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Abstract. A method is proposed of robust feature-detection for visual 
tracking. Frequently strong background clutter competes with foreground 
features and may succeed in pulling a tracker o~ target. This effect may 
be avoided by modelling the appearance of the foreground object (the tar- 
get). The model consists of probability densiiy functions of intensity along 
curve normals--a form of statistical template. The model can then be lo- 
cated by the use of a dynamic programming algorithm--even in the pres- 
ence of substantial image distortions. Practical tests with contour track- 
ing show marked improvement over simple feature detection techniques. 

1 I n t r o d u c t i o n  

This paper details recent work aimed at making curve matchers and trackers 
more robust. A major problem in achieving robust curve tracking is the dis- 
tracting effect of background objects--clutter. Strong features in the background 
compete for the attention of the tracked curve and may eventually succeed in 
pulling it away from the foreground object. This effect is clearly visible in figure 
1 Immunity to distraction can be enhanced both by modelling of the foreground 
and of the background. A foreground model may include a shape template, ob- 
ject dynamics [3, 10] and intensity profiles for certain object features [12, 4]. A 
background model may use simple differencing with a gray level reference image, 
or a more detailed statistical model [9]. However background modelling does not 
help with a moving background (other than a rotating camera[9]). 

In this paper we propose a method to reduce the effect of clutter by using a 
model of the gray level intensity of the target. This model is built along lines in 
an image, typically normals to an estimated curve position.We concentrate on 
the problem of finding a feature along these lines in the image. If this feature is an 
intensity profile, the problem is one of template matching. One technique which 
has been very successfully applied to this problem is correlation [2], unfortunately 
this suffers from some problems related to none-linear changes in the image of 
the target. This paper proposes a more flexible way to find the best match for 
the template on the image line. 

The gray level profile of an image line overlying a moving target will vary for 
many reasons, such as shadows, sub-sampling of its texture and rotation of the 
target perpendicular to the image plane. Since these effects interact it will be 
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Fig, 1. A dynamic  p r o g r a m m i n g  based  t racker  o u t p e r f o r m s  a grad ien t  ba sed  
one. The left column shows a tracking sequence obtained using a gradient based tracker 
- The tracker is distracted by the strong edge and fails to track the target. The right 
column shows the same sequence, but using the dynamic programming based feature 
search. The tracker continues to track the target past the strong distracting clutter. 

almost impossible to predict the profile exactly. It  may however be possible to 
build a statistical model incorporating the unknown elements of this variation, 
and use this model to locate the t a rge t - - th i s  is the approach used in this paper.  

Woods, Taylor et al [11] use a Gaussian model for the intensity of pixels along 
an image line as their template.  They first divide the image line into sections 
of constant intensity and then form statistics as to how well each section fits 
the constant intensity model. This intensity template  is based on an analysis of 
hand picked regions in typical images. In the matching phase each image line 
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is first divided into sections of constant intensity. The correspondence between 
the image line and the template is then obtain by minimising a cost function (a 
weighted sum of differences between the image and the model) over all possible 
interpretations of the model (although how exactly this is done is unspecified). 
The model is shown to work well in matching image lines containing large regions 
of constant intensity (as are typical in their application), but its applicability to 
more general models is doubtful. 

In our work we similarly use a statistical model for our template. However 
rather than making any (possibly invalid) assumptions about distributions, we 
use an experimentally determined probability density function (pdf) for the in- 
tensity function, stored as an array of histogram. We also learn the pdf for 
stretches between the search line and the template. The pdf's are learnt from 
real data obtained automatically by tracking the target on a live video stream, 
rather than being hand crafted from proto-typical images, or given a priori. Im- 
age search lines are then matched to the template using a dynamic programming 
algorithm. The use of a pdf enables the algorithm to be more or less strict about 
how tightly intensities along the image line need to match the template (depend- 
ing on where along the template they are trying to match). Using the dynamic 
programming algorithm enables efficient calculation of the warp from the image 
line to the template--and takes into account both intensity and stretching ef- 
fects. The new methods are tested using a tracker based on snakes deforming 
over time [8], represented by B-spline curves. 

Dynamic Programming has been used previously with Active Contours but in 
a very different context. Whereas Amini et al. [1] applied dynamic programming 
to the problem of matching curves to models under certain constraints, here 
we use dynamic programming to identify features by matching templates to 
intensity data along certain lines. 

The layout of the rest of this paper is as follows. Section 2 introduces the 
notation we use to describe the feature search algorithm. Section 3 then actually 
explains the algorithm. Sections 4 and 5 show how the probability density func- 
tions used by the algorithm may actually be determined in practice. Section6 
gives a brief explanation of the active contour tracker used to obtain the results 
given throughout this paper. Finally section 7 draws some conclusions on the 
method. 

