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A b s t r a c t .  In this paper we will investigate the different algebraic vari- 
eties and ideals that can be generated from multiple view geometry with 
uncalibrated cameras. The natural descriptor, ];n, is the image of p3 in 
p2 • 7)2 • . . .  • p2 under n different projections. However, we will show 
that ~;n is not a variety. 
Another descriptor, the variety ];b, is generated by all bilinear forms 
between pairs of views and consists of all points in 7 )2 •  • . . .  • pe  
where all bilinear forms vanish. Yet another descriptor, the variety, Vt, is 
the variety generated by all trilinear forms between triplets of views. We 
will show that when n = 3, "it is a reducible variety with one component 
corresponding to )3b and another corresponding to the trifocal plane. 
In ideal theoretic terms this is called a primary decomposition. This 
settles the discussion on the connection between the bilinearities and the 
trilinearities. 
Furthermore, we will show that when n = 3, ~)t is generated by the three 
bilinearities and one trilinearity and when n :> 4, ];t is generated by the 
(~) bilinearities. This shows that four images is the generic case in the 
algebraic setting, because Yt can be generated by just bilinearities. 

1 I n t r o d u c t i o n  

W h e n  es t imat ing s t ructure  and motion from an uncal ibrated sequence of images, 
the bilinear and the trilinear constraints  play an impor tan t  role, see [4], [5], [6], 
[7], [12], [13] and [14]. One difficulty encountered when using these multi l inear 
constra ints  is tha t  they are not independent ,  some of them may  be calculated 
from the others,  see [2], [3] and [6]. Thus  there is a need to investigate the 
relations between them and to determine the minimal number  of multi l inear 
constraints  tha t  are needed to generate all multilinear constraints.  These  multi- 
linear functions have not before been studied using an ideal theoret ic  approach.  

The  simplest multilinear constraint  is the bilinear constraint ,  described by 
the fundamenta l  mat r ix  between two views. The  next step is to consider three 
images at the same instant.  At this stage the so called trilinear functions appear ,  
see ]12], [13], [5] I4] and [6]. The  coefficients of the trilinearities are elements of 
the so called trifocal tensor. 

* This work has been supported by the ESPRIT project BRA EP 6448, VIVA, and 
the Swedish Research Council for Engineering Sciences (TFR), project 95-64-222. 
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The obvious extension of the trilinear constraints is to consider four or more 
images at the same instant. It turns out that there exist quadrilinear constraints 
between four different views, see [2] and [14]. However, these constraints follows 
from the trilinear ones, cf. ]6], [2] and [14]. It also became apparent that  multi- 
linear constraints between more than four views contain no new information. 

One strange thing encountered with the bilinearities and trilinearities is that  
given the three bilinearities, corresponding to three different views, it is in gen- 
eral possible to calculate the camera matrices and the trilinearities from the 
components of the fundamental matrices, as described in [6] and [9]. But  al- 
gebraically the trilinear constraints do not follow from the bilinear ones in the 
following sense. Consider points on the trifocal plane. The bilinear constraints 
impose only the condition that  the three image points are on the trifocal lines, 
but  the trilinear constraints impose one further condition. The question is now 
how the fact that  it is possible to calculate the trilinear constraints from the 
bilinear ones, via the camera matrices, correspond to the fact that  the trilinear 
constraints do not follow algebraically from the bilinear ones, that  is the trilin- 
earities do not belong to the ideal generated by the bilinearities. This is the key 
question we will t ry  to answer in this paper. We will t ry  to clarify the meaning 
of the statement ' the trilinear constraints follows from the bilinear ones, when 
the camera does not move on a line', where the statement is right or wrong de- 
pending of what kind of operations we are allowed to do on the bilinearities. The 
statement is true if we are allowed to pick out coefficients from the bilinearities 
and use them to calculate camera matrices and then the trilinearities, but the 
statement is wrong if we are just allowed to make algebraic manipulations of the 
bilinearities, where the image coordinates are considered as variables. 

