
A Filter for Visual  Tracking Based on a 
Stochast ic  Mode l  for Driver  Behaviour  

Stephen J. Maybank, Anthony D. Worrail and Geoffrey D. Sullivan 

Dept. of Computer Science, University of Reading, RG6 6AY, UK. 
Email: (S.J.Maybank, A.D.Worrall, G.D.SuUivan)~reading.ac.uk. 

A b s t r a c t .  A driver controls a car by turning the steering wheel or by 
pressing on the accelerator or the brake. These actions are modelled by 
Gaussian processes, leading to a stochastic model for the motion of the 
car. The stochastic model is the basis of a new filter for tracking and 
predicting the motion of the car, using measurements obtained by fitting 
a rigid 3D model to a monocular sequence of video images. Experiments 
show that the filter easily outperforms traditional filters. 

1 I n t r o d u c t i o n  

The abilities to track and to predict car motion are important  in any vision 
system for road traffic monitoring. Accurate tracking is required to simplify the 
measurement process. Tracking and prediction rely on filters which contain a 
model for the vehicle motion. Traditional filters such as the extended Kalman 
filter (EKF) [4] or the a - / ~  filter [1] have very poor models for the car motion. 
For this reason they perform badly whenever the car carries out a complicated 
manoeuvre, for example a three point turn. This paper describes a new filter 
which contains a simple but  accurate model for car motion. Experiments show 
that  the filter easily outperforms the a - / ~  filter. 

The model is based on the behaviour of a driver who controls the motion of a 
car by turning the steering wheel, by pressing the accelerator or the brake, and 
by changing to a reverse gear, as appropriate. The velocity of the car depends 
on the steering angle 0 and the signed magnitude v of the velocity. The position 
and orientation of the car are obtained by integrating the velocity over time. 

The new filter uses a Gaussian approximation to the probability density func- 
tion for the state of the car, conditional on the measurements. This density is 
propagated forward in time using the model for the motion of the car. Mea- 
surements of the position and orientation of the car are obtained by fitting the 
projection of a rigid 3D wire frame to individual video images taken by a single 
fixed camera; the measurements are incorporated into the approximating density 
using the standard Kalman filter update. 

The t reatment  developed here is fundamentally different from that  of other 
stochastic filters such as the Kalman filter, in which the state variables are 
assumed to have a linear interaction. In the new filter the covariances of the 
state variables are updated with errors of order only O(t3), where t is the time 
step. For this reason, we call the filter the Covariance-Updating (CU) filter. 



541 

In comparison with the a - fl filter, the CU filter has a greatly improved 
response to changes of state which are not explicitly included in the model, for 
example changes involving higher order terms, which are only modelled implicitly 
as process noise. Thus, the CU filter is more robust when the vehicle switches 
from a constant forward acceleration to a turning or a stopping motion. 

2 T h e  Fi l ter  

The CU filter is based on a motion model which enforces the links between 
the driver behaviour and the car motion, and which also enforces the simple 
geometric constraints applicable to car motion. 

2.1 Driver Behav iour  and the  M o t i o n  of  the  Car 

It is assumed tha t  the car driver can vary the steering angle 0, and the signed 
magnitude v of the velocity of the car. Changes in 8 are achieved by turning 
the steering wheel and changes in v are achieved by pressing on the accelerator 
or the brake, or by using the reverse gear. In the absence of any further prior 
knowledge, the changes over time in 0, v are modelled by Gaussian stochastic 
processes (9, V in ]R defined by 

/o' ((gt, V~) m = ((90, Vo) T + (0s, IFs) T ds (0 <_ t) (1) 

The random variables (90, V0 in (1) are Ganssian. The rate of change of steering 
angle, 0 ,  is an Ornstein-Uhlenbeck process [2] which satisfies the It6 stochastic 
differential equation 

dot = - a O t  dt + a dCt (0 <__ t) (2) 

where a > 0, a > 0 are constants, and C is a Brownian motion in IR such that  
Co = 0. The random variable 00 is Gaussian and independent of C. The process 
1I in (1) is given by 

Vt = Vo + qBt (0 < t) (3) 

where q > 0 is constant and B is a Brownian motion in IR independent of C and 
B0 = 0. The random variable ~'0 is Gaussian and independent of B, C. 

