
Locating Objects of Varying Shape Using 
Statistical Feature Detectors 

T.E Cootes and C.J.Taylor 

Department of Medical Biophysics, University of Manchester, Oxford Road, 
Manchester. M13 9PT, UK 

cmail: bim,etaylor@sv 1.smb.man.ae.uk 

Absraet. Most deformable models use a local optimisation scheme to locate 
their targets in images, and require a 'good enough' starting point. This paper 
describes an approach for generating such starting points automatically given 
no prior knowledge of the pose of the target(s) in the image. It relies upon 
choosing a suitable set of features, candidates for which can be found in the 
image. Hypotheses are formed from sets of candidates, and their plausibility 
tested using the statistics of their relative positions and orientations. The most 
plausible are used as the initial position of an Active Shape Model, which can 
then accurately locate the target object. The approach is demonstrated for two 
different image interpretation problems. 

1 Introduction 
Image search using deformable models has been shown to be an effective approach 
for interpreting images of objects whose shape can vary [1,2,3]. Usually the object 
of interest is located by some form of local optimisation so a 'good enough' starting 
approximation is required. Such starting points are either supplied by user interac- 
tion or obtained in some application-specific manner. We wish to develop a system 
which can automate the generation of such starting points for a general class of mo- 
dels. This paper proposes a framework for generating hypotheses for all plausible 
instances of variably shaped objects in a scene. The approach is to determine a set 
of key features, use statistical feature detectors to locate all examples of these in 
a scene and then to generate a ranked list of all plausible combinations of features. 
We systematically consider all possible sets of features, ranking or eliminating each 
by considering the statistics of the relative positions and orientation of feature 
points using statistical shape models [4]. Missing features are dealt with, allowing 
robustness to occlusion. The best feature sets are then used to instantiate a deform- 
able model known as an Active Shape Model [3,4] which can be run to locate the 
full structure. This leads to a generally applicable method, which can locate mul- 
tiple instances of a target in a given scene. 
In the following we will describe the approach in more detail. We will consider re- 
lated approaches and describe the statistical feature detectors we use. We will then 
cover the statistical shape models and show how they can be used to determine how 
plausible a set of features is. Finally we will show the method working on real data 
and give results of systematic experiments. 

2 Background 
Many people have studied the problem of locating rigid objects in images. A review 
is given in Grimson [5]. In most approaches an image is preprocessed to locate fea- 
tures such as edges or corners, and the best matches of these to a model are located 
by a suitably pruned tree search. In general the simpler the features, the more poss- 
ible matches there are with the model and the more expensive the resulting combi- 
natorial explosion. The Local Feature Focus method of Bolles and Cain [6] at- 
tempts to deal with this problem both by finding sets of more distinctive features 
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and by choosing sub-sets of model features which are sufficient to identify and posi- 
tion the model. Work by Ashbrook et al [7] on Geometric Histograms is an example 
of an attempt to reduce the combinatorial explosion by making the feature models 
more detailed, and thus to generate fewer responses for each detector (usually at 
the expense of greater cost of locating the features). 
Where the objects of interest can vary in shape, deformable models such as the 
'snakes' of Kass et al [1], the finite element models of Pentland and Sclaroff [2] 
or Active Shape Models [3] have proved useful. However such models are usually 
used in a local optimisation schemes, requiring a suitable initial position to be pro- 
vided. Most of the methods proposed for locating rigid objects rely on tight con- 
straints between the positions and orientations of features, which are violated when 
the objects can deform. Loosening the constraints in simple ways often leads to a 
combinatorial explosion [5]. More complex models of the constraints are required. 
Yow and Cipona [8] describe a system for locating faces which uses a gaussian de- 
rivative filter to locate candidates for the lines of the eyes, nostrils and mouth, then 
uses a belief network to model the face shape and select a set of features most likely 
to be those of the face. 
Burl et al [9] combine feature detectors with statistical shape models to generate 
a set of plausible configurations for facial features. Their (orientation independent) 
feature detectors match template responses with the output of multi-scale gaussian 
derivative filters. They use distributions of shape statistics given by Dryden and 
Mardia [10] to test configurations of outputs from detectors which locate possible 
locations ot the eyes and nostrils. They build up hypothesis sets by first considering 
all pairs of features. From each pair they determine the regions in which they would 
expect candidates for other features to lie, and consider all sets of points which lie 
in these regions. They allow for missing features in their derivations, to give robust- 
ness to feature detector failure. 
Our general approach is similar to that of Burl et al. However, we use more complex 
statistical feature detectors in order to minimise the number of falsepositive re- 
sponses. Our detectors are orientation dependent, making them more discriminat- 
ing. Although they must be run at multiple angles, they return both the position 
and orientation of the found features. We use a simpler method of calculating the 
shape statistics to test sets of points, and include the feature orientation in our tests. 
We systematically calculate all plausible sets of features using a depth first tree 
search, pruning sub-trees as soon as they become implausible. Our aim is to rapidly 
determine sets good enough to initialise an Active Shape Model to locate the object 
of interest accurately. 