In order to understand the relations between the bilinearities and the trilin- 
entities we have to use some algebraic geometry and commutative algebra. A 
general reference for the former is [10] and for the latter [11]. 

2 P r o b l e m  F o r m u l a t i o n  

Consider the following problem: Given n images taken by uncalibrated cameras 
of a rigid object, describe the possible locations of corresponding points in the 
different images. Throughout  this paper it is assumed that  the views are generic, 
i.e. the focal points are in general position. Mathematically, this can be formu- 
lated as follows. Let :p2 and ~v3 denote the projective spaces of dimension 2 and 
3 respectively. Denote points in :p3 by X = (X, Y, Z, W) and points in the i:th 
p2 by xi = (xi, yi, zi). Let A~, i = 1 , . . .  ,n  be projective transformations, that  
is linear transformations in projective coordinates, from/~3 to :p2 

A ~ : P 3 9 X ~ A ~ X E p 2 ,  i = l , . . . , n  . (1) 

In (1) each Ai is described by a 3 x 4 matrix or rank 3. The mapping is un- 
defined on the nullspace of this matrix, corresponding to the foca l  p o in t ,  f i ,  
of camera i, that  is A J i  = 0. This can be regarded as one transformation, 



673 

�9 ,~ = (A1,A2, . . .  ,An),  from ?53 to 7)2 • 7)2 x . . .  x 7)2 = (7)2)n, 

~ n :  ~53 ~ X ~ (AlX,  A 2 X , . . .  ,A,~X) �9 (7)2)~ , (2) 

where p3  = 7)3 \ {f l ,  f 2 , . . .  , fn},  that  is :p3 with the camera centres omitted. 
This removal of a finite set of points from 7)3 gives a quasiprojective variety, i.e. 
an open subset of a projective variety. We want to describe the range of ~ as a 
subset of (7)2)% 

It can be shown, see [10], that  (7)2)n is indeed a projective variety. It can be 
embedded in 7) 3~-1 as a projective subvariety, using the Segre embedding. We 
will call this projective subvariety Sn, and think of it as n copies of 7)2, and do 
not bother about  the actual embedding. However, it is essential to know that  
(7)2)n is indeed a projective variety. 

Moreover, this fact has a very important  implication on the functions and 
ideals generating varieties in (7)2)% These functions must be homogeneous of the 
same degree in every triplet of variables corresponding to a factor (7)2), see [10], 
pp. 56. For example, there is no meaning in asking the question if the bilinear 
constraint between two images is contained in some ideal generating a variety in 
(7)2)3 for three images. The reason for this is that  variables from the third image 
are not present in the bilinearity between the first two images. Thus this bilinear 
constraint is not homogeneous of the same degree in every triplet of variables. 
This difficulty will be overcome in the sequel by considering every multilinear 
constraint in its homogenised forms, and when we speak of generators of an 
ideal, describing a variety in (7)2)n, we implicitly assume that  the generators are 
replaced by their homogenised equivalents. 

2.1 C h o i c e  o f  C o o r d i n a t e s  

Since we are only interested in algebraic relations between different ideals, we 
have the freedom to choose coordinates in 7 )3 and in every 7)2 as we like. Consider 
the n projective transformations Ai in (1) and the n focal points fi  C 7)3. We 
choose coordinates in 7)3 such that  the first five points fi  constitute a projective 
basis with coordinates f l  -- ( 0 , 0 , 0 , - 1 ) ,  f2 = ( 1 , 0 , 0 , - 1 ) ,  f3 = ( 0 , 1 , 0 , - 1 ) ,  
f4 = ( 0 , 0 , 1 , - 1 )  and f5 = ( 1 , 1 , 1 , - 1 ) ,  where the minus sign in the fourth 
component  will be convenient later. Furthermore we choose coordinates in each 
7)2 such that  the first three columns of each Ai are the columns of the identity 
matrix.  This means that  the projection matrices can be written 

