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A b s t r a c t .  Understanding observations of interacting objects requires 
one to reason about qualitative scene dynamics. For example, on observ- 
ing a hand lifting a can, we may infer that an 'active' hand is applying 
an upwards force (by grasping) to lift a 'passive' can. We present an im- 
plemented computational theory that derives such dynamic descriptions 
directly from camera input. Our approach is based on an analysis of the 
Newtonian mechanics of a simplified scene model. Interpretations are 
expressed in terms of assertions about the kinematic and dynamic prop- 
erties of the scene. The feasibility of interpretations can be determined 
relative to Newtonian mechanics by a reduction to linear programming. 
Finally, to select plausible interpretations, multiple feasible solutions are 
compared using a preference hierarchy. We provide computational exam- 
ples to demonstrate that our model is sufficiently rich to describe a wide 
variety of image sequences. 

1 I n t r o d u c t i o n  

Understanding observations of image sequences requires one to reason about  
qualitative scene dynamics. As an example of the type of problem we are con- 
sidering, refer to the image sequence in the top row of Figure 1, where a hand 
is reaching for, grasping, and then lifting a coke can off of a table. Given this 
sequence, we would like to be able to infer that  an 'act ive '  hand (and arm) is ap- 
plying an upward force (by grasping) on a 'passive'  coke can to raise the can off 
of the table. In order to perform such reasoning, we require a representation of 
the basic force generation and force transfer relationships of the various objects 
in the scene. In this work we present an implemented computat ional  system that  
derives symbolic force-dynamic descriptions directly from camera input. 

The use of domain knowledge by a vision system has been studied extensively 
for both  static and motion domains. Many prior systems have a t tempted  to 
extract  event or conceptual descriptions from image sequences based on spatio- 
tempora l  features of the input [1, 23, 18, 4, 14]. A number of other systems have 
a t t empted  to represent structure in static and dynamic scenes using qualitative 
physical models or rule-based systems [6, 8, 13, 20, 22, 5]. In contrast to both  
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of these approaches, our system uses an explicit physically-based representation 
based on Newtonian physics. 

A number of other systems have used physically-based representations. In 
particular, Ikeuchi and Suehiro [10] and Siskind [21] propose representions of 
events based on changing kinematic relations in time-varying scenes. Also, closer 
to our approach, Blum et. al. [3] propose a representation of forces in static 
scenes. Our system extends these approaches to consider both kinematic and 
dynamic properties in time-varying scenes containing rigid objects. 

Fig. 1. The example sequences: coke, cars, arch, and tip. The frame numbers are given 
below each image. 
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2 O n t o l o g y  

In this section we describe the form of the system's representation for its domain. 
This representation must be suitable for specifying the geometry of the scene 
interpretation and the type of forces that  can be generated on the various objects. 
Moreover, in order to avoid unphysical interpretations, there must be a notion 
of consistency for particular scene models. We describe the representation of the 
geometry, the types of forces, and the notion of consistency in the next sections. 

2.1 K i n e m a t i c  M o d e l  

The basic primitive for an object part is a rigid two-dimensional convex polygon. 
A single object is a rigid union of convex polygons. 

To represent the spatial relationship between objects in the scene we use a 
layered scene model. In our layered model there is no depth ordering. Instead, 
we represent only whether two objects are in the same layer, in adjacent layers, 
or in layers separated in depth. Objects can contact either within the same layer 
or between adjacent layers. The first type of contact, called abutting contact, 
occurs when two objects in the same layer contact at a point or at an edge along 
their boundary. The second type of contact, called overlapping contact, occurs 
when two objects in adjacent depth layers contact over part of their surfaces and 
the region of overlap has non-zero area. 

In order for a given assignment of contacts to be admissible two types of 
constraints must be satisfied. First, each pair of objects considered to be con- 
tacting must actually intersect (but possibly just on their boundary). Second, 
in the case of abutment, the contact is admissible only if the relative motion 
between the two objects is tangential to the contacting region (i.e. objects can 
slide along their contact region, but cannot penetrate or separate), Together 
these constraints provide a weak kinematic model involving only pairwise con- 
straints between objects, 