The parameters a, a, q have the following effects: if a,  q are large, then 
the variances of 0 t ,  Vt tend to be large. The filter becomes more responsive to 
recent measurements and rapidly discards past measurements. If a is large then 
the variance of Ot tends to be small, and the estimates of (gt, Ot become less 
responsive to all the measurements. At the same time the trajectory of the car, 
as generated by (5), shows a reduced curvature. 

It remains to link the driver behaviour to the motion of the car. It is assumed 
that  the car moves in the ground plane, and that  the motion is completely 
described by a time dependent state vector (x, y, 0, v, t~, ~))T, where (x, y)T is the 
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position of the car in the ground plane, 8 is the orientation of the car, v is the 
signed magnitude of the velocity of the car, and/~, ~) are the time derivatives of 
8, v respectively. 

The model for the time evolution of the state vector is a stochastic process 

M = (X, Y, O, V, ~ ,  v )T (4) 

in ]R 6, where (X, y)m models the position of the vehicle on the ground plane, 
and •, V, D, ~" are as defined by (1), (2) and (3). The process (X, y ) T  is given 
in terms of ((9, V) T by 

(Xt, Yt) T = (Xo, Y0) T + Vs(cos(O,), sin(Os)) T ds (0 < t) (5) 

Equation (5) enforces a fundamental geometric constraint: relative to the car 
body, the direction of the velocity is fixed up to s!gn (cars cannot move sideways). 
In this case the direction of the velocity. (Xt,Yt) T fixes the steering angle (gt 
through the equations.~% = Vt cos(Or), Yt -- Vt sin(cgt) for 0 < t. 

In practice, v and 8 are correlated for v small: it is difficult to steer rapidly a 
slowly moving car. The performance of the CU filter was improved by making a 
a function of the expected tangential velocity ~9, c~ -- 0.01 + 2.0exp(-~2/2).  At 
high ~, a is small, to ensure that  the filter can track a car successfully while it is 
turning. At low values of ~), a is large, thus dragging 8 towards zero. Very large 
values of a are avoided, to prevent the filter locking on to an erroneous estimate 
of 8. 

2.2 Propagation of  the Density and the Measurement Update 

The task of the filter is to estimate the probability density function for the state 
Mt of the car at a time t, given the measurements obtained at times prior to and 
including t. In this application the measurements are of x, y, 8. It is assumed 
that  the measurement errors are Gaussian with zero expected value and a known 
covariance matrix. 

The strategy in the filter is to approximate the true conditional density with 
a Gaussian density. The approximation is reliable provided the pose of the car 
is well localised by the measurements. The filter propagates the approximat- 
ing density forward in time, incorporating each measurement as it arises. It is 
convenient to discuss propagation from time zero, to reduce the notation. Let 
P0 be the Gaussian approximation to the density of M0. Then it is required to 
find a Gaussian approximation pt to the density of Mr, t _> 0, assuming that  no 
measurements are taken in the interval [0, t). If t is small, then the expectation 
and covariance of Pt are calculated correct to O(t 3) using the formulae given 
in the next section. If t is large, then [0, t) is divided into small subintervals 
0 = tl < . . .  < tn = t, and the Ptl are calculated in turn until Pt is reached. 

A model of the vehicle is instantiated into the image in the pose predicted 
by the current state of the filter, as a wire-frame with hidden lines removed. 
Evidence for directed edges in the image that  fall near to the visible "wires" 
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is pooled to provide a scalar value associated with the pose (see [6] and [8] for 
further details). This defines a function on the space of vehicle poses. A search 
is carried out to find a local maximum of the function under small perturbations 
of the pose from the initial pose, using the simplex search technique [5]. The 
recovered location (x, y)X and orientation 0 of the vehicle form the measurement 
vector z. 

Let a measurement zt be obtained at time t > 0. The measurement update 
is the standard one used in the Kalman filter [3]. Let the estimated density Pt 
prior to the measurement have expectation m t  and covariance Ct. Let w ~-~ H w ,  
w E ]R 6 be the measurement function, and let R be the covariance matrix for 
the measurement errors, which are assumed to be Gaussian with expectation 
zero. The 3 x 6 matrix H is defined by Hii = 1, 1 < i < 3 and Hij = 0, i ~ j.  
The expected value nt and the covariance matrix Dt of the estimated density of 
Mt conditional on zt are fixed by 

(w -- nt)Tn~ -1 (w -- nt)  ==- (w- -  m t ) T c ;  1 (w -- mr)  + (zt -- H w )  T R -1 (zt - H w )  + ct 

where ct is independent of w. 