[i~176 A1 = 1 0 , A2 = 1 0 , A3 = 1 0 , 
0 1  01  01  

(3) [i0]00 ii00i] [i00]a  A 4 =  1 0 0  , A a =  10  , A n =  1 0 b n  , n > 6  , 
0 1 1  01  0 1 c ~  

where Anfn  = 0 with fn = ( - a n , - b , ~ , - c ~ ,  1), n -> 6. This coordinate system 
chosen in (3) will be called a n o r m a l i s e d  c o o r d i n a t e  s y s t e m  for the multiple 
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view geometry. This choice of coordinates can be done if the matrices Ai are 
assumed to be in general position. 

The ep ipo le ,  ei,j, from camera j in image i is defined by e i j =  Ai f j .  For 
example, with our choice of coordinates, el,2 = (1,0,0), el,3 = (0, 1,0), e2,1 = 
(1,0,0), e2,3 = ( 1 , -1 ,0 ) ,  e3,1 = (0,1,0) and e3,2 = (1 , -1 ,0 ) .  The t r i f o c a l  
p lane ,  TPi,j,k, for images i, j and k is the plane containing fi, f j  and fk. For 
example, with our choice of coordinates, TP1,2,3 is described by Z = 0. The 
e p i p o l a r  l ine, ELi,j,  is the line in 7 )3 containing fi and fj .  The t r i foca l  l ine, 
tli,j,k, in image i from the triplet of images i, j and k is the intersection of the 
trifocal plane, TPi,j,k, and image plane i. With our choice of coordinates, t/1,2,3 
is described by Zl = 0, t/2,1, 3 by z2 = 0 and tl3,1,2 by z3 = 0. 

2.2 M u l t i l i n e a r  Forms 

Consider the equations, obtained from (1), 

A i X = A i x i ,  i = l , . . . n  , (4) 

where the Ai:s are needed because of the homogeneity of the coordinates. These 
equations can be written 

AXXlOO ol x I 0 
A2 0 x2 0 . . .  0 |  

Mu = [A3 0 0 X3. . .  0 [  --A3 = 

/ : : : : ". : / 
LAn 0 0 0 . . :  XnJ 

- -  n 

(5) 

Since M has a nontrivial nullspace, it follows that  

rank(M) < 3 + n . (6) 

The matrix M contains one block with three rows for each image. The b i l i n e a r  
c o n s t r a i n t s  for two images are obtained by taking a subdeterminant contain- 
ing all three rows for the two images and the corresponding nonzero columns. 
The t r i l i n e a r  c o n s t r a i n t s  for three images are obtained from subdeterminants 
containing three rows from one of the three images and two rows from each of 
the other two images and the corresponding nonzero columns. The q u ad r i l i n -  
ea r  c o n s t r a i n t s  are obtained from subdeterminants containing two rows from 
each of the four images and the corresponding nonzero columns. Observe that  
all determinants of (n + 4) • (n + 4) submatrices are multihomogeneous of degree 
(1, 1, 1 , . . .  , 1), that  is of the same degree in every triplet of image coordinates. 
For example the bilinearity, bl,2 between image 1 and 2 can be obtained as 
x3x4. . ,  xnbl,2. This formulation is the same as the one used by Triggs, in [14] 
and is equivalent to the one used in [6]. 
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2.3 The  Variet ies  

In the sequel we are going to investigate the following subsets of Sn: 

D e f i n i t i o n  1. The n a t u r a l  d e s c r i p t o r ,  ]2n, is the range of ~bn in (2), i.e. ]3n = 
c_ sn.  [] 

Def in i t ion  2. The b i l i nea r  d e s c r i p t o r  or bil inear variety ~b, is defined as 
the projective subvariety in S~, generated by all bilinear constraints. [] 

D e f i n i t i o n  3. The t r i l i n e a r  d e s c r i p t o r  or t r i l i n e a r  va r i e ty ,  Ft, is defined as 
the projective subvariety in S~, generated by all trilinear constraints. [] 

These definitions raise several questions. It is obvious that ~2b and Pt are pro- 
jective subvarieties, since they are defined by homogeneous polynomials. Fn is 
a constructible set, see [10], i.e. a rational image of a quasiprojective variety, 
but is it a variety?. How can these varieties be described as the set of zeros to 
an ideal of polynomiMs? Are they irreducible? If not, what are the irreducible 
components? What  are the connections between them? We will answer these 
questions later. 

