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A b s t r a c t .  This paper presents a new technique for interpolating miss- 
ing data in image sequences. A 3D autoregressive (AR) model is em- 
ployed and a sampling based interpolator is developed in which recon- 
structed data is generated as a typical realization from the underlying 
AR process, rather than e.g. least squares (LS). In this way a percep- 
tually improved result is achieved. A hierarchical gradient-based motion 
estimator, robust in regions of corrupted data, employing a Markov ran- 
dom field (MRF) motion prior is also presented for the estimation of 
motion before interpolation. 

1 Introduction 

The problem of missing data reconstruction in image sequences has traditionally 
not been fully addressed by the computer vision and video processing communit- 
ies in the past. Various order statistic operations have been proposed for the 
suppression of impulsive noise in image sequences [1] but in general the problem 
of reconstructing missing data has been seen as a subset of the impulsive noise 
problem. An important example of missing data degradation is found in the 
motion picture industry. Particles caught in the film transport mechanism can 
damage the image information. The missing data regions manifest themselves 
as 'blotches' of random intensity in the sequence, known as 'Dirt and Sparkle'. 
The problem also occurs in film from high speed cameras used to record the 
evolution of short duration events such as explosions or impacts. In all these 
cases, the image information in the corrupted area is largely destroyed. 

This work considers the development of spatio-temporal processes for detec- 
tion/interpolation. The detection/estimation approach is adopted here in order 
to treat only suspected areas of distortion. This is an alternative philosophy to 
the usual global application of median filters employed to solve this problem. In 
addition, for good detail preservation of texture, it is necessary to look beyond 
the use of median filters to a model based approach for texture generation. 

The paper is organized as follows: section 2 describes the new robust motion 
estimation/correction methods and also briefly describes the blotch detection 
scheme (See [2]); section 3 describes the 3D AR model and robust parameter 
estimation for that model; section 4 describes the sampling based interpolation 
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scheme; section 5 presents results obtained from processing degraded film im- 
age sequences; and finally section 6 concludes the paper and discusses future 
directions for the work. 

2 M o t i o n  e s t i m a t i o n  a n d  t h e  d e t e c t i o n  o f  b l o t c h e s  

Corrupted pixels, which are part of 'blotches' in the image sequence, gener- 
ally do not occur in the same spatial location and with the same brightness in 
consecutive frames. They are therefore well defined as temporal discontinuities 
in the image sequence. Blotches can be distinguished from sites of occlusion 
and uncovering because they are at sites which are 'occluded' in both the next 
and previous frames (i.e. this image information does not exist in either of the 
two surrounding frames). Sites of occlusion and uncovering, however, repres- 
ent discontinuities in either the backward or forward temporal direction, but 
never both. A simple but effective detector (SDIa) for corrupted pixels was 
presented in [2]. It flags pixels as corrupted, when both the squared motion com- 
pensated pixel differences (forward and backward in time) are larger than some 
user defined threshold. The reader is encouraged to refer to [2] for details. 

Robust motion estimation is important for the correct operation of the de- 
tector. The next section presents a new technique for gradient based motion 
estimation, using a combination of low-level video processing algorithms. 

2.1 Mult iresolut ion Wiener  Based Mot ion  Est imat ion 

There exist many formulations for pel-recursive, translational, motion estimators 
which successively refine an estimate for the displacement between frames n 
and n - 1 at location ~, dn,n-l(~). This is achieved via updates calculated 
through a Taylor series expansion of the image function around the current 
estimated displacement. These appear to have been somewhat overlooked by 
the computer vision community. Biemond [3] presented a Wiener solution for 
an update displacement, ~i, which is more robust to noise. Errors in this motion 
estimator can be linked directly to the extent of ill-conditioning in a gradient 
matrix, Mg = [GTG] (see below). At an edge in the image, it is clear that 
the motion estimate is most confident in the perpendicular direction. Yet it is 
at just such locations that Mg can be ill-conditioned. This fact was recognized 
independently by Martinez, [4], who employed the SVD of Mg in an earlier work 
on a non-iterative gradient based motion estimation scheme. In the case where 
the estimator was at an edge, it was possible to salvage some useful information 
by aligning the extracted motion vector with the direction of maximum image 
gradient, using the SVD. 

