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A b s t r a c t .  We propose an approach for the design and control of both 
reflexive and purposive visual tasks with an uncalibrated camera. The 
approach is based on the bi-dimensional appearance of the objects in the 
environment, and explicitly takes into account independent object mo- 
tions. The introduction of a linear model of camera-object interaction 
dramatically simplifies visual analysis and control by reducing the size 
of the visual representation. We discuss the implementation of three tasks 
of increasing complexity, based on active contour analysis and polyno- 
mial planning of image contour transformations. Real-time experiments 
with a robot wrist-mounted camera demonstrate that the approach is 
conveniently usable for visual navigation, active exploration and percep- 
tion, and man-robot interaction. 

1 I n t r o d u c t i o n  

Active vision systems, often borrowing from biological systems, combine selective 
sensing strategies and motor  control techniques to optimize the execution of com- 
plex tasks. The simplest visual tasks can be regarded as reactive t ransformations 
from perception to action, where motor  actions are reflexes to incoming visual 
da ta  [6]. In addition, active tasks involve the purposive planning of visuo-motor  
strategies, and require an a priori knowledge of the visual environment [8, 3]. 
The problem of the integration of multiple tasks is of key importance for the de- 
sign of active vision systems and more general robotic systems as well [2]. Some 
recent implementat ions of interacting and cooperating tasks - e.g. using saccadic 
shifts to recover from pursuit errors [12], or executing reactive saccades before 
an active recognition "scanpath" [5] - are explicitly inspired from the human  vi- 
sual system. A general framework for the integration of reactive visual processes 
was presented recently, in which the problem of the hierarchical organization of 
control processes was addressed [7]. Much work has been done, in the last few 
years, on the design of architectures for active camera control (visual servoing). 
A modern  approach to visual servoing is to close the visual loop at the image 
level instead than in the tri-dimensional (3D) work-space, so as to reduce the 
system sensitivity to uncertainties in camera calibration, kinematic modeling, 
etc. [10]. 
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In this paper, we present an approach to the design and control of active and 
reactive visual tasks with an uncalibrated camera. The approach, which is based 
on the bi-dimensional (2D) visual appearance of rigid objects in the work-space, 
allows independent object motions and features a task layering mechanism, has 
evolved from an earlier framework called Affine Visual Servoing (AVS) [4]. One 
of the distinguishing features of AVS is the combination of differential control 
and an affine model of camera-object interaction which, once that the ambigui- 
ties intrinsic to the linearization are solved, dramatically simplifies both object 
representation and visual servoing. We discuss a system implementation with 
a manipulator-mounted camera which uses active contours as image primitives 
and includes three different tasks: fixation, motion imitation, and relative posi- 
tioning. In the latter case, we show how to generate camera displacements from 
polynomial planning of image contours. The techniques described here have nat- 
ural applications in landmark-based visual navigation, active exploration and 
perception, and man-robot interaction. 

2 O v e r v i e w  a n d  C o n t r o l  o f  V i s u a l  T a s k s  

Given a model of camera-object interaction, a visual representation {p, d} can 
be defined where, at each time t: 

- p(t) is an m-dimensional parameterization of visual appearance; 
- d(t) is a set of n differential parameters describing 2D changes of image 

appearance caused by the 3D relative velocity twist of camera and object. 

Any visual task can be described as a desired evolution ~(t) of object appearance. 
From a differential viewpoint, the task is specified as a trajectory d(t). This is 
nonzero only in the case of active tasks, while reactive tasks do not require 
planning. 

At run-time, the current representation is estimated as {~, d} via visual 
analysis and an image tracking process which we refer to as passive tracking, as 
it takes place also when the camera is fixed. 

The n • 6 interaction matrix s encodes the differential transformation from 
relative twist AV to appearance changes: 

d = s  , (1) 

where Vc = [To r acT] T is the camera velocity twist and Vo = [T~ aT] T is the 
object velocity twist. 