It is also possible to generate a variety by combining the bilinear and trilinear 
forms. The projective subvariety, ]2bt, in $~, generated by all bilinear and trilin- 
ear constraints, is called the b i t r i l i n e a r  va r i e ty .  It follows that  ~bt = Fb [-] ~t- 
When more than three images are available it is possible to generate a variety 
from the quadrilinear constraints. The projective subvariety, Fq, in $~, gener- 
ated by all quadrilinear constraints, is called the q u a d r i l i n e a r  va r i e ty .  Again, 
it is obvious that Ybt and ]2q are projective subvarieties and we can of course 
ask the same questions about connections and of irreducibility. 

3 T w o  I m a g e s  

Things start  to be complicated already in the case of two images. Consider ~52 
in (2) for n = 2. If we make a suitable restriction of ~2, we get the following well 
known theorem, see I1]. 

T h e o r e m  4 ( F u n d a m e n t a l  t h e o r e m  of  e p i p o l a r  g e o m e t r y ) .  The mapping 

~2:?)3 \ {ELI,2} ~ X ~ (A1X, A2X) �9 (p2 \ {el,2} ) X (7)2 \ {e2,1} ) (7) 

is a birational map between the quasiprojective varieties 7)3 \ {EL1,2} and ((7)2 \ 
{el,2}) • (7)2 \ {e2,1})) n Vb. 

Proof. ((7)2 \ {el,2}) • (7)2 \ {e2,1})) n Vb is a quasiprojective variety since it 

is the intersection of two quasiprojective varieties. Obviously, ~2 is rational and 
surjective. It remains to prove that its inverse exists and is rational. This can be 
seen from the fact that  given a point (x l ,x2)  in the range of ~2, it is possible 
to reconstruct the point in 7)3 \ {EL1,2} by intersecting the rays A l l (x 1 )  and 
A~l(x2).  The reconstructed point can be written as the intersection of these 
lines. This is clearly a rational map, which concludes the proof. [] 
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The mapping, ~2, in (7) is called the b i r a t i o n a l  r e s t r i c t i o n  of ~2. Note that  
the inverse image of ~2 is 1-dimensional at the point (el,2, e2,t), because every 
point on the epipolar line projects to (e1,2,e2,1). This means that ~2 is not 
bijective between Fb and 753. 

We now turn to the natural descriptor, Vn C_ 7)2 • 7)2. It consists of the 
following pairs of points: 

- one arbitrary point, (zl ,Yl,ZX),  in the first (7)2 \ {el,2}) and one point, 
(x2, Y2, z2) in the second (7)2 \ (e2,1}) on the line bl,2 = 0 (or vice versa), 

- the epipole el,2 in the first 7)2 and the epipole e2,1 in the second 7)2, 

corresponding to images of points not on the epipolar line, and points on the 
epipolar line except the focal points. 

Next, we turn to the bilinear variety, ])b, generated by the bilinear forms. For 
two images there is just one bilinear form, 

bl,2(xl, Yl, Zl, X2, Y2, z2) = YlZ2 - zly2 �9 (8) 

The projective subvariety )25 C_ 7)2 • 7)2 generated by bl,2 consists of the following 
pairs of points: 

- one arbitrary point, (x l ,Y l ,Z l ) ,  in the first (7)2 \ {el,2}) and one point, 
(x2, Y2, z2) in the second (7)2 \ {e24}) on the line b1,2 = 0 (or vice versa), 

- the epipole el,2 in the first 7)2 and an arbitrary point in the second 7)2, 
- the epipole c2,1 in the second 7)2 and an arbitrary point in the first 7)2. 

