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A b s t r a c t .  Reconstruction by zooming is not an unachievable task. As 
it has been previously demonstrated,  axial stereovision technics allows to 
infer 3D information, but  involves very small triangulation angles. Accu- 
rate calibration, data  matching and reconstruction have to be performed 
to obtain satisfactory modelling results. In this paper, a new approach is 
proposed to realize dense reconstruction using a static camera equipped 
with a zoom lens. 
The proposed algorithm described in the following sections is divided in 
three major steps: 

- First of all, the matching problem is solved using a correlation algo- 
rithm that  explicitely takes into account the zooming effect through 
the images set. An intensity-based multiscale algorithm is applied to 
the feature points in the first image, to obtain unique point corre- 
spondences in all the other images. 

- Then, using pixels matched by the previous method, an iterative 
process is proposed to obtain a sub-pixel matching. 

- Finally, the 3D surface is reconstructed using image point correspon- 
dances. The modelling algorithm does not require any explicit cal- 
ibration model mad the computations involved are straightforward. 
This approach uses several images of accurate regular grids placed 
on a micrometric table, as a calibration process [1]. Complete ex- 
periments on real da ta  are provided and show that  it is possible to 
compute 3D dense information from a zooming image set. 

K e y - w o r d s  : Correlation, Dense Reconstruction, Axial Stereovision, hn- 
plicit Calibration. 

1 I n t r o d u c t i o n  

Zoom-lens  are c o m m o n l y  used to cap tu re  precise de ta i l s  of a. g loba l  scene b u t  
more  recent ly  [2], [3] have shown tha t  is also possible  to infer 3D in fo rma t ion  
f rom a zoom-lens  moun ted  on a s ta t ic  camera .  

In th is  paper ,  using high qua l i ty  ca l ib ra t ion  grids,  the  m o d e l l i n g  p r o b l e m  
is t ransfer red  into a. met r ic  space defined between two grids.  In [1], expe r imen-  
t a t i ons  on real  d a t a  show t h a t  this  new ca l ib ra t ion  approach  leads  to  a much  
more  accura te  recons t ruc t ion  than  in previous  e x p e r i m e n t a t i o n s .  The  accuracy  
achieved is be t t e r  t han  1 m m  in z -coord ina te  for a. p l a n a r  gr id  l oca t ed  1 me te r  
in front  of  the  camera .  Even data. close to the opt ica l  axis lead to re levant  recon- 
s t ruc t ion .  However,  in expe r imen t s  descr ibed in [1], po in t s  m a t c h i n g  observed 
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through the whole images set have been carried out manually, by a sub-pixel 
cross detection. 

In order to improve this step, this article proposes a matching algorithm 
based on a surfacic correlation method that  takes into account the zooming 
effect. 

Then, in order to valid this approach, dense reconstructions on real objects 
are presented and some statistical analysis performed to measure the modelling 
reliability. 

2 Calibration Algorithm Using Two Reference Grids 

Let us suppose we have a distorted grid image (Figure lb);  distortion phenomena 
can be produced by optics, electronics or sampling problems. A classical non 
linear pin-hole calibration tries to insert these phenomena into the mathemat ica l  
model of projection but this kind of model can never be perfectly accurate. If it is 
possible, as shown in Figure la, to compute a t ransformation from the distorted 
grid to the regular one, then distortion effects can be corrected. In this way, any 
new image taken with tile camera can be mapped in the reference grid, which is 
assumed to be as perfect as possible. 