2.2 D y n a m i c  M o d e l  

In order to check the consistency of an interpretation, we need to represent 
dynamic  information about each object. This involves specifying the motion of 
each object along with its mass, center of mass, and moment of inertia. In our 
system the 2D velocities, angular velocities, and accelerations of the objects are 
all provided by the image observations. An object's total mass is taken to be 
a positive, but otherwise unknown, parameter. We take each object's center of 
mass to be at the object's geometric center. For the case of two-dimensional 
motion considered in this paper the inertial tensor I is a scalar. In order to 
reflect the uncertainty of the actual mass distribution, we allow a range for I. 
An upper bound for I is provided by considering an extreme case where all of the 
mass is placed at the furthest point from the center. A lower bound is provided 
by considering an alternate case where all of the mass is distributed uniformly 
inside a disk inscribed in the object. 
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An object is subject to gravitational and inertial forces, and to forces and 
torques resulting from contact with other objects. The dynamics of the object 
under these forces is obtained from the physics-based model described in w 

Finally, particular objects may be designated as ground. We typically use 
this for the table top. Forces need not be balanced for objects designated as 
ground. 

It is convenient to define a configuration to be the set of scene properties 
that  are necessarily present, given the image data  and any restrictions inherent 
in the ontology. For example, in the current system, the positions, velocities, 
and accelerations of the objects are provided by the image observations, and the 
positions of the centers of mass are fixed, by our ontology, to be at the object 
centroids. 

2 . 3  A s s e r t i o n s  

In order to supply the information missing from a configuration, we consider 
assertions taken from a limited set of possibilities. These assertions correspond 
to our hypothesis about the various contact relations and optional types of force 
generation and force transfer relationships between objects. 

Currently, our implementation uses the following kinematic assertions which 
describe the contact relationships between objects: 

- -  CONTACT(O1,02, C )  - -  objects ol and 02 contact in the scene with the region 
of contact c; 

- -  ATTACH(O1,02,p) - -  objects ol and o2 are attached at some set p of points 
in the contact region. 

The intuitive meaning is that  at tachment points are functionally equivalent to 
rivets, fastening the objects together. Attached objects can be pulled, pushed, 
and sheared without coming apart while, without the attachment,  the contacting 
objects may separate or slide on each other depending on the applied forces and 
on the coefficient of friction. 

In addition we consider the following dynamic assertions which determine 
the types of optional forces which might be generated: 

- BODYMOTOR(O) - -  object o has a 'body motor '  that  can generate an arbi- 
trary force and torque on itself; 

- LINEARMOTOR(ol, o2, c) - -  a linear motor exists between the abutt ing ob- 
jects ol and 02. This motor can generate an arbitrary tangential shear force 
across the motor region c. This region must be contained within the contact 
region between the objects; 

- ANGULARMOTOR(Ol, o2,p) - -  an angular motor exists at a single point p 
that  can generate an arbitrary torque about that  point. The point p must 
be within the contact region between the objects. 

The intuitive meaning of a BODYMOTOR is that  the the object can generate an 
arbitrary force and torque on itself, as if it had several thrusters. LINEARMOTORS 
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are used to generate a shear force across an abutment (providing an abstraction 
for the tread on a bulldozer). ANGULARMOTORs are used to generate torques 
at joints. 

We apply the following admissibility constraints to sets of assertions. First 
the contact conditions described in w must be satisfied for each assertion of 
contact. Second, linear motors are admissible only at point-to-edge and edge- 
to-edge abutments but not at point-to-point abutments or overlapping contacts. 
Finally, angular motors are admissible only at a single point within the contact 
region between two objects and the objects must be attached at this point. 

We define an interpretation i = (C, A) to consist of the configuration C, as 
dictated by the image data, along with a complete set of assertions A. (A set 
of assertions is complete when every admissible assertion has been specified as 
being true or false.) In the next section we will show how to test the feasibility 
of various interpretations. 

3 F e a s i b l e  I n t e r p r e t a t i o n s  

Given an interpretation i = (C, A) we can use a theory of dynamics to determine 
if the interpretation has a feasible force balance. In particular, we show how the 
test for consistency within the physical theory can be expressed as a set of 
algebraic constraints that ,  when provided with an admissible interpretation, can 
be tested with linear programming. This test is valid for both two and three 
dimensional scene models. 