This paper therefore proposes a combined strategy for an adaptive Wiener 
based (AWB) motion estimation scheme in which the update displacement, ffi, 
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is generated as follows, 

{a,~a=k, na= if ~ma. > a Arain 
Ki = [GTG + pI ] - i  GT z otherwise 

)tEr~ax # = I z ] ~ i f ~ A . . .  < -a  

OLma z -~ k~Tax GTz 
~ma~ 

(1) 

where A, /~ refer to the eigenvalues and eigenvectors of GTG, and area= is a 
scalar variable introduced to simplify the final expression. In this combined 
strategy, the condition of Ma is monitored through a. When the condition 
number ( ~..~. ) is larger than this value, the SVD of Mg is used to generate the 
'valid' motion component. Otherwise, Mg is assumed to be well conditioned and 
the regularized wiener solution for the update is used in which p is proportional 
to the product of the magnitude of the current DFD and the condition of the 
matrix[5]. 

2.1.1 I m p l e m e n t a t i o n  

The AWB estimator is incorporated into a block based scheme where each block 
in the image is assigned one motion vector. In order to reduce computation 
and the occurrence of spurious vectors, the AWB estimator is only employed in 
blocks where motion is detected. This consists of thresholding the mean absolute 
error (MAE) between the current block and the block at the same location in 
the previous and next frame. An MAE larger than the threshold is assumed to 
indicate motion and only in that case is motion estimation engaged. 

Gradient based motion estimation schemes only work when the Taylor series 
expansion of the image function is valid i.e. when estimating small displace- 
ments. In most interesting image sequences, especially those in movies, the 
assumption of small motion is not valid. This can be overcome through a mul- 
tiresolution strategy for motion estimation in a similar way to [6, 7]. For the 
implementation in this paper, an L level image pyramid (2:1 subsampling) is 
generated using an FIR gaussian kernel with variance 1.5 and window size 9 x 9. 
After n iterations of the AWB motion estimator, the vectors are propagated 
down to the next level and used as initial estimates for motion estimation at 
that level. At the original resolution level, it is typical that some areas which 
are not moving are assigned motion vectors only because of their proximity to 
moving regions in the upper levels of the pyramid. This motion halo effect is 
reduced in the manner of [8] by double checking for motion at level 0 in the 
pyramid. 

2.2 Vector  field correct ion 

After motion estimation is complete, the SDIa detector can be used to flag 
pixels which are detected as corrupted. These pixels can be grouped together 
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as necessary to measure the spatial extent of each blotch. The problem now is 
to fill the indicated region with some realistic estimate for the missing image 
data. This requires using information from both the next and previous frames. 
But the motion estimates are detrimentally affected by the presence of a Blotch. 
Therefore, an interpolated vector is required at this site. Also important is 
to ensure that  the interpolation process is robust enough to ignore or to de- 
emphasize data  collected using an incorrect motion vector. This is discussed in 
the next section. 

It is assumed that  motion vectors in frame n constitute a Markov Random 
Field (MRF) 1. The conditional probability of the vector dn,n-l(Z) given the 
frames In and In-1 and some neighborhood subset of motion vectors, Sn(Z), 
can be written using Bayes theorem as 

p(dn,n-1 (:~)IXn, In--l, Sn (:~)) ---- P([n, ~n-1 [dn,n-1 (~'), Sn (~))p(dn,n_l (~)[Sn (X)) 
p(In, In-1 IS. (~)) (2) 

The situation between frames n, n + 1 can be written similarly. The likelihood 
is taken as a zero mean gaussian distribution of DFD's, with variance ae 2. Note 
that  the vector field considered is defined on the block lattice and not the pixel 
lattice. Therefore the likelihood should contain a contribution from every pixel 
in the block centered on location ~ as follows (dropping Sn(~) for brevity), 

~eB (3) 

where B is the set of all locations in the block and I represents In, In-1. A 
weight w(Z) is associated with each DFD measurement. This weight is set to 
0 wherever the pixel site is flagged as corrupted by the detector, and set to 1 
otherwise. Nw is the sum of these weights over the block. 

In the manner of e.g. [11, 12] a Gibbs Energy prior is used for dn,n-l(~.) as 
follows 

p(dn,n-i(x)[Sn(x)) oc e x p -  A(v*)[dn,n-1 (e) - ~2 
\ �9 ,(~) 

(4) 

where g is each vector in the neighborhood represented by Sn(Z), and A(g) is 
the weight associated with each clique. The situation is illustrated in the left 
hand portion of figure 1. Note that  the cliques employed here assume first order 
interactions even though the eight connected neighborhood can involve some 
second order cliques [9]. 