•r 

P3 ?2 

u 

pO 
p! 

v 

tt 

Reference Grid CCD Image of the New image 
reference grid 

a b c 

Fig. 1. Two Grids Calibration Principle: Local approximation 

Let us suppose now that  two parallel grids are used, , for which relative space 
positions can be accurately determined. A micrometric table is used during cal- 
ibration and an optical control can ensure these assumptions. These two simple 
images correspond to the basis of the calibration process and define a metric 
space. The grid closest to the camera defines the origin of this metric space, x 
and y coordinates correspond respectively to the row and column of the grid, z 
coordinate is defined along the grid axis of translation. 
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If a new object is digitized with the camera , it is possible to compute, for 
each image data, its corresponding point in the first and the second grid. By this 
way, we have estimated the 3D optical ray of the considered image data  in the 
metric space defined by the two reference grids, without knowing any camera 
parameter.  Of course, it is possible to use more than two grids. The accuracy of 
the computed 3D optical ray will be improved; nevertheless it will require more 
computation time and storage capacity. 

This calibration process called 'Two Grids Calibration'  is not new; [4] in- 
troduced it few years ago and [5], [6] have proposed several ways to solve this 
problem. Two distinct principles can be found: 

- the first one tries to compute a global transformation from the distorted 
image content to the reference point located on each reference grid, 

- the second one estimates a local approximation that  maps an image point 
to its corresponding point on the reference grids. 

From a computational point of view, global approximation is economical in 
execution time and storage capacity but errors are averaged over all points. 
Obviously, local interpolation provides more accurate results than global inter- 
polation. In the local model, the closest calibration points (a.t least three) are 
searched around each point detected in the new image, and a local function is 
used to perform an interpolation over each local region. 

Differences between results presented in literature depend on: 

- local functions used t.o establish the relationship between the distorted image 
and the reference flame, 

- but also, on the way the reference points are detected on the CCD matrix. 

As indicated above, one of the main difficulties is to compute accurately 
each point position (P0,Pl,P~, Pa in Figure lb) in the distorted grid image. [7] 
has developped an original algorithm that fits directly into the grey level image 
a mathematical  model of the photonic point response. Similar works have been 
realized by [8], [9] et [10]. In this way, the point location is obtained with high 
accuracy (more than 1/100 pixel) [7]. 

Let us consider a point p(u, v) (Figure lc) in a new distorted image. Knowing 
its coordinates (u, v), it is possible to find in the stored CCD grid image, the 4 
points (P0, t)1, P2, Pa Figure lb) around it. [11] has proposed several interpolation 
models and proved that. a bi-cubic function leads to better results in the case 
of high distortion phenomena (X-I~a.y image), but  for a. standard camera, linear 
approximation leads to the same order of accuracy. 

In the following experiments, a local function using the anharmonic ratio will 
be used to interpolate the coordinates of a new point p relatively to the local 
base (P0, Pl, P~, P3). In order to avoid instability problem, calculus are realized 
in an homogeneous coordinates system. 
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3 P o i n t s  M a t c h i n g  b y  C o r r e l a t i o n  

Correlation technics are commonly used to establish the correspondences be- 
tween edge points in two images from a standard camera device�9 In case of 
images taken with a zoom-lens (i.e different magnification), correlation scores 
need to be modified to take into account the scale effect throught the image set. 
Furthermore, the triangulation angles involved in axial stereovision require an 
accurate matching between features observed in the images set. The matching 
algorithm, proposed in this article, is done in two steps: 

- The first one is called "basic correlation"; The correlation is applied from the 
less zoomed image (wide-angle field) to the most zoomed one (narrow-angle 
field). Matching is performed with an accuracy at least equals to one pixel. 

- The second one is called "sub-pixel correlation". Using previous matched 
data, an iterative process is applied. Images are considered in the opposite 
way, it means from the most zoomed to the less zoomed image. Scale effect 
is explicitely introduced in the correlation parameters to obtain a sub-pixel 
accuracy. 

