise Vk with covariance Rk: 

= h( k, + vk.  (11) 

Assuming the state vector Xk is normally distributed around the estimate 
~ -  with covariance Pk-, a MAP estimation can be stated as the minimization 
of the following objective function: 

1 p _ - i  
+-~ (xk -- x_~)T k (~k -- ~-k) -+ min~k (12) 

resulting in an update step of an iterated extended Kalman Filter (IEKF) [Bar- 
Shalom ~: Fortmann 88; Gelb 74]. n denotes the size of the image region to be 
summed over. In our actual implementation, each term of the sum is weighted by 
the confidence (the estimated singular value) of the corresponding optical flow 
vector. 

5 R e s u l t s  

5.1 D o w n t o w n  In te r sec t ion  Sequence 

We discuss the results of our experiments with an image sequence illustrated by 
its first frame in Figure 3. 
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Fig. 3. An enlarged section of the 3 rd frame of an image sequence recording 
downtown intersection traffic. The location and shape of detected moving image 
regions are described by an enclosing rectangle with one side parallel to the 
direction of motion. The lines inside the rectangle form an arrow in the direction 
of motion. By means of an off-line calibration process, these vehicle hypotheses 
are backprojected from the 2D image plane into the 3-D world. The resulting pose 
estimates are used to initialize a Kalman-Filter tracking process. The vehicles 
are referred to by numbers indicated in this frame. 

In order to systematically analyze the influence of the optical ftow mea- 
surements on the pose update and tracking, we first exploit only the optical 
flow, neglecting a match of image gradients, i.e. ignoring the first component 
h]Wgtj (ze~, ~) of the measurement function given in eq. 9. A potential deficiency 
of the approach based purely on the new measurements is thus not covered by 
the robustness of the previously used approach [Kollnig & Nagel 95]. 

Although we could track a remarkable number of vehicles exploiting only 
optical flow estimates as measurements (see, too, Section 5.3), the object #12 
could not be correctly tracked in this mode. 

In order to assess the state-estimations, we compare the root of the estima- 
ted state covariance diagonal elements (standard deviations) for object #12 for 
three different tracking methods (see Figure 4): using only image gradients in 
the measurement function (first row in Figure 4), using only optical flow (se- 
cond row), and finally combining these two approaches (last row). The three 
diagrams in the left column show the temporal development of the estimated 
standard deviations for the (estimated) position of the object in the road plane. 
The middle diagram shows, that the estimated position is not very accurate if 
we exploit only optical flow measurements: the estimated standard deviations 
remain in the vicinity of their initial values. This is taken as an indication that 
we cannot rely only on the optical flow measurements. The estimated motion 
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field depends on the vehicle position, but the vehicle images are too small in the 
image sequence under scrutiny for the motion field to vary significantly along a 
vehicle image. Combining the two kinds of measurements, the position estima- 
tion becomes accurate even without modeling occlusion, see Figure 4 (bottom, 
left). The orientation can be better estimated by exploiting optical flow than 
image gradients, see Figure 4 (right column). In the latter case (first row), the 
estimated orientation oscillates in the initial phase with a significant amplitude. 
In both cases (position and orientation), the combination of image gradients and 
optical flow yields the lowest values for the estimated standard deviations and 
thus yields the most reliable state estimations. Similar considerations hold for 
the estimation of the remaining state components (speed and angular velocity). 

Figure 5 demonstrates the evaluation of the entire sequence with superimpo- 
sed results. 

5.2 Gas Station Image Sequence 

In a second experiment, we have tested our new approach by means of an image 
sequence recorded at a gas station (see Figure 1). Due to space limitations, we 
focus on the tracking of vehicle c which turns out to be the most challenging 
case: it is partially occluded by stationary scene components and by the vehicles 
h and B. Moreover, vehicle C is moving in a low contrast image area under the 
gas station roof. The tracking is shown in detail in Figure 6. The left column 
shows the result of the updated pose estimation, while the right column depicts 
the estimated optical flow field. The resulting trajectories are shown in Figure 7. 