For rigid bodies under continuous motion, the dynamics are described by the 
Newton-Euler equations of motion [9] which relate the total applied force and 
torque to the observed accelerations of the objects. Given a scene with convex 
polygonal object parts, we can represent the forces between contacting parts by 
a set of forces acting on the vertices of the convex hull of their contact region 
[7, 2]. Under this simplification, the equations of motion for each object can be 
written as a set of equality constraints which relate the forces and torques at 
each contact point to the object masses and accelerations. 

The transfer of forces between contacting objects depends on whether the 
objects are in resting contact, sliding contact, or are attached. Attached objects 
have no constraints on their contact forces. However, contacts which are not 
asserted to be ATTACHed are restricted to have a positive component of normal 
force. In addition, contact points that  are not part of a LINEARMOTOtt have 
tangential forces according to the Coulombic model of friction. In particular, the 
magnitude of the tangential force is bounded by some multiple of the magnitude 
of the normal force. Both sliding and resting friction are modeled. 

An interpretation is dynamically feasible if these motion equations can be 
satisfied subject to the contact conditions and the bounds on the mass and 
inertia described in w Since we can approximate these constraints by a set of 
linear equations and inequalities, dynamic feasibility can be tested using linear 
programming (see [17] for details). 



533 

4 P r e f e r e n c e s  

Given a fairly rich ontology, it is common for there to be multiple feasible in- 
terpretations for a given scene configuration. For example, for the lifting phase 
of the coke sequence in Figure 1 there are five feasible interpretations, as shown 
in Figure 2. Indeed, for any scene configuration there is always at least one triv- 
ial interpretation in which every object has a body motor,  and thus multiple 
interpretations can be expected. 

B yMotorO    otorc 
Attach(hand, can, .) ~ ~ / "  ,~ Attach(hand, can, .) 
Contact(hand, c a n ~ t a c t ( h a n d ,  can, .) 

\ / 

~ B~lyMotor(hand), BcxlyMotor(can) 

Fig. 2. The preference ordering for the five feasible interpretations of the rifting phase 
in the coke sequence (Frame 63). A large open circle at the object center denotes 
a BoDYMOTOR. The small black disks denote contact points while the larger disks 
denote attachment points. A textual form of the assertions appears adjacent to each 
interpretation. The three levels of priority are represented by each line of text. The 
absence of an assertion denotes its negation. 

Rather than searching for all interpretations, we seek interpretations that  
require, in some specified sense, the weakest properties of the various objects. 
We use model preference relations, as discussed by Richards, Jepson, and Feld- 
man [19], to express a suitable ordering on the various interpretations. The basic 
idea is to compare pairs of interpretations using a prioritised set of elementary 
preference relations. 

Our current ontology includes the following elementary preferences for the 
absence of any motor: 

-- Pbodymotor(O) :-~BoDYMOTOR(O) ~- BODYMOTOR(O); 
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- -  Plinearmotor(c) : ~LINEARMOTOR(O1,02, C) >-- LINEARMOTOR(Ol, 02, c); 
- -  Pangutarrnotor (c) : "~ANGULARMOTOR(O1,02, p) >" ANGULARMOTOR(O1,02, p). 

Here -, denotes the negation of the predicate that follows. These elementary 
preference relations all encode the specification that  it is preferable not to resort 
to the use of a motor, all else being equal. The absence of a motor is consid- 
ered to be a weaker assumption about an object's properties. These elementary 
preference relations appear at the highest priority. 

At the next level of priority we have 

-- Pattach ( O1, 02, p) : -~ATTACH(O1,02,p) >" ATTACH(oI, 02, p) ,  

SO the absence of an attachment assertion is also preferred. Finally, at the lowest 
level of priority, we have the indifference relation 

- Pco,~taet(ol, 02, c):  "~CONTACT(o1,02, C) ~'~ CONTACT(O1,02, C), 

SO the system is indifferent to the presence or absence of contact, all else being 
equal. 

All of the above preferences, except for the indifference to contact, have 
the form of a preference for the negation of an assertion over the assertion 
itself. It is convenient to use the absence of an assertion to denote its negation. 
When the elementary preferences can be written in this simple form, the induced 
preference relation on interpretations is given by prioritised subset ordering on 
the sets of assertions made in the various feasible interpretations. As illustrated 
in Figure 2, we can determine the preference order for any two interpretations by 
first comparing the assertions made at the highest priority. If the highest priority 
assertions in one interpretation are a subset of the highest priority assertions in 
a second interpretation, the first interpretation is preferred. Otherwise, if the 
two sets of assertions at this priority are not ordered by the subset relation, that  
is neither set contains the other, then the two interpretations are considered to 
be unordered. Finally, in the case that  the assertions at the highest priority are 
the same in both interpretations, then we check the assertions at the next lower 
priority, and so on. This approach, based upon prioritised ordering of elementary 
preference relations, is similar to prioritised circumscription [15]. 