3 Overv iew Of Approach 

The approach we use is as follows. We assume that we have sets of training images, 
in which points are labelled on the the objects of interest. In advance we determine 
a sub-set of points which can be used as features to detect the objects of interest, 
by considering the performance of feature detectors trained at every point. We 
train feature detectors for the chosen points, and build statistical models of both 
the shape of the whole model and that of the sub-set of feature points. 
Given a new image, we proceed as follows: 

�9 We find all responses for the feature detectors 
�9 We systematically search through all these responses to determine all 

plausible sets of features. How plausible a set is is determined by the rela- 
tive positions of the candidate features and their relative orientations 

�9 We fit the full shape model to the best sub-set, and use this as the starting 
point for an Active Shape Model, which can then accurately locate the ob- 

ct of interest. 
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4 S ta t i s t i ca l  Feature  Detectors  
In order  to locate features in new images we use statistical models of the grey levels 
in regions around the features, and use a coarse-to-fine search strategy to find all 
plausible instances in a new image [14]. 

4.1 Statist ical  Feature  Mode l s  

We wish to locate accurately examples of a given feature in a new image. To deal 
with variations in appearance of features we use statistical models derived from a 
set of training examples. These are simply rectangular regions of image containing 
instances of the feature of interest. For each nx x ny patch we sample the image 

at pixel intervals to obtain an n = nxny element vector, g. 

A statistical representation of the grey-levels is built from a set of s example 
patches, g, (i = 1..s). A Principle Component Analysis is applied to obtain the mean, 
g,  and t principle modes of variation represented by the n x t matrix of eigenvectors, 

Q .  The  value of t is chosen so that the model represents a suitable proportion of 
the variation in the training set (eg 95%) [4]. 
Our statistical model of the data is 

g = g + Q c + r g  (1) 

where the elements of c are zero mean gaussian with variance 2i, the elements of 
r are zero mean gaussian with variance vj and the columns of Q are mutually ort- 

hogonal. This is the form of a Factor Model [12], with c as the common factors 
and rg as the errors. 

Given a new example, g, we wish to test how well it fits to the model. We define 
two quality of fit measures as follows, 

j=n R2 
fl = M, + ~ (2) A = M, + (3) 

j=lvJ 

i=t 

where M, = ~ c~ e = Q~(~- g--) (4) 
i=l xi 

(5) R 2 = rgTrg = (g-g-)r(g-g-)-crc r e = g - (~  + Qc) 

In [14] we show that the distribution of these fit values is a scaled chi-squared dis- 
tribution of degree k, p(f) = (n/k)X2(kf /n,k)  where k is the number of degrees of 
freedom of the pixel intensities, k can be estimated from a verification set of 
examples; k = 2(n/o) 2 , where a is the standard deviation of the distribution of fit 
values across the set. 
The  time to calculate A is about half that for [2, but gives slightly less predictable 
distributions and poorer  discrimination between true positive and false positive re- 
sponses. Knowledge o f p ~  allows us to set thresholds which will produce predict- 
able numbers of false negatives (missed true features). More details of the statisti- 
cal feature models are given in [14]. 