3.1 Bas ic  C o r r e l a t i o n  

The aim of this first algorithm is to follow a feature point (not necessarily an 
edge point) along all an images set taken with a zoom-lens. The correlation 
is performed from the image taken with the shortest focal-length (wide-angle 
field) to the longest one. Matching is realized step by step between two successive 
imagesI  k and I k+l The point k k �9 Pi ( u i ,  v~) belonging to the image I k is associated 

k + l  t k + l  . k + l  ik+l to the point Pi (ui , v i ) of that maximizes the correlation coefficient. 
In order to look for point p/k+l in a sufficiently large area in the image I k+l 

(without spending too many time), a pyramidal research process [12] has been 
implemented. It works with different images extracted from ( Ik , l  k+l) b u t  at a 
lower resolution. 

3.2 S u b - P i x e l  C o r r e l a t i o n  

Results ffOln the previous correlation algorithm, which is working with two con- 
secutive images ((I1, I2),  (Iu, Ia), ..(It, I,~)), can diverge Mong the images set. In 
order to avoid this phenomena, the sub-pixel matching will be done according to 
the same reference image along all the sequence. Let us define {p~, .., pk, ..,p[,,} 
a set of matched point Pi, viewed from image I 1 to image I rn and computed by 
the first correlation algorithm. Tile last point p~n and its grey-level neighbour- 
hood will be used as the reference point during all the sub-pixel process�9 This 
assumption seems to be logical, because most information is contained in the 
image I m (taken with the longest focal length). Of course, to find accurately 
two matched points between images I m and I t (l E [1 . . .  m - 1]), zooming effect 
has to be taken into account. Therefore, the image I rn will be under-sampled 
and smoothed automatically, and the algorithm will compute the best location 
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of the correlation window in I I that fit, s the data. Parameters are estimated using 
an iterative process; the following criterion is minimised: 

q-n +n 

C(I m, I', A, f, du, d r )=  Z Z (Im(uY+A.i, v~ +A.j, f ) --I  t (u~+du+i, v~+dv+j, 1)) = 
i=--n j = - n  

(1) 
where parameters (A, f ,  du, dr) are real values (we need sub-pixel accuracy) 

and take into account respectively tim undersampling A (i.e. the zooming effect), 
the smoothing f (due to undersampling), and the subpixel location du, dv of the 
correlation window in the second image. 

In equation [1], I k (u, v, p) is a function that defines the grey-level value ac- 
cording to real point coordinates (u, v) in the image I k. As image [k can be un- 
dersampled, a smoothing effect is realized on a window (p x p) centrered in (u, v). 
It gives a ponderation to the grey level information (of each pixel) contained in 
the image I k, by a coefficient proportionnal to the pixel surface (greater than 1 
due to the zooming phenonaena) actually included in the considered window. 
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Fig. 2. Calculus area associated with l'"(u, v, f)  Calculus ]or II ( u, v, 1) 

Solution of equation [1] is found by searching the value of coefficients (A, 
f ,  du, dr) that minimises criterion C. We have to solve a non linear optimisa- 
tion problem ; as it is not. posssible to obtain an analytical expression of the 
derivatives, the first, derivatives of the criterion C are nmnerically estimated. 

After the completion of the sub-pixel algorithm, data  matched along the 
images set, are available. Each point coordinates are estimated with a sub-pixel 
accuracy. Using this information, the reconstruction process will provide the 3D 
coordinates of all the feature points, computed in the metric space of calibration 
grids. 

4 Model l ing Process 

Using considerations developped in section 2, the modelling algorithm does not 
involve any difficulties. For each focal-length position used during the zooming 
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Fig. 3, Modelling Process. 

sequence, two calibration grids are previously digitized and each calibration point 
accurately detected and memorized. This step represents the calibration process. 

Given a same physical point pi, matched in all the new images set (Figure 
3), (i represents the number of different focal-length used during the zooming 
sequence), it. is possible to estimate the 3D optical rays relative to each image 
and expressed in the metric space of the grids. 

Let (P~, Pi2) be the interpolated points of pi relative to the ith image and 
respectively defined in the first and second grid. 

Let V~ be the vector between (P~, P~): 

\ P~.z - Pl.z 
(2) 

Let T'~ be the quasi horizontal plane and pi~ be tile quasi vertical plane that 
contain Vi. 