This includes also the point (el,2, e2,1), consisting of the two epipoles. This shows 
the following theorem 

T h e o r e m  5. For two images we have, with strict inclusion, ])n C ]25. 

We now return to the natural descriptor ])n C_ 7)2 • 7)2. Consider the ideal 
Z, = Z(])n) C_ JR Ix1, Yl, zx, x2, Y2, z2], where Z(12) denotes the ideal generated 
by all polynomial functions that vanish at all points in ]2. Thus Zn is the ideal 
generated by the polynomial functions in (xl, Yl, Zl, x2, Y2, z2)  that vanish at all 
points in 12n. Since )2n is a subset of 7)2 • 7)2, these functions must be bihomo- 
geneous of the same degree in (xl,  Yl, zl)  and (x2, Y2, z2), see [10], pp. 56. The 
bilinearity in (8), of degree (1, 1), generates In according to the following lemma. 

L e m m a 6 .  The ideal Zn, generated by the natural descriptor, can be described 
a s  

Zn = f b  = (51,2) �9 

Proof. Use (4) for n = 2 and eliminate the scale factors, Ai, and object coordi- 
nates, X. For details, see [8]. [] 

Remark. This means that the closure of ])n in the Zariski topology equals "gb 
since "~)(][(]')n)) is the closure of ]~n. [] 
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T h e o r e m  7. The natural descriptor l)n E p2 x p2 is not a variety, in the sense 
that it can not be described as the common zeroes to a system of polynomial 
equations. 

Proof. Every variety, ]2, fulfils ]2 = ]2(E(]2)). However, Theorem 5 and Lemma 6 
show that  ]2n C ]2b = "~(Z(]2n)) ,  with strict inclusion. [] 

Remark. We can also describe ]25 as the range of an extension of the map ~2 to 
a multivalued map ~2 from the whole 7)3 defined as 

f (AlX, A2X) ;A lX  # 0, A2X # 0 

~2(X) = ~{(AlX,  X2) lx2 e7)2} ; A 2 X = 0  (9) 
[ { (x l ,A2X)  lxl  eT) 2} ; A l X = 0  . 

Then the range of ~2 equals exactly the variety, ]25, generated by the bilinear 
constraint. [] 

It is obvious that ]25 is irreducible because it is generated by a single irreducible 
polynomial. Thus we have answered all questions raised above for the two image 
case .  

4 T h r e e  I m a g e s  

4.1 Var ie t ies  

Consider ~3 in (2) for n = 3. Making a suitable restriction of 4~3, we get the 
following well known theorem. 

T h e o r e m  8 ( F u n d a m e n t a l  t h e o r e m  of  t r i foca l  g e o m e t r y ) .  The mapping 

~3:  \ {TP1,2,3} --+ (7)2 \ {t/1,2,3}) x (7)2 \ {t/2,1,3}) x (7)2 \ {tl3,1,2}) 

X ~ ( A l X ,  A2X,  A3X)  

(lo) 

is a birational map between the quasiprojective varieties 7 )3 \ {TP1,2,3} and ((7)2 \ 
{tz1,2,3}) • (7)2 \ {t12,1,3}) • (7)2 \ n vb. 

Proof. In the same way as Theorem 7, see [8]. [] 

The mapping, ~3, in (10) is called the b i r a t i o n a l  r e s t r i c t i on  of r It is always 
possible to reconstruct a point in ((p2 \ {el,2, ea,3}) • (7)2 \ {e2,1, e2,3}) • (7)2 \ 
{e3,1, e3,2})) 7112b, which is in the range of ~3, using a rational map by intersecting 
two lines. However, we can not in advance choose a function for this. For example, 
if the point X is on the epipolar line between image 1 and 2 we can not use just 
A1 and A2 to make a reconstruction. We have to use A3 also. This indicates why 
it is impossible to find an inverse rational map which would give a birational 
equivalence between f)3 and ]2n. 