4.2 Propert ies  o f  the Statist ical  Feature Detectors  

The  quality of fit of the feature models to an image is sensitive to position, orienta- 
tion and scale. By systematically displacing the models from their true positions 
on the training set we can quantify this sensitivity. This information allows us to 
calculate the number of different scales and orientations at which the detector 
should be run in order to cover a given range of object orientation and scales. 
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4.3 Searching for Features 

Given a new image we wish to locate all plausible instances of a given feature. We 
train feature models at several levels of a gaussian pyramid [ 13] and determine their 
sensitivity to angle and scale. We then use a coarse-to-fine search strategy as fol- 
lows; 

�9 Test every pixel of a coarse resolution image with the matching feature 
model at a set of angles and scales. Determine the peaks in response which 
pass the statistical threshold. 

�9 Refine the position and angle estimates of each response on finer resol- 
ution images. The accuracy in angle required is determined by the (pre- 
computed) sensitivity of the model. 

Those which pass the threshold at the finest resolution are candidate features. 
We can choose suitable resolutions at which to perform the search by performing 
tests on the training or verification set. The total work required to run the detector 
starting and ending at different resolution levels can be calculated. We choose 
those ranges of levels which can accurately relocate the true features, require least 
work and generate the fewest false positive responses. 

4.4 Choice of Features 

We wish to be able to select automatically a set of features suitable for locating the 
object of interest. The suitability of a given feature depends on a number of factors 
including the success rate of the feature detector, the number of false positives it 
tends to generate and the time it takes to run the detector over a given region. 
For the experiments described below we have used training sets labelled with many 
points on and around structures of interest, which we use for building statistical 
shape models [3]. In order to obtain a set of suitable features we build models for 
every shape model point and test each one. By running each over the training set 
we can estimate the success rate, the number of false positives the detector gener- 
ates and the computational cost for that detector. Those detectors which have the 
highest success rate (hopefully 100% on the training set) are ranked by the number 
of false positives. 
For instance, Figure i shows the 40 best features for detectors trained on 122 land- 
mark points on 40 face examples. Figure 2 shows the 8 best features for detectors 
trained on points on the outline of the brain stem in a 2D slice of a 3D MR image 
of the brain. 

Fig. 1. The 40 best features Fig. 2. The 10 best features for locating the 
for locating a face. (Tested brain stem in an MR image. (Tested 60 points). 

122 points) 
We are experimenting with algorithms for automatically deciding on sets of fea- 
tures, but at present the sets are chosen by the user, guided by these rankings and 
the desire to have the features reasonably spread out over the target object. 
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5 Use of Statistical Shape Models to Test Hypotheses 
When presented with a new image we apply the selected feature detectors over 
target regions to generate a number of candidates for each feature. By choosing 
one candidate for each feature we can generate a hypothesis for sets of features 
belonging to the same object. We will use statistical shape models to determine the 
plausible sets by considering the relative positions of the features and the orienta- 
tions at which each was detected. 

5.1 Statist ical  Shape  Models  

We have previously described methods for building statistical shape models. Given 
a training set of shapes, each representing n labelled points, we can find the mean 
configuration (shape) and the way the points tend to vary from the mean [3,4]. The 
approach is to align each example set into a common reference frame, represent 
the points as a vector of ordinates in this frame and apply a PCA to the data. We 
can use the same formulation as for the grey-level models above, 

x = ~ + Pb + r (6) 
where x = (xl ... x, yl ... y,)r,  p is a 2n x t matrix of eigenvectors and r is a set of 
residuals whose variance is determined by miss-one-out experiments. In this case 
t is the number of shape parameters required to explain say 95% of the shape vari- 
ation in the training set. 
Again, the quality of fit measure for a new shape is given by 