The plane equations are given as follows: 

{ Ailx + B{y + C{z + D~=0 
4 x  + B';y + C{z + D~=0 (3) 

Obvioulsy, the three-dimensional coordinates of the observed point Pad(Z, y, z) 
correspond to the intersection of all the optical rays (Figure 3) and are computed 
by solving the overdeterminated linear system : 

�9 i A } x + B i j y + C ~ z = - D j  j =  1 . . .2 ,  i =  1 . . . n  (4) 
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5 E x p e r i m e n t s  

5.1 Experimental conditions 

All experimental  results presented in this section are taken from real images. We 
have used a Anggnieux zoom lens T14 • 9; 

The reconstruction process is realized in three steps: first of all calibration, 
then matching by correlation, finally 3D reconstruction. 

- Calibration 
Given 16 focal-lengths (between 25 h. 90 m m  according to the zoom length 
parameters) ,  two accurate patterns are digitized, to create the grid metric 
space. Aperture and focus remain constant during images acquisition. The 
size of a unit square of the grid is equal to 6.2 • 6.2 rnm. The distance between 
the two grids used during the calibration is set to 15 cm. The first one is 
located at approximatively 90 cm from the camera. Each grid is preprocessed 
and each calibration point (row-column intersection) located, matched and 
stored in memory.  

- Matching and reconstruction using a new set of  images 

After the calibration step, the new object to be reconstructed is located in 
front of the camera at approximatively 1 meter. This distance corresponds to 
the metric space defined between the two grids. Of course, it is not necessary 
to put the object accurately between the two grids. As it is described in [13], 
it is possible to achieve good reconstruction results even if the object is not 
exactely located in the metric space defined by the grids. However, if the 
object is too far fi'om this space, the reconstruction accuracy is decreasing. 
Sixteen images are digitized using the same focal length as those used dur- 
ing the calibration step. A mechanical device makes possible to accurately 
recover the different focal length position on the zoom. 
On the first images of the new set, a given number of points to be recon- 
structed are manually selected. They cover all the image surface. As they 
are randomely selected, this step could easily be automated.  
The correlation algorithm is performed for all the points. After convergence, 
it gives the coordinates of all paired points along the image set. As it can 
be noticed, sorne points located near the image border, quickly disappear 
due to the magnification effect, and are only matched in a few images. In 
order to achieve accurate reconstruction results, only points that  appear  in 
at least five images will be taken into account for reconstruction purpose. It 
means that  the aD coordinates of a. reconstructed point correspond to the 
best intersection, using a least square approximation,  of at least five optical 
rays defined in the grids metric space. 

In tile following sections, two experimentations of differents reconstructed 
objects will be presented : a. 3D cube (size 10 • 10 • 10 cm) and a pebble (whose 
the size is approximately 10 • 8 • 5 cm). 3D coordinates are obtained for each 
point taken into account in the first image. As it is really difficult to recognize 
the object shape fi'om a set of independant 3D points, the reconstuction results 
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will be presented on different ways according to the object, in order to evaluate 
the modelling accuracy. 

5.2 C u b e  r e c o n s t r u c t i o n  

Fig. 4. Three views of the cube image set 

The cube is placed in front of the camera in order to observe three faces (Figure 
4). To perform statistical studies, points belonging to each face are independently 
selected (appro• one hundred points per face). By doing so, it is possible 
to estimate the reconstructed points face after face. Angle and planarity between 
them are estimated using a. least square approximation. 

Fig. 5. Cube Reconstruction (dense map of 3D points) 

Figure 5 shows the dense reconstructed map obtained with data  collected on 
the three faces. 