A differential strategy is adopted for task control: 

Vo = Vo + ~ + ( a +  ke(~,fi)) , (2) 

where Vc is the desired camera motion, Vo is an estimate of object motion, 
e(~, ~) is an n-dimensional error resulting from the comparison of the desired and 
estimated appearances, k E [0, 1] is the feedback gain, and 1:+ denotes the 6 x n 
pseudo-inverse of s The anticipation Vo is obtained as Vo = ~'c - s where 
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the camera motion ~'c is estimated directly from joint data  and robot kinemat- 
ics. Position feedback, if k is properly tuned, compensates for various modeling 
and estimation inaccuracies (robot kinematics, interaction model, camera pa- 
rameters, finite differences approximation, initial conditions, etc.). A regulation- 
to-zero (no planning) scheme for the control of a full-perspective camera based 
on the interaction matrix concept is introduced in [10], where d - p, i.e. n -- m. 
As the size of L: (oc n) is directly related to the number of visual features used to 
represent an object (oc m) - mainly points and lines - ,  the use of this scheme is 
limited to rather simple object shapes. Below we show how, thanks to a careful 
modeling of the interaction, it is possible to decouple control complexity from 
shape complexity - n independent of m - and easily augment regulation with a 
suitable planning strategy based on contour features, with significant improve- 
ments over the basic scheme both in terms of loop time and stability. 

As several tasks may be executed independently in parallel, there is a danger 
of tasks issuing conflicting commands to hardware and computing resources. 
Such conflicts can be resolved by organizing the tasks into a hierarchy based 
on the processing time (or bandwidth) of the transformations and, in ult imate 
analysis, on the feedback gain of each task. With such techniques, slower tasks, 
working in more abstract reference spaces, provide the reference signal to lower 
level tasks. 

3 M o d e l s  a n d  M e a s u r e m e n t s  

3.1 I n t e r a c t i o n  M o d e l  

The differential interaction between camera and object can be expressed, at a 
generic image point x = [x y]T, in terms of the 2 • 6 matrix V(x, y) s.t. 

v(x, = v(x, y) (3) 

relating image velocity v = x (motion field) to 3D relative velocity. Under full 
perspective and unit focal length, the motion field matrix evaluates as 

1;(x,y) = [-lo/Z 0 x /z  xy - (1  + x2) Y ]  (4) 
- 1 / z  y/z ( l + y  2) - x y  - x  ' 

with z = z(x, y) s.t. z(X/Z,  Y/Z)  = Z bringing into play the depth of the visible 
surface Z = Z(X,  Y). 

Under pard-perspective projection (a linearization of perspective [11]), the 
visible surface is approximated by a plane Z(X, Y)  = pX + qY + c passing 
through the object's centroid [XB YB ZB] T (object plane), with 

c / z=  l - p x - q y  . (5) 

Besides, for any object point pard-projected in x, it holds (x - xB)T(x -- XB) --~ 0, 
where XB is the centroid's image. Thus we can neglect quadratic and higher order 



586 

terms in the Taylor's development of v(x, y) around (xB, yg), and obtain a linear 
motion field: 

v(~ ,  y) = vB + M .  [~ - ~ y - y~]T (6) 

In  ultimate analysis, the dynamic evolution of any object image patch has six 
degrees of freedom (DOF), namely the two components of v 8 (rigid translation 
of the whole patch), and the motion parallax 

[mll rnl2 m21 m~2] T =wB ~ ~ B - "  [ml l  m12] , (7) 
t m21 m22J 

which accounts for affine image shape transformations. 
The linearization of eq. (6) allows a compact representation of dynamic in- 

teraction (n small and independent of m), not achievable with a full-perspective 
model. Indeed, by combining eqs. (3) through (7), we can easily construct the 
three interaction matrices l;~ (n = 2), WB (n = 4) and//B (n = 6) s.t. 

v~  = v~ A V ,  w~ = W~ A V ,  u~ = [v~ w~l  ~ = U~ A V ,  (8) 

and use them for designing visual tasks (see Sect. 4). Notice that the matrix L/s 
establishes a one-one correspondence between the six object DOF in the image 
and those in the work-space. 