The natural descriptor ]2n consists of the following points: 
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- one arbitrary point in the first (7)2 \ {tll,2,3}), one point in the second (7)2 \ 
{t/2,1,3}) on the line bl,2 = 0 and one point in the third (7)2 \ {t/3,1,2}) on the 
intersection between the lines b l ,  3 --- 0 and b2,3 - -  0 (and any permutation of 
the three images), 

- one arbitrary point on (t11,2,3 \ {e1,3,ez,2}) in the first 7 )2, one arbitrary 
point on (t/2,L3 \ {e2,3,e24}) in the second 7)2 and the unique point on 
(tl3,1,2 \ {e3,1, e3,2}) in the th i rd/ )2  given by the trilinear constraints or as 
a projection of the reconstructed point from image 1 and image 2 onto the 
third image (and any permutation of the three images), 

- the epipole el,3 in the first 7)2, the epipole e2,3 in the second p2 and an 
arbitrary point on the trifocal line tl3,1,2 in the third (7)2 \ {e3,1, e3,2}) (and 
any permutation of the three images), 

corresponding to images of points not on the trifocal plane, points in the trifocal 
plane, not on an epipolar line and points on the epipolar lines. 

Consider the variety ~;t c_ p2 x 7)2 • p2 generated by the trilinear forms. 
The projective subvaxiety in 7)2 • 7)2 • 7)2 corresponding to these forms is given 
by the same points as ];n plus the following triplets of points: 

- the epipole el,3 in the first 7)2, the epipole e2,3 in the second 7 )2 and an 
arbitrary point, ( x 3 , Y 3 , Z 3 ) ,  in the third 7)2 (and any permutation of the 
three images). 

Remark.  Just as in the case of two images we can also describe this  variety, Yt 
as the range of an extension of the map ~3 to a multivalued map 4~3 from the 
whole 7)3 defined as the obvious extension of (9). Then the range of ~3 equals 
exactly the variety, "~t, generated by the trilinear constraints. [] 

We now turn to the variety, ~;b, generated by the bilinear forms. In this case 
each image pair contributes with a bilinear form, 

b1,2 = Y l Z 2  - zlY2, b1,3 = X l Z 3  - Z l X 3 ,  b2,3 -= (x2 + y2)z3 - z2(x3 + Y3) �9 (11) 

The projective subvariety ];b C_ 7) 2 • 7)2 • 7)2 generated by these forms consists 
of the same triplets of points as ];t plus the following triplets of points: 

- one arbitrary point on t11,2,3 in the first 7 )2, one arbitrary point on tl2,1,3 in 
the second 7 )2 and one arbitrary point on tl3,1,2 in the third 7)2. 

T h e o r e m  9. For three images we have, with strict inclusions, 

)2n C ~)t C )2b . (12) 

Furthermore, the variety ]25 is reducible and can be writ ten as a union of two 
irreducible varieties as 

Vb = Vt u Vtp , 

where "~tp is the variety containing one point on each trifocal line. 

(13) 
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One consequence of this theorem is that  the bitrilinear variety, ]]bt, and the 
trilinear variety, ]]t, coincide, i.e. ] ]b t  ---- ]]t" In fact, it follows from Theorem 9 
that ]]t C 125. Since ] ]b t  ---- ]]t  N ]]b,  from the definition of ]2bt, it follows that 
]]be --~ ] ) t .  