In order to discourage 'smoothness' over too large a range, A(g) is defined 
as A(~) = Nw/[)~(0') - ~[ where )~(v') is the location of the block providing the 

lit is assumed that the reader is familiar with the concept of Markov Random Fields. See 
[9, 10, 11]. 
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Figure 1: Left : Neighborhood and cliques used for p(dn,,~-t(s Right : Altered 
Neighborhood used with a large blotch. 

neighborhood vector ft. This location is measured in terms of block lengths. 
As before, N~ is the number of uncorrupted pixels in the block. Large ~,(ff) 
encourages motion vector smoothness, and small a~ encourages vectors which 
minimize the DFD. 

It is true that  equations 2, 3, 4 are sufficient to estimate the motion field 
itself [9, 11], and the prior can be altered to account for motion discontinuities. 
However, a direct solution for the MAP estimate (2) with respect to the vec- 
tor field (via some Monte Carlo technique) is computationally demanding [9]. 
In practice, after the use of the AWM estimator and the blotch detector,  it is 
already possible to make a very confident assessment of the locations of corrup- 
tion. Therefore, there is no longer interest in the uncorrupted regions. Rather  
than relax the vector field around the corrupted location using, e.g. the Gibbs 
Sampler [9], it is found sufficient to reduce the solution search space 2 to the vec- 
tors in the neighborhood of the blotch. Each vector in turn is tested as a candid- 
ate solution to the corrected vector by substitution in equation 2. The candidate 
which maximizes 2 is selected as a working approximation to the MAP estimate. 
Note that  the denominator of equation 2 is constant and can be ignored. An 

2 is made from the measured DFD for each vector candidate. In estimate for a e 
the case where the DFD does not vary much with different candidate vectors, the 
operation reduces to a type of weighted vector median. When the blotch engulfs 
several blocks, the candidate vector set is chosen from an altered neighborhood 
where the blocks concerned contain less than 10% corruption. This s trategy is 
illustrated in figure 1. 

3 T h e  3 D  A R  M o d e l  

The structure of the AR model allows efficient computational algorithms to be 
developed, and it is this, together with its spatiotemporal nature which is of 

2A similar simplification was made by Stiller [12] for motion field smoothing. 
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interest. The physical basis for its use as an image model for interpolation is 
limited to its ability to describe local image smoothness both in time and space. 
The 3D AR model model equation is as follows. 

7~ 

I(g, n) = E akI(x + qxk + dxn,n+q.k (x"), y + quk + dyn,n+q.~ (~, n + q,k)) + e(~, n) 
k=x (5) 

In this expression, I(~,,n) represents the pixel intensity at the location ~ = 
(x,y) in the nth frame. There are P model coefficients ak, and the spatiotem- 
poral model support is defined by the vectors ~k = [q~&, qyk, an&]. The support 
locations are offset by the relative displacement between the predicted pixel loc- 
ation and the support location. The displacement between frame n and frame m 
is dn,m(X, y) = [dxn,m(X, y), dyn,m(X, y)]. Finally, e(x, y, n) is the prediction er- 
ror at location (x, y, n). Figure 2 shows a temporally causal 3D AR model with 
5 pixels support. 

No displacement Displacement of [-I -I] 

Fran~ n Frame n 
�9 Supp~ pel 

Prcdicu~d Pe~ 

Figure 2: Handling motion with the 3D AR 
model. 

In this paper the paramet- 
ers of the model are estimated 
using weighted least squares [2]. 
The weights assigned to each 
prediction equation are 0 where 
the blotch detector has flagged 
a corrupted pixel site and 1 oth- 
erwise, e(x, y, n) is assumed to 
be drawn from a white Gaus- 
sian noise process with variance 

2 

4 I n t e r p o l a t i o n  

Given the position of missing pixels, motion estimates and AR parameters for a 
sub-block of the image, the missing information is now interpolated. The meth- 
ods currently proposed [2] reconstruct the missing data with an interpolation 
which minimizes the excitation energy in a least-squares sense. However, this 
solution, which is equivalent to the maximum a posteriori (MAP) estimate under 
Gaussian assumptions [13], tends to be oversmooth compared with surrounding 
pixels, especially when the missing area is large. The problem is well illustrated 
in figures 3, 6. Oversmoothing in the reconstructed image occurs because es- 
timation techniques which use these or other familiar objective functions do not 
make allowance for the random component in image sequences, which cannot be 
predicted exactly from surrounding pixel values. 

We propose an interpolator which draws the missing pixel values as a random 
sample from their posterior probability distribution conditional upon the known 
pixel values which surround the missing region. In this way the interpolation 
will be typical of the AR process under consideration and should not exhibit the 
oversmooth nature of other interpolators. Similar principles have been success- 
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fully applied to the interpolation of missing samples from audio signals which 
can be modelled as a 1-d AR process [14, 15, 16]. 