- Orthogonality : To verify the modelling accuracy, the angles between each 
plane are estimated (Table 1): 
Reconstructed planes are not perfectely perpendicular. Some points are badly 
reconstructed and introduce major errors in the statistical study. As the ini- 
tal selection of point to be reconstructed is randomely done, some of them are 
located ill area where grey level information is poor; these points matchings 
are inaccurate and lead to bad reconstruction results. 
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Table  1. Angles in degrees between the cube faces 

fRight-Left Right- Top Left- ToP 
nblVIatch > 4 
threshold = ai 92.46 91.94 88.07 

threshold = 3a 92.38 92.50 87.37 
nbMatch > 9 
threshold = ~ri 89.14 93.50 83.43 

threshold = 30" 89.35 93.37 84.55 
nbMatch > 15 
threshold = ai 

threshold = 3o" 
87.39 
87.60 

97.95 64.25 
97.13 62.63 

In Table 1, parameter (nbMatch.)  gives the minilnum number of matched 
data to reconstruct a given point; for example ( n b M a t e h  > 9) means that a 
point will be reconstructed if and only if it appears at least in 9 images. The 
threshold value cri is used to supress some bad reconstructed points before 
computing angles between planes. 
It can be noticed that angles are close to 90 degrees.  Mean error increases 
when statistical studies are realized with ( n b M a t c h  > 15). But in this case, 
only points visible during all the images set (it means points close to the 
optical axis) are taken into account. In this case the triangulation angles are 
the smallest. 

- Planarity : As for previous example, a least square estimation allows to estab- 
lish the planarity error of each faces. Results are presented in (Tables 2, 3) 
and expressed in millimeters. 

�9 (nbMatch) gives the mininmm number of images where a point should 
be visible to be reconstructed. 

�9 (nbPtsRec) gives the nmnber of points taken into account according to 
(nbMatch) and the threshold values. 

�9 (threshold} allows to suppress points too far fl'om the mean plane. 

In Figure 6 different points of view of the reconstrcuted object are presented. 
To have an easier representation of dense data, 3D reconstructed points are 
presented using couple of faces. As it can be noticed, results are quite good, 
the real shape is almost estimated even for data. close to the image center. A 
complete study of tile triangulation angles influence is realized in [1]. 

5.3 P e b b l e  r e c o n s t r u c t i o n  

In previous experiments, the object to be reconstructed was composed by a set 
of plane surfaces. Statistical studies could easily be performed to estimate the 
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T a b l e  2. Cube Reconstruction : Top Face 

nbMatch > 4 "nbMateh > 9 nbMatch > 15 
nbPts Rec 194 194 67 
ai (mm)  4.16 4.16 5.79 

threshold = 3ai 
nbPts Rec 191 191 65 

~(ram) 2.97 2.97 3.61 
threshold = 2a, 

nbPts Rec 184 184 62 
a(rnm) 2.44 2.44 2.35 

threshold = ai 
nbPts Rec 164 164 59 

a(mm)  1.98 1.98 1.78 

T a b l e  3. Cube Reconstruction : Left Face / Right Face 

nbPts Rec 

threshold = 3a 
nb Pts Rec 

threshold = 2or 
nbPts Rec 
~(mm) 

threshold = ai 
nbPts Rec 

nbMateh nbMatch 
> 4  > 9  
187 168 

7.61 4.18 

182 164 
4.51 2.84 

180 158 
3.93 2.52 

155 137 
2.59 1.99 

nbMatch nbMatch nbMa'tch nbMatch 
> 15 > 4 > 9 > 15 
32 181 164 31 

2.04 2.04 1.99 1.03 

32 180 162 31 
2.04 1.97 1.86 1.03 

31 173 156 28 
1.95 1.69 1.61 0.65 

22 127 114 22 
1.03 1.16 1.01 0.49 

recons t ruc t ion  qual i ty .  In the  fol lowing expe r imen t ,  a pebb le  recons t ruc t ion  is 
per formed.  We present  the  mode l l ing  resul ts  ob t a ined  with  a curved surface,  
using a set of  pebble  images.  