fs~pe = .~..~ ~. + b = Pr(x-x--) r =  x- (~  + Pb) (7) 
i l  " ' t =  j= l  

Which should be distributed approximately as chi-squared of degree 2n-4 .  
In the case of missing points, we can reformulate this test using weights (1.0 for 
point present, 0.0 for point missing); 

t 2 j = 2 n  

(8) 

where in this case b is obtained as the solution to the linear equation 
(pTW)(x- x-) = (pTWP)b (9) 

(W is a diagonal weight matrix). 
This measure will be distributed as chi-squared of degree 2nv- 4 where nv is the 
number of points present. 

5.2 Mode l s  o f  the Feature Sets 

Our features represent a sub-set of the points making up the full shape model for 
the object of interest. For each such sub-set we can generate statistical models of 
the configurations of the feature positions as described above. For instance for the 
face model we choose features at four of the 122 points of the full model and build 
statistical models both of the whole set and of the four points. Each shape model 
has its own co-ordinate frame (usually centred on the centre of gravity of the points 
and with some suitably normalised scale and orientation [3]). 
To test the validity of a set of image points forming a shape, X, we must calculate 
the shape parameters b and the pose Q (mapping from model frame to image) which 
minimise the distance of the transformed model points, X', to the target points 

X ~ X' = Q(~" + Pb) (10) 

( Q is a 2D Euclidean transformation with four parameters, ix, ty, s and O. ) 
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This is a straightforward minimisation problem [4,3]. Having solved for Q and b 
we can project the points into the model frame using Q-1 and calculate the residual 
terms and hence the quality of f i t , / ' ~ .  We can test the plausibility of the shape 

probabalistic limits both to the overall quality of fit fa,~ and, if desired, to the indi- 

vidual shape parameters bi. The latter have zero mean and a variance of ;ti, the 
eigenvalues obtained from the PCA. 
By considering the training set we can calculate the average mapping between the 
co-ordinate frame for the full model and that for a sub-set of points. This allows 
us to propagate any known constraints on the pose of the whole object model to 
test the pose of the sub-set of points representing the current feature set. In addi- 
tion, we can learn the expected orientation and scale of each feature relative to the 
scale and orientation of the set as a whole, allowing further discrimination tests. ~ 
If we assume that the configuration of the sets is independent of the errors in fea- 
ture orientation and scale we can estimate the probability density for a configur- 
ation as follows; 

i=nf 

p = p(shape) I-I[p(0i~o(si)] (11) 
i=l 

where the probabilities for shape, angle and scale terms are determined from the 
estimated distributions. If we assume normal distributions for the measured orien- 
tations and scales, then 

i=nf 
fsha~ "~ I(Cti- a/) ~ ]  (12) 

ln(p) = const + --T--  + / - - - , t 2 ~  + 2o~,~ 
i=1 

This allows us to sort any plausible hypotheses by their estimated probability. 

5.3 Systematic Hypothesis Generation and Testing 

If we have n I feature detectors, and detector i produces mi candidates, then there 

are /-[ mi possible sets. If we allow for the detectors missing true features, then 

there are I-](mi + 1) possible sets (allowing a wildcard feature match). Selecting 

plausible sets of features given this potential combinatorial explosion has received 
much attention [5,9]. 
We have used a relatively simple scheme amounting to a depth first tree search. 
The feature candidates are sorted by quality of fit and, if missing features are to be 
allowed, a wildcard is added. We then recursively construct sets, starting with a 
candidate from the first detector and adding each candidate from the second de- 
tector in turn. The pose and shape of each pair is tested. If a pair passes the tests, 
each candidate from the third detector is added and the three points tested. Those 
sets which pass are extended with candidates from the fourth detector and so on. 
In this manner all possible plausible sets can be generated fairly efficiently. (This 
approach has the advantage that it can be implemented in a recursive algorithm in 
a small number of lines of code). We record all the sets which have at least three 
valid features and pass the statistical tests. 
Burl et al [9] calculate a probability for each set of candidates which takes into ac- 
count missing features. We feel that it is difficult to correctly assign probabilities 
for missing features and instead simply sort our hypotheses first by the number of 
features present, and secondly by their probability. This avoids comparing sets with 
different numbers of features directly. In practice it is those which have the fewest 
missing which tend to be the correct responses. 