3 Propagation of Expectations and Covariances 

Let po be the Gaussian approximation to the density of Mo. A Gaussian approx- 
imation Pt to the density of Mt is obtained under the assumption that t > 0 is 
small. The expectation and covariance of Pt are correct to O(t3), provided the 
density of Mo is exactly Po. 

3.1 Expectation and Covariance of (Or, Vt,Ot, ~ ) T  

The expected values and the covariances of Or, Vt, (~t, Vt are easy to evaluate, in 
part because 0 - Oo and V - Vo are independent Gaussian processes. It follows 
from (2) and (3) that 

E ( O t ,  ~ )  = E ( e x p ( - a t ) O o ,  Vo) 

Cov(Ot, Or) = exp(-2at)Cov(00, 0o) + a - l a  2 exp(-c~t) sinh(c~t) 

Cov(~, ~ )  -- Cov(Vo, Vo) + q 2t 

Cov(Ot, ~ )  = exp(-~t)Cov(Oo, V'o) (6) 

Let r = t - a t2 /2 .  It follows from (1) and (6) that 

E(et)  = E(eo) + E(00)r + O(t 3) 

~,(y,) = E(yo) + E(yo)t 
Coy(Or, Or) = Cov(eo, co) + 2Cov(eo, (~o)r + Cov(Oo, (90)t 2 + O(t 3) 

Cov(y,, y~) = Coy(V0, v0) + 2Cov(yo, ?0)t + Cov(?o, ?o)t 2 + o( t  3) 
Cov(O. v~) = Cov(Oo, go) + Cov(Oo, Vo)r + Cov(Oo, ?o)t + Cov(eo, ?o)t 2 
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The cross covariances between (O,, Vt) -r and (Or, Vt) T are 

Cov(Ot, Or) = exp(-at)(Cov(O0, Oo) + Cov(0o, Oo)r + a2t2/2) 
Coy(?,, o,) = Cov(?o, Oo) + Coy(Co, Oo)r 
Cov(Ot, Vt) -- exp(-at)(Cov(Oo, Vo) + Cov(0o, ?o)t) 
Cov(Vt, Vt) = Cov(Vo, Vo) + Cov(Vo, Sro)t + 2-1q2t2 

3.2 Expec ta t ion  of (Xt, y,)m 

The covariances and expectations involving. Xt, Yt are more difficult to evalu- 
ate than those involving only 0,,  Vt, Or, Vt. The calculations are reduced by 
combining X and Y to make a complex valued stochastic process, Z -= X + iY, 
where i 2 = -1.  It follows from (5) that to an error O(t3), 

Zt = Zo +exp(iOo) (Vot + 2-1(Zot2) + 2-1iexp(iOo)VoOot 2 (O < t) (7) 

Let c = E(exp(iOo)). It follows from (7) that 
2 

t �9 E(Z,____)) _= E(Zo) + t[iCov(Oo, Vo) + E(Vo)] + ~-[iCov(Oo, Vo) + E(~'o)] 
c e 

+ ~[Cov(Vo, 60) - Cov(Oo, Vo)Cov(Oo, 60) + iE(Vo)Cov(Oo, 60)] 
2 t 

- ~[E(Oo)Cov(Oo, go) - iE(Vo)E(Oo)] + O(t 3) (8) 

3.3 Covariances Involving Xt or Yt 

To simplify the notation, let W ~ g(W) be the function defined on Gaussian 
random variables by 

(0 < 0 (9) g(w) = Cov(Zt, w)  

It follows from (7) and (9) that 

g(w) 
c 

Cov(Zo, w) + t[Cov(Vo, w) - Cov(Oo, Vo)Cov(Oo, w)] 
c 

+itE(Vo)Cov(Oo, W) + 2t2[Cov(Vo, W) - Cov(Oo, Vo)Cov(Oo, W)] 
§ W) - Cov(Oo, W)Cov(Oo, Vo)] 
-2t2[Cov(Yo, Oo)Cov(Oo, W) + Cov(W, Vo)Cov(Oo, 60)] 
+2t2[Cov(Oo, W)Cov(Oo, Oo)Cov(Oo, Vo) + iE(Vo)Cov(Oo, W)] 
-2itU[E(Vo)Cov(Oo, Oo)Cov(Oo, W) + E(6o)Cov(Oo, Vo)Cov(Oo, W)] 
+2t~[/z(6o)Cov(Vo, w)  - E(Vo)E(6o)Cov(Oo, W)] + O(t s) 