5.3 Testing B e n c h m a r k  I m a g e  Sequences 

In order to assess our approach, we tried to track vehicles only on the basis 
of optical flow matching in image sequences in which we are able to track all 
moving vehicles with our former approach (i. e. only using the image gradient). 

Based only on optical flow estimates, we could correctly track 11 out of 12 
moving objects in the Durlacher Tor sequence and 10 out of 12 moving objects 
in the Ettlinger Tot sequence. In the latter sequence, we could even track the 
partially occluded vehicle moving in front of a bus, while we got problems with 
our former approach. 

Moreover we noticed, that by exploiting only optical flow vectors, a rough 
initial estimation for the orientation of the bus can be corrected in 3 iteration 
steps, significantly less steps than those which are necessary in the approach 
exploiting only image gradients [Kollnig &; Nagel 95]. However, by exploiting 
only optical flow, the position component in the driving direction is not correctly 
updated. 

6 C o n c l u s i o n  

As far as we know, we present the first approach in which exploiting interframe 
image data leads to an improvement of tracking objects in the 3D scene domain 
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F i g .  4. E s t i m a t e d  s t a n d a r d  dev ia t ion  ( root  of  the  d i agona l  s t a t e  covaraince ma-  
t r ix)  for pos i t i on  (left co lumn)  and  o r i en ta t ion  (r ight  co lumn)  of  vehicle # 1 2 .  In  
the  first row, only i m a g e  g rad ien t s  are used in the  m e a s u r e m e n t  funct ion .  Here 
we had  to  expl ic i t ly  m o d e l  the  occlusion in order  to  t rack  the ob jec t  proper ly .  
In  the  second row only  op t ica l  flow is used without expl ic i t ly  mode l l i ng  the  oc- 
clusion. In  the  las t  row, image  g rad ien t s  and  op t ica l  flow are combined  in the  
m e a s u r e m e n t  funct ion .  In  the  case of  the  single use of  op t ica l  flow, the  e s t i m a t e d  
position is no t  very accura te :  the  e s t i m a t e d  s t a n d a r d  dev ia t ions  r e m a i n  in the  
v ic in i ty  of  the i r  i n i t i a l  values (second row, left) ,  while  the  single use of i m a g e  
g rad ien t s  resul t s  in a more  re l iable  e s t i m a t e  ( top  left  d i ag ram) .  On the  cont ra -  
ry, the  orientation can be  e s t i m a t e d  be t t e r  by  means  of op t ica l  flow t h a n  wi th  
i m a g e  gradients .  In  b o t h  cases (pos i t ion  and  or ien ta t ion)  the  combined  use of  
image  g rad ien t s  and  op t ica l  flow reduces  the  e s t i m a t e d  s t a n d a r d  dev ia t ions  in 
d i s t inc t ion  to the  i so la ted  use of  e i ther  m e a s u r e m e n t  ( last  row).  
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Fig.  5. The results of uninterrupted tracking of the objects recorded in the 
downtown intersection sequence until halfframe time point 250 th. 

Fig.  6. Evaluation of the image of vehicle r of the gas station sequence. It is 
occluded by other cars and by stationary scene components, for instance a lamp 
gallery. The left image shows the updated pose estimate, while the right image 
depicts the estimated flow vectors for halfframe #700.  The occluding scene com- 
ponents can be recognized in the optical flow field although they are not modeled 
explicitly. 



398 

Fig.  7. Computed vehicle trajectories for vehicles A, B, and C. 

compared to using intraframe image data only, for instance image gradients. 
The influence of both kinds of measurements on the pose estimation is discussed 
systematically in different real-world image sequences. The robustness of the new 
approach has been demonstrated on a considerable range of vehicles which are 
partially occluded and can be correctly tracked without modeling the occlusion 
explicitly. 
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