We now return to the natural descriptor ]]n C 7)2 X 7)2 X 7)2. Consider 
the ideal Zn = /:(];.) C_ ] R [ x l , Y l , Z l , X 2 , y 2 , z 2 , x 3 , Y 3 , Z 3 ] .  Since ]]n is a subset 
of 7)2 x 7 )2 x 7)2, the functions in Z,  must be trihomogeneous in ( x l , y l , z l ) ,  

(x2, Y2, z2) and (x3, Y3, z3), see [10], pp. 56. The bilinearities in (11) are functions 
of degree (1, 1, 0), (1,0, 1) and (0, 1, 1), which can be extended to functions of 
degree (1, 1, 1) as described above. There are also trilinear functions of degree 
(1, 1, 1). We have the following lemma, which states that  the closure of ]]n is Yt, 
and theorem (for the proofs, see [8]). 

L e m m a  10. The ideal defined by the na tura l  descriptor,  can be described as 

Zn = Z ( V t )  = Zt  

T h e o r e m  1 1. The natural  descr ip tor  Fn _C 7) 2 X 7)2 X 7)2 is no t  a variety,  in the 

sense  that  i t  can no t  be described as the c o m m o n  zeroes to a s y s t e m  o f  p o l y n o m i a l  

equations.  

4.2 I d e a l s  

All multilinear constraints are obtained from (5) with n = 3. The trilinearities 
are obtained as subdeterminants involving at least two rows from each image, 
for example 

t5 ,7  = Y l Z 2 Z 3  Jr- Z l X 2 Z 3  - -  X l Z 2 Z 3  - -  Z ] z 2 Y 3  

t5,  9 = . T I Z 2 X  3 ~- X l Z 2 Y  3 - -  Y l Z 2 X 3  --  Z l X 2 X 3  
(14) 

t6,7 = y l x 2 z 3  + y ly2z3  -- x l y~z3  -- z ly2y3  

t 6 , 9  = x l y 2 x 3  + x l y2y3  -- ylX2X3 -- Y ly2x3  , 

where ti, j denotes the subdeterminant obtained after removing rows i and j .  
We will now describe the relations between the ideals generated by the trilin- 

earities and the bilinearities. The ideal, Ib,  in ]R[Xl, yl, Zl, x2, Y2, z2, x3, Y3, z3], 
generated by the bilinearities in (11), is called the b i l i n ea r  ideal .  In the same 
way, the ideal, I t ,  generated by the trilinearities, is called the t r i l i n e a r  ideal .  
Finally, the ideal, Zbt, generated by the bilinearities and the trilinearities, is 
called the b i t r i l i n e a r  ideal.  

First we are going to study different ways of generating Ib and Zt. It is obvi- 
ous that  2;5 is generated by the 3 bilinearities, but that no 2 of them are sufficient 
to generate 2;5. Things are more complicated for Zt. Although the trilinear con- 
straint, locally, can be written as the vanishing of 3 trilinear forms among all 
trilinearities we need 4 forms to generate Zt. Consider first the following simple 
example, which reveals the difference between a minimal generating set and the 
codimension of the corresponding variety. 
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Example1 .  The condition that two vectors, u = (a,b,c)  and v = ( d , e , f ) ,  in ]R 3 
are parallel can be written rank [~ b i ]  < 2, which is equivalent to Pl P2 e ~ 

pa = 0, where Pl = ae - bd, P2 = b f - ce and P3 = cd - a f .  Introduce the 
ideal Zex = (Pl,P2,P3) C_ ]R[a, b, c, d, e, f].  The codimension of the variety ~2(:Zex) 
is 2, since the rank condition above can locally be obtained from 2 polynomial 
equations. This can be seen from f P l  + dp2 + ep3 = 0. However, it is not possible 
to generate the ideal (Pl,p2,P3) by any two of the polynomials, Pl and p2, for 
example, because u = (1, 0, 1) and v --- (1, 0, 2) obeys both Pl = 0 and p2 = 0 
but  P3 = -1 .  This means that  the codimension of the variety V(Zex) is 2 and 
{Pl, P2, P3 } is a minimal generating set for Zex. [] 

T h e o r e m  12. The ideal I t  can be generated by the bilinearities and one trilin- 
entity, t6,9. :T-.t can not be generated by three multilinear functions.  