3.2 Passive Tracking and Feedback 

To estimate at each time the current visual representation of the object (visual 
appearance and differential parameters) we use quadratic B-spline active con- 
tours [1]. These use a Kalman filter to robustly track affine deformations of a 
template contour, and allow to compactly represent object shape - small values 
of m for a fixed shape complexity - in terms of their M control points xi and 
optimize image processing computations. 

The six parameters of the affine transformation ~ between two successive 
contour estimates, {~i(t)} and {~/(t + 1)}, are obtained via least squares. The 
feedback error (centroid, shape) is evaluated analogously, as the least squares 
matching of the desired visual appearance, {~/}, against {~i}, the estimated 
appearance. 

To enhance the quality of all visual measurements (visual representation, 
object motion), simple mobile-mean filters are used [4]. 

3.3 Initializing and Updat ing the Interaction Matrix 

The interaction matrix embeds, in the object plane coefficients p, q and c, in- 
formation on 3D relative camera-object pose and translation (extrinsic camera 
parameters). Fig. 1 (left) shows an object-centered frame {Xobj, Yob~, Zobj} fixed 
on the centroid [XB YB ZB] T, s.t. Zobj = 0 denotes the object plane. Relative 
pose is uniquely determined by the three angles er E [0, ~r/2] (slant), r E [-~r, It] 
(tilt) and ~o e [-~r, ~r], to which plane parameters are related as follows: 

p = - t a n a c o s r ,  q = - t a n ~ s i n r ,  c = Z B ' ( 1 - - p ~ B - - q y B )  �9 (9) 
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Fig. 1. Left: Definition of pose parameters. The camera frame has been translated for 
convenience in the object frame's origin. Right: Interaction surface and pose ambiguity 
for weak perspective (see Subsect. 3.4). 

It can be shown [9] that  the loop closure in the image rather than in the work- 
space greatly enhances stability w.r.t, conventional servoing approaches, and 
convergence is ensured even for bad initial estimates of either intrinsic and 
extrinsic camera parameters (uncalibrated camera). Still, having the interac- 
tion matr ix  even roughly estimated at start-up and updated at run-time im- 
proves the speed of convergence of the control scheme. A raw initial estimate 
of object pose and centroid depth is obtained using the simple weak perspec- 
tive camera model Z(X, Y) ~_ Z, in the place of para-perspective, which yields 
[x - z .  y - y.] T = T "p [Xobj Yobj] T, with 

1 01]r<os  ,10  
T "  p =  Z--~ s i n r  cos t  ] O [ - s i n ~  co s~ j  

r 3 

An estimate of the weak perspective matrix, T"p = / t l l  t12[ is easily ob- 
[t2x tz2a ' 

tained from the least squares comparison of the current appearance of the object 
and an a priori model, e.g. the frontoparallel view of the object at unit distance 
and scale. Once that  this is known, we can estimate both pose and scale by 
solving the following nonlinear system: 

t l l  + t22 - -  1/ZB cos(r -- ~0) (COS ~ + 1) 
t 2 1  - -  t 1 2  " -  llZ~ sin(r  - ~o) (cos ~ + 1) 
t l l  - -  t 2 2  " -  1/Z .  cos(r + ~o) (cos a - 1) 
t21 + t m  = 1/Z. s i n ( r +  9) (cos~r - 1) 

(11) 
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Notice that  - a fact common to all perspective linearizations - a pose ambi- 
guity exists for weak perspective. I.e., two dual solutions exist to eq. (11), as 
two distinct object poses share the same visual appearance: T " P ( Z B ,  v, o', ta) -" 
T'P(ZB, r + ~r,a, ~-b ~r). To disambiguate the pose, we can refer back to the 
full-perspective model, and choose as the "true" pose the one providing the best 
least squares fit against image data [11]. 

At run-time, pose and distance parameters are obtained by combining current 
estimates, obtained via eq. (1) and the differential measurements u8 and AT, 
and their predicted value, obtained by expressing 10, q, ~ as functions of p, q, c 
and AT, and using finite differences [4]. 