4.1 Sampled interpolations 

The vector of excitation values e corresponding to a block of data i is written 
in matrix-vector notation as e = Ai, where A is constructed from the AR 
parameter vector a in such a way as to generate c(-~) (see (5)) for N distinct 

--+ 
values of r .  This expression can be partitioned into a part corresponding to 
known data pixels i~ and unknown data i~, leading to Ai = A~i~ + A~i~, where 
A~ and A.  are the corresponding columnwise partitions of A. 

Under Gaussian and independence assumptions for the excitation process the 
posterior distribution for the missing pixels is given by (see appendix A) 

ATA~ t/2 ( 1 (i __iMAe)T T ) 
p(i.[i~,a~,a) ---- (2~rae~)U2 exp - - ~  (A. A . ) ( i .  - i. uAP) (6) 

which we note is in the form of a multivariate normal distribution, i~ Av is the 
standard MAP/least squares (see [13, 2]) interpolator, given by: 

i~ AP = - (ATA. ) - tA~A~i~  (7) 

An estimate for ae 2 in equation (6) can be made from observations of the excita- 
tion in the uncorrupted region around the missing pixels following AR parameter 
estimation. 

Drawing a random sample from the multivariate normal distribution of equa- 
tion (6) can be achieved using well known procedures and may be summarized 
as :  

ui ~ N(0,1), (i = 1 . . . l )  (8) 

i samp = i ~  AP + S - l U  (9) 

where '-~' denotes a random draw from the distribution to the right, N(0, 1) is the 
standard normal distribution and S is any convenient (l x l) matrix square-root 
factorization which satisfies A T A . / a ~  = STS. u is the column vector formed 
from the elements ui. The sampled interpolation i samp can then be substituted 
for the missing pixels in the restored image. 

Drawing a sample from the conditional distribution can be seen to involve 
calculation of the MAP estimate i MAe and adding an appropriately coloured 
noise term S- lu .  Calculation of S -1 need not involve any significant overhead 
over MAP interpolation if a matrix square-root factorization method such as 
Cholesky Decomposition is used in the inversion of ATA.  (equation (7)). 

5 R e s u l t s  

Because the sampling based interpolator draws a typical sample for the inter- 
polated data, it is not possible to measure the performance of the interpolator 
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Figure 3: Degraded Frame 2 of 
FRANK with large blotches boxed. 

Figure 4: Detected Blotches (bright 
white) in Frame 2, after dilation of 
detection field. 

by using a standard distortion measure such as MSE with artificially degraded 
sequences, since the MAP estimate is likely to give the give the lowest MSE. 
Indeed that is its shortcoming. Therefore it is best to illustrate performance by 
using visual comparisons. 

Figure 3 shows a frame of a real degraded sequence. The overall motion in 
the sequence is a rapid vertical pan, with some fast motion in the petals of the 
flower and some complicated motion in the background trees. The blotches to be 
considered are highlighted in figure 3. Each frame is of resolution 256 x 256. A 2 
level pyramid was employed for motion estimation. The block size used was 9 x 9, 
the motion threshold was 10.0 grey levels, 10 iterations of the AWB estimator 
were used at each level, and a = 100.0. The blotch detection threshold, et was 
set at 25.0. The areas which were then flagged as corrupted (using ,.,eDIa, see [2]) 
are shown as bright white pixels in figure 4, superimposed on a darkened version 
of frame 2 (figure 3). Note the false alarms in the region of the petals of the 
flower - the petals themselves are quite impulsive features which do not move 
smoothly from frame to frame. The block based motion estimation technique 
does not function well here. 

Figures 6 and 5 show a zoomed version of the MAP reconstruction with and 
without vector field correction respectively. The interpolated regions are boxed 
in white. The improvement is illustrated clearly in the large blotch (shown on 
frame 2). The interpolated data is much better in keeping with the rest of the 
hairstyle when the motion vector used at the blotch site has been 'corrected'. 
The 3D AR model used here was causal with support only in the previous frame 
in a 3 x 3 block of 9 support points. The improvement in quality with motion 
field correction is the same whatever the interpolation employed and so no more 
examples are given. 
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Figure 5: Interpolation using MAP 
estimate without vector correc- 
tion. (Interpolated regions boxed in 
white.) 

Figure 6: Interpolation using MAP 
estimate with vector correction. (In- 
terpolated regions boxed in white.) 

Figure 7: Interpolation using spatio- 
temporal median filter. (Interpol- 
ated regions boxed in white.) 