2 F e a t u r e  s e a r c h  u s i n g  a s t a t i s t i c a l  f o r e g r o u n d  m o d e l  

Before introducing the template matching algorithm, we first introduce notation. 
We then describe the algorithm and the acquisition of the gray level statistical 
template. The image line (or search line) under consideration at time t is denoted 
It, and the intensity a distance r along it as It(r).  It is defined it from =l:pt 
(this length being a function of time). The template is a pdf of intensity. It 
exists at a discrete set of positions (spaced ~ apart) along a given normal to the 
active contour. We define the template to be a density function, r so that the 
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probabili ty tha t  intensity 7 was generated by r will be denoted: 

(~(,~, ,,/), - f i  < ? < .5 (1) 

�9 J 

where ~ is distance along the template  and this is 111ustrated in figure 2. Details 
of how r may be estimated are given later in Section 4 .  

Fig. 2. The statistical template, r The template is a pdf for the intensity function along 
a prototypical search line. The darker colours in the figure indicate higher probability 
intensities. It is the task of the feature search under discussion here to find the warping 
which produces the closest fit of a search line to the template, given some constraints 
on the warps which are actually allowed. 

The problem facing us when searching for a feature is to match a search line 
(It) to the template  (r search line is deformed relative to the template;  to 
undo these deformations we need to find the warp which takes It and matches 
it, as far as possible, to r This is done by considering all possible warps of the 
search line and picking the one which matches the template  with the highest 
probability. The warp function ft(r) is defined by f = f~(r) and the warped 
intensity function is It given by: 

/ , ( f , ( r ) )  = x,(r) (2) 

where ft(~) is the mapping, assumed invertible, from the search line to the 
template.  In general the ends of the search line will not map to the ends of the 
template.  If fact only a sub-section of the search line may actually correspond to 
par t  of the template,  with one or both ends of the search line lying off the end 
of the template.  The beginning and end of the section of search line which maps  
onto the template  will be denoted as pmi~ and pmax respectively. The positions 
on the template  corresponding to the ends of the mapped section will be denoted 
at fimin and p-max. 

Since the It corresponds to the intensity pattern on physical objects viewed 
with a camera, there are constraints on the possible deformations which it can 
have undergone in the imaging process. These constraints can be expressed as 
the pdf, &(~, d), that a length ~ (the discretisation interval), on the search line 
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will map to length d of the template. This pdf may vary with distance along the 
template. Mathematically, &(~, d) is given by: 

&(~, d) = prob ( ( f t ( r )  - f t ( r  - 5)) = d [ ~ = f t ( r ) )  (3) 

We assume &(f,d) and &(f+a ,d ' )  are independent of each other, then the 
probability of a given mapping of the entire search line is given (discretely) by: 

prob(ft) = H ~(e, d) 
( -Pt lS)<i<(pt /5)  

where ~ = f , ( i 5 )  

d = f t ( i J )  - Yt ( ( i  - 1)5). (4) 

An example of ~ (r, d), representing the case where the search line is a translated 
copy of the template, is: 

(a, b) = 1, iff b = 5 

= 0, otherwise (5) 

Section 5 explains how ~ (r, d) may be estimated in practice. 
To find the best. warp of the search line to the template we use the dynamic 

programming algorithm. 

3 T h e  d y n a m i c  p r o g r a m m i n g  algorithm 

Dynamic programming works in a recursive fashion [5]. Considering each point 
r along the search line and ~ along the template in turn, the algorithm finds 
the probability that r corresponds to ~ by considering the set of possible partial 
mappings over (-Pt, r - 5). We denote the hiyhes t  probabil i ty  of r matching 
by Pt(~, r). 

We obtain Pt ( r ,  r)  by applying the following dynamic programming algo- 
rithm: 

Pt ( r ,  - P t )  = (b(f, I , ( - ~ ) ) ,  - p  <_ ~ <_ p 

P , ( ~ , r )  = _m_ax _r It(r)).&(e,~ - k ) . P t ( k , r  - 5) - f i  < ~ <- fi (6) 
-p<_k<_p --Pt < r <_ Pt 

W , ( e , r )  = arg _m_ax _(&(e ,~  - k ) P t ( k , ~  - a)) 
-pSk<_p 

where the "policy function" W is defined for later use in recovering the most 
probable warp. 