3 .4  P l a n n i n g  a n d  Task  D i s a m b i g u a t i o n  

A planning strategy is used to produce a viewpoint shift (pose, translation). 
Such a shift is associated with an according smooth change of object's visual 
appearance of duration T from an initial contour {x[} to a final desired contour 
{x~}. The mapping "in the large" between these contours is evidently affine - 

T 0 x~ = xs + A T ( x / - x ~ )  - a s  the result of a sequence of affine transformations "in 
the small." The reference contour evolution is planned according to a trajectory 
for each of the control points, which is polynomial (degree h > 1) in t ime and 
linear in the image space: 

= [a(t)  + + , 4 ( t )  - (12)  

with a(t) = ~ = 0  es tt a 2-vector and A ( t )  = ~,~=o Cz tt a 2 x 2 matrix, c, and C, 
being constants to be determined based on boundary conditions. The conditions 
a(0) = 0, ,4(0) = Z, a(T) = x~ - x~, and .A(T) = .AT ensure that  the contour 
evolution starts with the initial contour and terminates with the desired contour. 
From the solution 

a(t)  = ~( t ) (x~  - x~)  , A( t )  = ~ ( t )Ar  + [1 -- ~(t)]2" , (13) 

where ~(t) E [0, 1], the desired differential reference is computed as ~B(t) = h(t) 
and ~s ( t )  ~ .~B(t) = f 4 ( t ) A - l ( t ) .  Additional constraints on the derivatives 
of a(t) and .A(t) - with beneficial effects on contour tracking, visual analysis 
and camera velocities and accelerations at the expense of a slower convergence 
- can be imposed at the trajectory endpoints with h > 3. Smooth trajectories 
are obtained with cubic (h = 3) or quintic (h = 5) polynomials by imposing zero 
endpoint velocity and acceleration: 

J" x2(t)[3 - 2x(t)] if h = 3 , (14) 
~( t )  = ~, x s ( t ) [ 6 x 2 ( t )  _ 15x(t) + 10] if h = 5 , 

with x ( t )  = ( t / T )  E [0, 1] the normalized task time. 
The smooth pose shift produced by the planning strategy can be represented 

as a curvilinear path on the in teract ion surface - the semi-sphere of all possible 
relative orientations between camera and object plane (Fig. 1, right). As it is, 
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planning produces always, of the two dual poses Q and Q' sharing the same 
goal appearance under weak perspective, the one which is closest to the initial 
pose moving along a geodesic path on the interaction surface (Q). To reach the 
farthest pose (Q') instead, we split the path P ~ Qe in two parts, P ~ O and 
O ~ Q', and pass through a suitably scaled frontoparallel view of the object O. 

4 I m p l e m e n t a t i o n  and  R e s u l t s  

T h r e e  V i s u a l  Tasks:  D e f i n i t i o n  and Composi t ion.  Tab. 1 introduces, in 
order of complexity, the three tasks implemented using the interaction matrices 
defined in eq. (8). Indices of task computational complexity are loop time, degree 
of object representation and initial conditions required. 

TASK SYNOPSIS 

Initial conditions 
Visual Representation 

Task Description 
Interaction Matrix 

Task Type 

Fixation Tracking 
{x0} 

{x~,vB} 
~B=O 
v~ 

reactive 

Reactive Tracking 
{x ~ } 

{{xd, u~} 
{~,(t)} = {x ~ 

u~ 
reactive 

Active Positioning 
{x~ {xT} 
{{x,},uB} 

{~,(T)} = {x T} 
HB 

active 

Table 1. Task Synopsis. 