Figure 8: Sampled Interpolation. 
(Interpolated regions boxed in 
white.) 
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Figures 7 and 8 show a zoomed version of the results of a controlled median 
filtered operation and a sampled AR interpolation (section 4) respectively. The 
interpolated regions are also boxed in white. The ML3Dex filter as defined in [2] 
was used at the sites of detected distortion to generate figure 7. The same 3D 
AR model as for the MAP interpolation of figure 6 was used. Both results 
employed the corrected vectorfield in assembling the motion compensated data 
for interpolation. 

The median filtered result is the worst of the 3 alternatives (figures 6, 8, 7) as 
it cannot reconstruct the texture properly across the large blotch in particular. 
To be fair, however, the median filtering strategy does not ignore pixels from its 
mask which are known to be corrupted; if this were done the median result could 
be better. In the regions which are not heavily textured, e.g. the background 
blotches, the median result compares well with the model based interpolations. 

The sampled AR process (figure 8) has reconstructed the missing data in- 
cluding the detail extremely well. Where the MAP interpolation has introduced 
a slight smoothing effect, the sampled interpolator has recreated the random 
'graininess' which is typical of the surrounding area in the image. This is seen 
best if the interpolated regions in the large blotch are compared in figures 6 
and 8. Furthermore, note that even though it is clear that the 'corrected' mo- 
tion vector used at the blotched location is not necessarily 100% accurate 3, this 
has not detrimentally affected the model based interpolation schemes. In fact, 
because of the spatial extent of the model support in the previous frame, the 
model can cope, in this case, with inaccuracies of up to +1 pixel in the motion 
vector used. 

6 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

This work has presented a new scheme for detail preserving interpolation of 
missing data in image sequences. In achieving this goal, it has also introduced 
a new technique for gradient based motion estimation. It has also been pointed 
out that when the vector field model is based on an MRF prior employing a 
Gibbs Energy distribution, an initial configuration that is close to the final true 
solution will of course improve the convergence of the relaxation algorithms [9]. 
Such initial estimates can be had using any number of lower complexity motion 
estimation algorithms [3, 7] which do not explicitly allow for motion discontinu- 
ities, for instance. A new sampling based interpolator has been introduced which 
does not suffer from the 'oversmoothing' of large missing regions and which does 
not substantially increase the computation required. 

Finally, it must be noted that in achieving the goal of missing data interpol- 
ation, this paper has employed 3 different models of the image sequence in order 
to address conveniently each sub-problem as it arises. Translational motion is a 
convenient model for generating a fast initial configuration for the motion field. 
Equation 2 is a probabilistic formulation which then allows the correction of 
the vector field through an image sequence model which imposes an implicit 

3Essentially, it has been estimated by replacing it with one of the surrounding vectors. 
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constraint on the smoothness of the motion field. The AR model equation 5 
then imposes some constraint on the image values to allow the interpolation of 
the missing region. All of these formulations emphasize a different aspect of the 
image sequence and it is possible to combine them all into a single Bayesian 
framework for the estimation of the various parameters, including the missing 
data itself. This is the current focus of our research. 

A P o s t e r i o r  p r o b a b i l i t y  f o r  i n t e r p o l a t e d  d a t a  

We derive here the conditional posterior probability expression for the missing 
pixels, given in equation (6). 

Assuming a Ganssian independent excitation with variance a 2 we can write 
down the probability for e as 

p(e) ---- (27rae2) -N/2 exp k, 2a 2 ] 

The distribution for the corresponding block of image pixels i is then obtained 
by the change of variables e = Ai (see section 4.1), giving: 

iTATAi ~ 
p(i) ---- Pie = Ai) = (27ra2) -g/2 exp ~ae 2 ] (10) 

Note that this distribution is strictly conditional upon a minimal region of AR 
support pixels at the edges of the block (see e.g. [17] for the 1-d case), but 
we omit this dependence here for clarity of exposition. The form of the final 
result for missing pixels is unchanged by this simplification provided the region 
of support contains only known pixels. The above expression also assumes a 
causal AR model (in which case the Jacobian for the variable change is always 
unity). 

The conditional distribution for missing pixels i, is then obtained from the 
probability chain rule as: 

_ p ( i )  
P(i~[i~) p(i~) 

Note that the denominator term in this expression is constant for any given image 
and AR model. Hence the final result can be determined by rearrangement of 
(10) in terms of i~ and noting that the resulting distribution must be normalized 
w.r. t . i . .  Substituting Ai = A~i~ + A~i. (see section 4.1) into equation (10) and 
rearranging to give a normalized distribution leads to the final result of equation 
(6). 
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