Before we can recover the warping, we need to find the most probable position 
on the template to which the end of the template mapped (~a=).  Since the 
search line may actually overlap the end of the template, we also need to find 
the position on the search line which maps to fima=: we denoted this pmax. We 
find these positions by examining the probabilities Pt(~, r) of the warps which 
contain either the end of the search line or the end of the template (i.e. either 
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r = Pt or ~ =/5), and thus finding the warp with the highest probability, p-~a= 
and p'~a= are obtained using the equation: 

(fima=,pmaX) = argmax{ Pt(a,b)l ((a = p) A (-Pt < b < Pt)) V 
( ~ , b )  - -  - -  

((-/5 _< a </5) A (b = &))} 

Once/5 . . . .  and pmax have been found, ~ft (r) can be found by backtracking using 
the path implicitly stored in Wt(a, b): 

f , ( r )  = I , ( k - ' ( r ) )  

where f t l ( r )  = Wt(r  + 5, f t l ( r  + •)) 

I t  1 (p"~a=) = p ~  

(7) 

In order to use this algorithm estimates are needed for template intensity dis- 
tribution r "y) and warp probabilities (~(r, d). The following sections explain 
how these estimates may be obtained. 

4 Estimating Intensity PDF's 

We would like to estimate the match probabilities r 7) from data obtained 
while tracking the target in a representative environment. This training data  
will include variations along the image line similar to those which we are likely 
to see once tracking using the intensity model. The training data can be collected 
by a bootstrap tracker (a tracker able to follow the target as it undergoes some 
limited motion 1) tracking the target from time t = 1 to t = T. The training data  
will contain variations in It due to tracking error and scale changes in the object. 
This means that  in order to obtain an reliable estimate for r 7), each item of 
training data needs to be pre-warped, or transformed to remove these errors (see 
Figure 3). We perform this transformation by using the dynamic programming 
algorithm and a rough estimate r for r 7). One method 2 for obtaining 
the estimate q~(r, 7) is to align the training data based on the feature positions ut 
obtained using the bootstrap tracker. The estimated intensity pdf, r can 
then calculated using simple statistics. 

Us ing  q~(r, "),) to  e s t i m a t e  ~( r ,  3') We define ~ft to be the warp of It using 
the dynamic programming algorithm and the estimates r ~) and &(r, d) (see 
section 5). ~ft (~) is the intensity at distance ~ along this warped search line and 
exists for fimi,~ <_ ~ < /~ma=. We can now obtain an estimate for (~(r,'y) by 

1 Such a tracker may use image differencing, or a strong model of the targets motion 
to determine the target's position. 

2 This method assumes that only small changes in the scale of the target occurred 
d u r i n g l < t < T  
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Fig.  3. T h e  ef fect  o f  p r e - w a r p i n g  o n  t h e  d i s t r i b u t i o n  o f  t h e  t e m p l a t e .  Dark 
regions on the graphs show regions of high probability. Overlaid on the templates 
are the mean (p) and =t: 2 standard deviations (a). Graph (a) shows the estimate 
q~(~, V) obtained using the raw data. (b) shows the corresponding r 7) obtained by 
pre-warping the training data using the estimate r 7). Note how the template in (b) 
is much sharper and tighter than the estimate (a)--this is because the search lines in 
the pre-warped training dataset are better aligned with one another. 

analysing the results of warping the training data to the rough template: 

T 
1 

$( r , - ) , ) -  Yd(r) t=l  

1, iff (A = 0') A (~min _< (r - ~t) _< fima=) 
where h(A, % r) = O, otherwise 

T 

Nd(r) = E g ( t , r )  
t = O  

1, iff ~min <_ r - vt < fi'+a= 
g(t,r) = 0, otherwise 

Figure 3 shows the effect that  the pre-warping has on the estimate of r 7). 
Note that  it is perfectly feasible to use the histogram based approach to storing 
pdf in this case. A 50 pixel long template will only need 32k of memory to store 
r V) in a histogram form (to an accuracy of 2--~6- If a similar approach was 
used to store the pdf of intensity in a 768 x 576 background model, it would 
require 108MB of memory! 

5 Estimating stretching PDF's 

We also need an estimate for ~(r,  d). As with estimating r "7) this can be done 
by analysing data  collected with a bootstrap tracker from time t = 1 to t = T. 
T h e  function ft(u) proves to be particularly useful in estimating ~( r ,d )  - we 
can simply examine what length each 5 section of search line mapped to on the 
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template and build a pdf from this. This pdf may vary along the length of the 
template. 

1 T Pt 

(x(~,d) = -~D E E h ( f t ( r ) , f t ( r ) -  f t ( r - 5 ) )  
t : : l= r=--pt+5 

1, iff (a = f )  A (b = d) 
where h(a,b) = O, otherwise (s) 

T Pt 

N =E E g(r) 
t = l  r=--pt 

1, i f f a = f  
g(a) = O, otherwise 

Of course, in order to obtain f t- l(u)  used in the above equation we need 
to have already estimated ~(r, d). We get around this problem by supplying 
an initial estimate, &(r, d), of ~(r, d)--a  Gaussian centered around d = 5 with 
standard deviation 25. 