During fixation tracking, a reactive task important in both artificial and biolog- 
ical vision systems [6], the camera is constrained to fix always a specific point of 
the object. Thanks to the linear interaction model, the centroid of the object's 
visible surface, chosen here as fixation point, is tracked by forcing the imaged 
object's centroid to be zero. The goal of reactive tracking is to imitate the motion 
of the object in the visual environment. An estimate of object motion can be 
also derived directly from joint data. Such a task can be useful to human-robot 
interfacing (mimicking human gestures, person following, etc.). Differently from 
fixation, the image point with constant zero speed is not, in general, the image 
origin, and the direction of gaze does not normally coincide with the direction 
of attention. Such an attentive shift is possible also in humans, but only if vol- 
untary. The active positioning task consists in purposively changing the relative 
spatial configuration (pose, distance) of the camera with respect to a fixed or 
moving object. This task can be essential for the optimal execution of more 
complex perceptive and explorative tasks, for instance vision-based robot navi- 
gation. The linear transformation required to plan the task (see Subsect. 3.4) is 
obtained from the least squares comparison of the initial and goal object appear- 
ances. Shifts of visual appearance can be related to corresponding attentional 
shifts from a region to another of the image. The reactive tracking task can thus 
be regarded as a particular case of active positioning, where the goal appearance 
always coincides with the initial one. 
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As mentioned earlier, the tasks can be composed based on the value of their 
feedback gains (the higher the gain, the faster the task). Thus, fixation can be 
composed with positioning to yield the task of positioning w.r.t, a fixated object. 
After completion, the composite task degenerates into a reactive tracking task, 
which attempts to preserve the relative position and orientation between the 
camera and the fixated object. 

Fig. 2. A positioning experiment (see text). The monitor upon the table displays the 
current scene as viewed by the camera. 

Setup and Parameter Setting. The system is implemented on an eye-in- 
hand robotic setup featuring a PUMA 560 manipulator equipped with a wrist- 
mounted off-the-shelf camera. Frame grabbing and control routines run on a 
80486/66 MHz PC using an Imaging Technology VISIONplus-AT CFG board. 
The PUMA controller runs VAL II programs and communicates with the PC 
via the ALTER reM-time protocol using an RS232 serial interface. New velocity 
setpoints are generated by the PC with a sampling rate T2 = N T1, where 
T1 - 28 ms is the sampling rate of the ALTER protocol and the integer N 
depends on the overall loop time. Using M = 16 control points for B-spline 
contours, loop time is about 100 ms, hence N -- 4. 
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Camera optics data-sheets provide a raw value for focal length and pixel di- 
mensions; the remaining intrinsic parameters of the camera are ignored. Smooth- 
ing filters and feedback gain, all tuned experimentally, are set to kpo, = 0.1 
(position) and k,,i = 0.01 (velocity), and k = 0.1, respectively. Cubic planning 
(h - 3) is used, which offers a good compromise between smoothness and contour 
inertia. 

T h e  S y s t e m  at  Work .  Fig. 2 summarizes the execution of an active position- 
ing task, the most complex task among the three, with respect to a planar object 
- a book upon a table. The top left part of the figure shows the initial relative 
configuration, and the top right the goal image appearance. At the bot tom left 
the planned trajectory between the initial and goal contours is sketched. At the 
bot tom right of the figure, the obtained final configuration is shown which, as a 
typical performance, is reached with an error of within a few degrees (pose) and 
millimeters (translation). 

To assess the stability characteristics of control, and tune up the feedback 
gain so as to obtain a slightly underdamped behavior, active positioning is run 
in output regulation mode. This mode is characterized by the absence of planning 
(~ = 0 and d = 0), while the system brings itseff, thanks to the feedback, from 
the initial to the goal configuration. The servoin9 mode (d = 0) is used instead 
to assess the tracking performance of the control scheme, as the system is forced 
to compensate the feedback error e(~, ~). Fig. 3 (left) shows the camera velocity 
as obtained with the servoing mode. Cubic-based planning and stable tracking 
contribute to obtain graceful relative speed and acceleration profiles. 

*~ . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . .  ~ . . . . .  i . . , . ~ : ~ , . . . . . . . i  . . . . . . . . . . . . . . . . .  i . . . . . . . .  
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Fig. 3. Camera velocities. Left: Without feedforward (servoing mode). Right: With 
feedforward. 

Introducing the feedforward term d in the control scheme significantly alleviates 
the job of the feedback and reduces the tracking lag; yet, system performance 
gets more sensitive to 3D interaction data - in Fig. 3 (right), feedforward was 
dropped out after about 75 s. Still, both control schemes (with and without 
feedforward) exhibit a nice behavior, also considering that  the tests were run 
without estimating and updating on-line the interaction matrix. 
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