F igures  8 shows three different views of  the recons t ruc ted  objec t .  In sp i te  
of  the  ob jec t  tex ture ,  recons t ruc t ion  errors  stil l  r emain ,  due to a lack of  accu- 
racy dur ing  the m a t c h i n g  a lgor i thms .  However,  the  g lobal  ob jec t  shape  is well 
e s t ima ted .  
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Fig.  6. Cube Reconstruction 
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Fig.  7. Three images of the pebble set 
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Fig.  8. Pebble Reconstruction (dense map of 3D points) 
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6 C o n c l u s i o n  

This article describes a dense reconstruction method from images taken with 
a zoom-lens. Calibration, matching and reconstruction steps are detailed. The 
matching problem between points viewed along the zooming set is performed 
with an iterative correlation algorithm. Zooming effect is explicitely introduced 
in the correlation parameters in order to achieve a sub-pixel accuracy. 

Such an accuracy is essential due to the small angles involved in zooming 
reconstruction. The modelling algorithm is realized in a particular metric space 
composed by two accurate calibration grids. A local approximation allows to 
transform the distorted image content into the grids space which is supposed 
distortion free. By doing so, all distortion phenomena (optical and electronics) 
are automatically taken into account. 

Several experiments on real images are presented. Promising results are ob- 
tained ; the global object shapes are well estimated, even for data close to the 
image center. 

R e f e r e n c e s  

1. JM Lavest, C Delherm, B Peuchot, and N Daucher. Implicit Reconstruction by 
Zooming. To appear in Computer Vision, Graphics and Ima9e Processing, 1995. 

2. JM Lavest, G Rives, and M Dhome. 3D Reconstruction by Zooming. IEEE Trans- 
actions on Robotics and Automation, 9(2):196-208, April 1993. 

3. JM Lavest, G Rives, and M Dhome. Modeling an Object of Revolution by Zoom- 
ing. IEEE Trans. on Robotics and Automation, 11(2):267-271, April 1995. 

4. HA Martins, JR Birk, and RB Kelley. Camera Models Based on Data from Two 
Calibration Planes. Computer Graphics and Image Processing, 17:173-180, 1981. 

5. KD Gremban, CH Thorpe, and T I~:anade. Geometric Camera Calibration using 
Systems of Lineal" Equations. Proc. of IEEE Robotics and Automation, pages 562- 
567, 1988. 

6. GQ Wei and SD Ma. Two Plane Camera Calibration: a Unified Model. in Proc. 
of IEEE Conf. on Computer Vision and Pattern Recognition, pages 133-138, June 
1991. 

7. B Peuchot. Utilisation de dStecteurs sub-pixels dans la moddlisation d'une camera. 
9~n~e congr~s A F C E T  RFIA, pages 691-695, Paris, January 1994. 

8. P Brand, R Mohr, and P Bobet. Distorsions optiques : correction dans un mod$1e 
projectif. 9dine congr~s A F C E T  RFIA, pages 87-98, Paris, January 1994. 

9. R Deriche and G Giraudon. A Computational Approach for Corner and Vertex 
Detection. International Journal of Computer Vision, 10(2):101-124, 1993. 

10. HA Beyer. Accurate Calibration of CCD Cameras. in Proc. of Conference on 
Computer Vision and Pattern Recognition , Urbana Champaign , US'A, pages 96- 
101, 1992. 

11. B Peuchot. Camera Virtual Equivalent. Model, 0.01 Pixel Detector. Computerized 
Medical Imagin 9 and Graphics, 17(4-5):289-294, 1993. 

12. CS Zhao. Reconstruction de surfaces tridimensionnelles en vision par ordinateur. 
Th~se de doctorat, Institut National Polytechnique de Grenoble, France, 1993. 

13. C Delherm, JM Lavest, B Peuctmt, and N Daucher. Reconstruction implicite par 
zoom. To appear in Traitement du s~gnal, 1995. 