Unfortunately, &(f, d) will not be constant over time, but will vary depend- 
ing on the scale of the target being tracked-the stretches necessary to fit the 
target when it is small in the image will be different from those when it is large. 
Fortunately as the occluding contour of the target is being tracked, an estimate 
of the scale of the object is available. This means that  & (~, d) can be adjusted 
depending on the expected scale of the object. Initial experiments suggest that  
simply scaling the d-axis of ~ (f, d) by the relative scale of the target is sufficient. 

6 T r a c k i n g  

In order to test the algorithm we implemented an active contour tracker [3] and 
applied the feature search by dynamic programming. The tracker used in the 
experiments reported here is an estimator for a N span B-spline image curve of 
order 3 (quadratic) [6]. A given curve is represented as xs,t -- (xs,t, y~,t) with 
length parameter s (the t subscript signifies that  the curve's position and shape 
may alter over time). The coordinates (x~,t, Y~,t) are given by the equation: 

xs , t  = B s X t  0 < s < N (9) 
Ys,t = BsYt  

where Xt and Yt are stacked vectors of the X and Y coordinates of the B-spline's 
control points respectively. B~ is the standard B-spline basis function matrix [6]. 

The target is assumed to be described in the same form as the curve, with 
control points Xt and Yt varying over time. The active contour tracker gener- 
ates estimates of these over time, :Kt, ~'t, based on measurements of the actual 
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position of the curve. We also define a shape template, (:X,Y), which is the 
average shape of the target, and helps to stabilise the tracker[12]. The state of 
the tracker (position and velocity) at time t is denoted 2(t. We assume that  this 
state evolves based on a 2 nd order dynamical model. 

In order to estimate the state of the curve, measurements are made of its 
position at each time-step. These measurements are made by casting rays along 
normals fi~,t to the estimated curve, and, simultaneously at certain points s 
along the curve measuring the relative position, ~ , t  of a feature 3 along the ray 
so that: 

v~,t = [r~,t -/ '~,t] .fis,t + vs,t (10) 

where v~,t is a scalar noise variable, assumed Gaussian, that  is taken as constant, 
both spatially and temporally. The measurement is defined along the normal as 
displacement tangentially is unobservable, the well-known aperture problem. 

The tracking process is performed using a Kalman Filter based around the 
motion and measurement model. One important  feature is that  each state esti- 
mate is accompanied by an estimate of covariance. This enables a validation, or 
range gate Ps,t to be defined [7] which allows measurements to be included only 
if they lie within a certain distance (P~,t) of the predicted position. This distance 
ps,t changes over time as the tracker is more or less certain about its prediction. 
The range-gate mechanism of the Kalman filter means that  the feature will only 
be considered if 

-Ps,t  ~_ ~'s,t ~_ Ps,t (11) 

This means that  we only need consider the segment of ns,t which lies within 
Ps,t of the curve. These segments of the normals form are the search lines of the 
active contour. 

The grey-level intensity of the pixel at a position r along ns,t will be denoted 
as I~,t (r), and the set of intensities along the whole search line as Is,t. Note that  
Is,t (r) is the intensity of the pixel at location xs,t + rns,t. 

When using a gradient based feature search the tracker is able to track at 
50Hz using an 8 span template on a Sun IPX. Unfortunately when tracking 
with the dynamic programming based feature search, this drops to 0.2Hz. This 
is because the complexity of the dynamic programming algorithm is C)(/~2pt). 
Ways of improving the speed of the algorithm are being pursued, but  in the 
mean time application is restricted to recorded video sequences. 

Figure 1 shows a tracking problem. A target moves in front of a cluttered 
background. A gradient based tracker is distracted by the clutter and loses the 
target. When the foreground is incorporated the tracker is able to reliably detect 
the boundary of the target, and able to stay locked to it. 

3 This feature should represent the actual underlying position of the curve on the 
target. Traditionally high contrast edges have been used as "the feature", this paper 
proposes a different model based on the gray level profile of the target. 
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7 C o n c l u s i o n s  

An algorithm has been proposed to improve the feature detection for active 
contours so that  they can track robustly in a wider range of applications. The 
use of a statistical template  and the dynamic programming algorithm enables 
the feature search to locate the target,  even in the presence of heavy clutter. 
Results have been shown for hard tracking sequences which clearly demonstra te  
the possible improvements. Future work will address ways of reducing the com- 
putat ional  burden of the algorithm to enable real t ime tracking. I t  will also 
investigate the effect which normalising the probabilities Pt (4, r) by the length 
of mapped search line has on the warps chosen by the algorithm. 
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