The cross covariances of Zt with Or, Vt, Or, ~ are (to O(t3)) 

Cov(Zt, 0~) = g(Oo) + g(6o)t Cov(Z~, 0~) = g(Oo) 
Cov(Z~, v,) = g(Vo) + g(yo)t Coy(Z,, C,) = g(Yo) (10) 
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It remains to find the covariance of (Xt, Yt) T. To simplify the notation, let 
the functions W ~ f l (W)  and W ~ f2(W), 0 ~ h(O) of the Gaussian random 
variables W, O be defined by 

fl (W) = Cov(Zo, exp(iOo)W) 

-- c[Cov(W, Zo) - Cov(W, Oo)Cov(Zo, 0o) + iE(W)Cov(Zo, Oo)] 

f2(W) = Cov(Zo, exp(-iOo)W) 

_= ~[Cov(W, Zo) - Cov(W, Oo)Cov(Zo, Oo) - iE(W)Cov(Zo, (90)] 
h( O ) = Cov(Zo, exp( iO ) VoOo ) (11) 

Let co = E(exp(i(9)). It follows from the last equation of (11) that 

colh(O) = i[Cov(Zo, Vo)Cov((9, 80) + Cov(Zo, 8o)Cov((9, Vo)] 

+i[Cov(Zo, O)Cov(Vo, 8o) - Cov(Zo, (9)Cov((9, 8o)Cov(O, Vo)] 
+E(yo)[Cov(Zo, 80) - Cov(Z0, O)Cov((9, 80)] 
+E(8o)[Cov(Zo, Vo) - Cov(Zo, O)Cov((9, Yo)] 
+ iE(Vo)E(8o)Cov(Zo, (9) (12) 

Let A, B be the random variables defined by 

A = exp(iOo)Vo S = exp(i(9o)(l?o + iVoSo) (13) 

It follows from (7) and (13) that 

Z~ = Zo + At + Bt2/2 + O(t 3) (0 <_ t) (14) 

thus (to order O(t3)) 

Cov(Zt, Zt) = Coy(Z0, Zo) + 2tCov(Zo, A) + t2[Cov(Zo, B) + Coy(A, A)] 
= Cov(Zo, Zo) + 2tft(Vo) + t2[/t (17o) + ih(Oo) + Cov(A, A)] 

Cov(Zt, Zt) = Cov(Zo, Zo) + t(Cov(Zo, A) + Cov(A, Zo)) + t2Cov(A, A) 

+ 2-1t2[Cov( o, B) + Cov( , Zo)] 
= Cov(Z0, Zo) + 2tRe(f2(Vo)) + t2Re(f2(~Zo) - ih(-(9o)) 

+ t2Cov(A, A) (15) 

A short calculation yields 

Cov(A, A) = c3~[Cov(Yo, Vo) - 4Cov(Oo, Vo) 2 + 4iE(Yo)Cov((9o, Vo) + E(Yo) 2] 
+ c 2 [Cov(Oo, Vo) 2 - 2iE(Vo)Cov((9o, go) - E(Vo) 21 

Cov(A, A) = Coy(go, go) + E(Vo) 2 - c2(Cov(Oo, Vo) 2 + E(Vo) 2) (16) 

The covariances Coy (Zt, Z~ ), Coy (Zt, Zt ) can be evaluated to an accuracy of 
O(t 3) using (11), (12), (15) and (16). The covariance of (Xt, Yt) n- is given by 

Cov(Xt, Xt) = 2 -1 [Cov(Zt, Zt)) + ae(Cov(Zt, Zt))] 
Cov(Xt, Yt) = 2-1Im(Cov(Z,, Zt)) 

Cov(Yt, Yt) = 2-t[Cov(Zt, Zt) - Re(Cov(Zt, Zt))] 
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3.4 C o m p a r i s o n  wi th  the  E x t e n d e d  K a l m a n  Fi l ter  

The extended Kalman filter (EKF) is a popular generalisation of the Kalman 
filter to nonlinear systems [4]. In spite of its widespread use, the EKF often 
gives an astonishingly bad approximation to the true density of the system state 
conditional on the measurements. The EKF differs radically from the CU filter, 
for example the latter is accurate to within an error of O(t3). In the EKF the 
estimate of E(Mt) is independent of Coy(M0, M0). However, it is clear from (5) 
that X~, Y~ depend on products of functions of 08, Vs, 0 < s < t. It follows 
that an accurate approximation to E(Mt) includes terms depending on the co- 
variances of Os, V~, 0 < s < t. In fact, the covariances are needed even if the 
approximation is correct only to O(t2). 