To find maximally-preferred models, we search the space of possible inter- 
pretations. We perform a breadth-first search, starting with the empty set of 
assertions, incrementally adding new assertions to this set. Each branch of the 
search terminates upon finding a minimal set of assertions required for feasible 
force balancing. Note that  because we are indifferent to contacts, we explore 
every set of admissible contact assertions at each stage of the search. While in 
theory this search could require the testing of every possible interpretation, in 
practice it often examines only a fraction of the possible interpretations since 
the search terminates upon finding minimal models. 

Moreover, when the assertions are stratified by a set of priorities we can 
achieve significant computational savings by performing the search over each 
priority level separately. For example, under our preference ordering, we can 
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search for minimal sets of motors using only interpretations that  contain all ad- 
missible attachments. It is critical to note that  this algorithm is only correct 
because of the special structure of the assertions and the domain. The critical 
property is that  if there is a feasible interpretation i = (C, A), and if A ~ is the 
set obtained by adding all of the admissible attachments to A, then the inter- 
pretation i = (C, A ~) is also feasible. This property justifies the algorithm above 
where we set all of the lower priority assertions to the most permissive settings 
during each stage of the minimization. In general we refer to this property as 
monotonicity [16]. 

5 Examples 

We have applied our system to several image sequences taken f rom a desktop 
environment (see Figure 1). The sequences were taken from a video camera at- 
tached to a SunVideo imaging system. MPEG image sequences were acquired 
at a rate of thirty frames per second and a resolution of 320 • 240 pixels. The 
24-bit colour image sequences were converted to 8-bit grey-scale images used by 
the tracker. 

As described in w we model the scene as a set of two-dimensional con- 
vex polygons. To obtain estimates for the object motions we use a view-based 
tracking algorithm similar to the optical flow and stereo disparity algorithms 
described in [12, 11]. The input to the tracker consists of the image sequence, 
a set of object template images (including a polygonal outline for each object), 
and an estimate for the object positions in the first frame of the sequence. In 
addition, we provide an estimate for the position of the table top which is desig- 
nated as a ground object in our ontology. The tracking algorithm then estimates 
the position and orientation of these initial templates throughout the image se- 
quence by successively matching the templates to each frame. The position of 
the object polygons is obtained by mapping the original outlines according to 
these estimated positions. Finally, the velocity and acceleration of the polygons 
are obtained using a robust interpolation algorithm on these position results. 

In the current system we consider interpretations for each frame in isolation. 
Given estimates for the shapes and motions of the objects in each frame, we de- 
termine possible contact relations assuming a layered model as described in w 
For each possible contact set 1 we determine the admissible at tachment and mo- 
tor assertions described in w Finally, a breadth-first search is performed to 
find the preferred interpretations for each frame. 

Figure 3 shows the preferred interpretations found for selected frames from 
each sequence. (Note that the selected frames do not necessarily match those 
shown in Figure 1.) For each sequence we show frames ordered from left to 

1 In the current system we consider only a single maximal contact set in which every 
admissible contact is added to the assertion set. Since there are no depth constraints 
in our layered model, this single contact hypothesis will not disallow any of the 
remaining assertions. 
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right. 2 While  the preferred interpretat ions are often unique, at  t imes there are 
mult iple  interpretat ions,  part icular ly when objects interact.  We highlight f rames 
with mult iple  preferred interpretat ions by grey shading. 

coke 

32 

cars 

45 63, Model 1 63, Model 2 

23 28 34, Model 1 34, Model 2 

arch 

45, Model 1 45, Model 2 52, Model 1 52, Model 2 

tip 

8, Model 1 8, Model 2 8, Model 3 8, Model 4 8, Model 5 

Fig.  3. Some preferred models for: coke, cars, arch, and tip. Frames with a non-unique 
maximally-preferred interpretation are shown with a grey background. We use the fol- 
lowing symbols. For contacts, small disks denote contact points at rest while small 
circles denote sliding contacts. Larger disks denote attachment points. Mo.tors are de- 
noted by either a circle at the center of the object (BoDYMOTOR), a circle around 
a contact point (ANGULARMOTOR), or by a dosed curve around a contact region 
(LINEARMOTOR). 