471 

5.4 Verification of Plausible Feature Sets 

Given a plausible set of features, we find the least-squares fit of the full object 
shape model to these points. This can be achieved by solving a weighted version 
of (10), with zero weights for all but the points corresponding to the found features. 
This gives the starting point for an Active Shape Model. We can run the ASM to 
convergence, using a multi-resolution search scheme to locate all the points [11]. 
The ASM has grey-level models of what it expects in the region around every one 
of its points. By considering the quality of fit ot these models to the image after 
convergence we can determine whether a good example of the object of interest 
has been found. Where there are several equally plausible sets of features, the 
ASM can be run for each and the one with the best final fit accepted. To detect 
multiple instances of the model the best examples which do not overlap in pose 
space should be accepted. 

6 Results of  Experiments  

6.1 Performance of Hypothesis Tester 

We have performed experiments to study how well the hypothesis testing scheme 
works. We generated synthetic feature detector responses by taking one true set 
of 5 feature positions and adding varying numbers of random responses to each 
candidate list. We then ran the hypothesis tester, recording the number of tests 
required to find all plausible feature sets. We tried this both allowing and not allow- 
ing missing features, and either using or not using information on the orientation 
of the features. Each experiment was performed 10 times. Figure 3 summarises 
the results for the number of tests required. Allowing missing features increases 
the number of tests significantly, but including angle information reduces the 
number by almost as much. Our current implementation tests about 500 sets each 
second. Of course, ordering the features so that those with the fewest responses 
are tested first can significantly reduce the work required. The number of plausible 
sets resulting varied between 1 (the correct one) and 3 (with > 20 false responses) 
for each case except for the case of missing features with no angle information, 
which produced many spurious plausible sets when the number of  false responses 
was larg~ 

- ,,,~ No angles / '  / i-  No missing 
' ,' ~ features 
t �9 t / # 8000. , With an,~les, 

" , ~ ,  / . . . . . .  Missing features 
6000. / . 

' / J /N /o  angle allowed 
~ 4000. ' " S 

I t  s I 

Z ij I / �9 

~2000. /" . -  " 

5' 10' 15' 20' 25' 30' 35' 40' 45' 50 
Number of false responses per detector 

Fig. 3. Average number of tests required to find all plausible sets of candidates, 
given varying numbers of false responses for each feature detector. 

62, Locating Facial Features 

We have used the system to locate features as a way of initialising a face shape 
model which can be refined with ASM search. The full model is trained on 122 
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points marked in each of 40 images (a subset of those used by Lanitis et al [15]). 
Four features based around the eyes and nose were chosen from the set of most 
distinctive points shown above (Figure 1). Figure 4 shows an new face image, the 
positions o f  the detected features, the best set of such features and the position of 
the full 122 point shape model determined from this set. Figure 5 shows the points 
after running an ASM to convergence from this starting position. We assumed that 
we knew the approximate scale, but that the orientatlon and position were un- 
known. Each feature detector was run over the whole image and allowed any orien- 
tation. It took about 10 seconds on a Sun Sparc20 to run each feature detector over 
the 5122 images, then one to two seconds to consider all plausible sets of features. 
In a real face detection system the orientation is likely to be better constrained, but 
the features would have to be allowed to vary in scale. Figures 6 and 7 show results 
for a different image, in which one of the feature detectors has failed to locate a 
satisfactory candidate. The quality of the full model fit to the found features is 
worse, but still quite adequate for the ASM to converge to a good solution. This 
demonstrates the robustness to missing features (and thus to occlusions). 