In more detail, let M0 have a Gaussian density, and let Zt = X~ + iY~. It 
follows from (7) that the estimate ,~t of E(Zt) produced by the EKF is 

Zt = E(Zo) + exp(iE(Oo))E(Vo)t + O(t ~) 

As an approximation to E(Zt), Zt is incorrect to first order in t, because 

E(Zt) = E(Zo) + E(exp(iOo))(iCov(Oo, Vo) + E(Vo))t + O(t 2) 

4 V e h i c l e  T r a c k i n g  

The CU filter for driving behaviour has been implemented in Mathematica [7], 
and a C-code procedure was obtained, using the Sp l i ce  command in Mathe- 
matica. The C code was incorporated, after trivial changes of syntax, into the 
pop-l l  code used to control the model-based tracking system. The performance 
of the CU filter was then assessed in comparison with a simple a - j3 filter, by 
applying both filters to a video sequence of a car performing a three-point turn 
in a cluttered scene (see Fig. 1). In the past this sequence has proved unusu- 
ally difficult to track, largely because of the complexity of the manoeuvre. In 
the absence of an accurate dynamical model, the measurement process is easily 
distracted by the background clutter. 

Figure 1 (left) shows the trace on the ground-plane of the estimated trajec- 
tory, using the CU filter (grey line) updated by measurements (dots) taken at 25 
Hz. The three outlying measurements near frame 120 were gated automatically 
using the Mahanalobis distance with a threshold of 4 standard deviations. Exam- 
ples of the fit of the model to the image are also given in Fig. 1. The performance 
seems to be very good; the filter accurately followed the measurements, with sig- 
nificant smoothing and minimal overshoot at the cusps of the track. These filter 
states are taken as the "ground-truth" in subsequent experiments. 

Figure 2 (top) shows the effects of using the CU filter to track the vehicle with 
increasing time gaps between the measurements for each run, using measurement 
intervals of 1, 2, 4 and 8 frames (at 25Hz). The propagation of the density was 
at 25Hz as described in Sect. 2.2. In each run the differences between the filter 
prediction and the ground truth are shown for the state variables x, y and 
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0. It can be seen that  the predictions usually stay very close to the ground- 
t ru th  (ordinate = 0.0 in each graph). Some errors are seen up to frame 180, 
as the car turns sharply and comes to a halt, as well as between frames 300 
and 400, where the car was viewed directly rear-on, and the measurement was 
more than usually unstable (see Fig. 1). The prediction errors became worse 
as the intervals between measurements increased. None the less, the predictions 
were always sufficiently accurate for the measurement process to recover a good 
solution, and the tracking succeeded. 

Figure 2 (bottom) illustrates the performance of an a - f l  tracker, used to filter 
(x, y, 8, v, 8)T with c~ --- 0.5 and fl = 0.1. Performance is much poorer. Somewhat 
paradoxically, the best performance was obtained with measurements every sec- 
ond frame (dotted); the car was tracked successfully, though with noticeably 
more instability than with the CU filter. With measurements taken every frame 
(solid line), tracking failed towards the end (note the consistent errors in x and y 
beyond frame 380). With measurements every 4th frame (grey), tracking failed 
spectacularly; near frame 100 the recovered pose spun through 90 ~ and there- 
after the car was tracked with the model at the wrong orientation. 

4.1 D i scus s ion  

This paper has demonstrated a new method for building a dynamic filter to 
track vehicles in road scenes. The filter explicitly models driver behaviour by 
stochastic processes and it includes a realistic updating of the state covariances. 
When applied to pose data  obtained from a model based vision system, initial 
results indicate that  the covariance updating (CU) filter has significantly bet ter  
performance than a simple linear filter such as the ~ - fl filter. 

The CU filter is fundamentally different from the usual stochastic filters such 
as the extended Kalman filter. The (assumed) dynamic model for the system is 
represented more accurately, because unlike the Kalman treatment,  the evolution 
of the state variables is not assumed to be linear. The covariances which describe 
the nonlinear interactions between state variables are handled correctly up to and 
including terms of order O(t2), where t is a small time step. This greatly improves 
the performance of the filter when the evolution of the system is strongly non- 
linear or when there is a short run of unreliable measurements. 
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Figure 2: Prediction errors for pose parameters 0, x and y (w.r.t the ground-truth) as 
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