2 For the cars and arch sequences there is an ambiguity in the type of motors used, 
with body motors being interchangeable with linear motors (except on the hand). 
For clarity we show only linear motors in the cars sequence, and only body motors 
in the arch sequence. 
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Our machine interpretations are surprisingly intuitive. For example, the dif- 
ference between models 1 and 2 in frame 63 of the coke sequence can be inter- 
preted as the hand 'lifting' the can versus the can 'lifting' the hand. Similarly, 
the difference between models 1 and 2 in frame 34 of the cars sequence can be 
interpreted as the rear car 'pushing' the front car versus the front car 'pulling' 
the rear car. (Note that the system correctly hypothesises an at tachment be- 
tween the front and rear cars in the 'pulling' interpretation, but does not do so 
in the 'pushing' interpretation.) The third row of Figure 3 shows the interpreta- 
tions for the arch sequence in which a hand removes the left block from an arch 
causing the top block to tip over. The system correctly infers that  the top block 
is supported in frame 45, and tipping in frame 52, but is not able to determine 
whether the hand is 'pulling' the left block or whether the left block is 'carrying' 
the hand. Finally, the last row of Figure 3 shows the results for the tip sequence 
where a hand raises a box onto its corner and allows it to tip over. There are 
five interpretations corresponding to various assertions of an active hand, active 
box, and various types of linear and angular motors. 

While encouraging, our current implementation exhibits a number of anoma- 
lies. These anomalies generally fall into three classes. The first problem is tha t  
because we consider single frames in isolation, in many cases the system cannot 
find unique interpretations. In particular, since the system does not have any 
prior information about the objects in the scene, it cannot rule out interpreta- 
tions such as an active coke can lifting the passive hand in the coke sequence or 
an active block pulling a passive hand in the tip sequence. In addition, because of 
our preference for minimal sets of assertions, certain degenerate interpretations 
may occur. An example of this is shown in frame 45 of the coke sequence, where 
the hand is interpreted as a passive object (which is attached to the coke can). 
Since the system does not have any prior information about object properties 
and since it considers single frames in isolation, all of these interpretations are 
reasonable. 

A second problem concerns the detection of collisions and changing contact 
relations between objects. In particular, when objects collide, the estimates for 
relative velocity and acceleration at their contact points may differ, resulting 
in the contact relation being deemed inadmissible. An example of this is shown 
in frame 28 of the cars sequence where the contact between the colliding cars 
is missed. Note that the acceleration of the cars should be equal (since they 
remain in contact after the collision), but  the interpolator has smoothed over 
this discontinuity and given unreliable estimates of the acceleration. 

Finally, a third problem occurs because we do not use a complete kinematic 
model, as mentioned in w An example of this problem is shown in the tip 
sequence in Figure 3. While all of the interpretations have a feasible force bal- 
ance, the last three are not consistent with rigid-body motion since it is not 
kinematically feasible for the hand to be both attached to the box and in slid- 
ing contact with the table. Since our system considers only pairwise constraints 
between contacting objects, it does not check for global kinematic consistency. 
Further tests could be implemented to rule out these interpretations. 



538 

6 C o n c l u s i o n  

We have presented an implemented computational theory that  can derive force- 
dynamic representations directly from camera input. Our system embodies a rich 
ontology that  includes both kinematic and dynamic properties of the observed 
objects. In addition, the system provides a representation of uncertainty along 
with a theory of preferences between multiple interpretations. 

While encouraging, this work could be extended in several ways. First, in 
order to work in a general environment, 3D representations are required. While 
our current system is able to represent 3D scenes provided it has suitable input, 
further work will be required to determine what type of 3D representation is 
suitable and how accurate the shape and motion information will have to be. 
Second, in order to deal with collisions and changing contact relations, a theory 
of impulses (transfer of momentum) will be required. Third, as indicated by 
the tip example, a more complete kinematic model is needed. FinMly, in order 
to represent the structure of time-varying scenes, we require a representation 
of object properties and a method to integrate such information over multiple 
frames. We believe our current system provides the building blocks for such a 
representation, but additional work will be required to show how our ontology 
can be built into a more complex system. 
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