Fig. 4. Candidate features (crosses), 
best feature set (boxes) and full 
model fit to the best feature set. 

Fig. 5. Full model after run- 
ning ASM to convergence. 

Fig. 6. Candidate features (crosses), best 
feature set (boxes) (only 3 of 4 found) 

and full model fit to the best feature set. 

Fig. 7. Full model after running 
ASM to convergence. 
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To test the performance more systematically we ran the system on a test set of 40 
different images, which had been marked up with the target point positions by hand. 
On 5 of the images it failed to find any plausible sets, due to multiple feature de- 
tector failure. On one image false positives conspired to give a plausible (but 
wrong) result. On the other 35 the best set gave a good fit. The mean distance be- 
tween the (known) target points and the full set o f  points estimated from the best 
features was 8.7 pixels. The mean error after running the ASM was 6.5 pixels. On 
average 3.5 of the 4 features were used, and each feature detector found 12 candi- 
dates in the image. By more careful choice of size of feature detectors, and by using 
more detectors (giving more robustness) and a larger training set we expect to im- 
prove the results significantly. 

6.3 Locating the Brain Stem in MR Slices 

We used the same approach to locate the outline of the brain stem in 2D MR slices. 
The full outline is represented by 60 points, and models trained from those points 
marked in 15 images. Five features were chosen from the set of the most distinctive 
points shown in Figure 2. Figure 8 shows candidates for these 5 in a new image, 
the best set of features and the full model fitted to these features. Figure 9 shows 
the points after running an ASM to convergence from this starting position. Again 
we assumed the scale was fixed but that the position and orientation of the brain 
stem were unknown. It took about 5 seconds on a Sun Sparc20 to run each feature 
detector over the 2562 images, then a fraction of a second to consider all plausible 
sets of features. Of course in practice the position and orientation of the structure 
is fairly well constrained, so the system would run far quicker. In cases in which 
some of the feature detectors fail to locate satisfactory candidates the quality of the 
full model fit to the found features is worse, but again still quite adequate for the 

Fig. 8. Candidate features (crosses), Fig. 9. Full model after running the 
best feature set (boxes) and full model ASM to convergence. 

fit to the best feature set. 
Again we ran systematic tests over a set of 15 new images. The system failed to find 
any plausible feature sets on 2 of them, but gave good results on the remaining 13. 
The mean difference between target points and the full set of points estimated from 
the best features was 1.5pixels, falling to 1.1 pixels after the ASM was run to conver- 
gence. On average 3.8 of the 5 features were used, and each feature detector found 
3 candidates in the image. We expect to improve on these results by using a larger 
training set and more careful choice of feature model size. 

7 Discussion 
Although we have used one particular form of statistical feature detector, any ap- 
proach which located the features of interest could be used. 
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The calculation of plausible feature sets can take a long time if a large number of 
candidates are to be tested. We are currently interested in generatin~g all plausible 
hypotheses. However, since the candidates are sorted by quality of fit, we usually 
find the best overall set quite early in the search. We intend to investigate early 
verification strategies, terminating the combinatorial search when we find a 'good 
enough' solution to explain the data. 

8 Conclusions 
We have shown how statistical feature detectors can be used to find good starting 
positions for deformable models, given no prior information on the position or 
orientation of the object of interest in the image. We used statistical models of the 
relative positions and orientations of the detected features to determine the plaus- 
ible sets of features and to limit the possible combinatorial explosion by pruning bad 
sets as soon as possible. The plausible feature sets can be used to instantiate a stat- 
istical shape model representing the whole of the object of interest, which can then 
be refined using an Active Shape Model. This approach can locate multiple in- 
stances of the objects of interest in an image, and can be applied to a wide variety 
of image interpretation problems. 
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