Proof. Using GrObner basis calculations, see [8]. [] 

Remark.  Using our choice of coordinates, the trilinearity needed apart from the 
bilinearities can be any of t3,6, t3,9 or t6,9 (they are in fact the same polynomial). 
Using an arbitrary coordinate system, it is in general possible to choose an 
arbi t rary non-degenerate trilinearity. The condition that  must be fulfilled is that  
the trilinearity does not vanish on the trifocal lines. [] 

We are now ready to prove our key result describing the relations between Zb 
and Zt. First observe that if zl = z2 = z3 = 0, then all bilinearities in (11) vanish 
but  the trilinearity t6,9 does not vanish. This means that  the trilinear constraint 
t6,9 = 0 imposes one further condition on the other image coordinates. The 
conditions zl = z2 = z3 = 0 describe the intersection of the trifocal plane with 
the three images, which indicates that it could correspond to an associate prime 
ideal of Zb. For the proof of the following theorem, see [8]. 

T h e o r e m  13 ( P r i m a r y  d e c o m p o s i t i o n  o f  t h e  b i l i nea r  idea l ) .  The idealZb 
is reducible and can be decomposed as 

zb = z t  n z t ,  , (15) 

where Ztp = (zl,z2, z3) is the ideal corresponding to the trifocal plane. In  (15), 
Zt and -~tp are prime ideals and thus irreducible. 

This theorem shows that the trilinear ideal can be obtained from the bilinear 
ideal in the following way. First make a primary decomposition of the bilinear 
ideal. This gives two unique primary ideals. Then throw away the ideal that  
can be generated by linear functions. The remaining one is the trilinear ideal. It 
follows that  the ideal Zbt generated by the bilinearities and the trilinearities is 
the same as the ideal ~ generated by the trilinearities, i.e. Zbt = Zt. 

We conclude this section with the observation that  the dimension of the vari- 
eties Vt and Yb is 3 = 9--3--3.  The number of variables is 9, they are divided into 
3 groups of projective vectors and the constraints can locally be written as the 
vanishing of 3 polynomial equations. This means that  the codimension is 3. Thus 
we would like to have 3 polynomials to generate the variety f/t, unfortunately 
this is not possible according to Theorem 12. 
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5 M o r e  t h a n  T h r e e  I m a g e s  

Because of lack of space we only give the results here, for proofs see [8]. 

Theorem 14. For n images, n > 4, we have with strict inclusion, 

c Vb = v t  = Vq . (16) 

Geometrically this can be seen as follows. When we have three images the bi- 
linear constraints fail to distinguish between correct and incorrect point corre- 
spondences on the trifocal lines, but when we have another image outside the 
trifocal plane it is possible to resolve this failure by using the three new bilinear 
constraints involving the fourth image. Again the closure of Vn is Vt. Observe 
that the bilinearities are sufficient to generate the closure of Vn, that is no tri- 
linearities are needed. 

Theorem 15. For n images, n > 4, we have 

Zb = Zt  : Zq = Z ( V n )  . (17) 

In the case of 4 images we have 6 bilinearities and 

Theorem 16. The ideal Zb, for 4 images, can be generated by all 6 bilinearities 
but not by any 5 multilinear functions. 

In the case of 5 images we have 10 bilinearities and since the codimension of Fb 
is 3, it would be nice to have 2 * 5 - 3 = 7 bilinear forms generating Zb. However, 
this is not sufficient and neither is 8 bilinear forms. In fact, only 1 bilinear form 
can be removed. 

Theorem 17. The bilinear ideal Zb for 5 images can be generated by 9 bilinear 
forms, but not by any 8 multilinear functions. 

C o n j e c t u r e  18. It  is not possible to generate Zt for n > 3 images by 2n - 3 
bilinearities or by 2n - 3 other multilinear functions. 

6 C o n c l u s i o n s  

In this paper we have shown that the image of 7 5a in 7 )2 x 7)2 x- �9 �9 x 7)2 under an n- 
tuple of projections @,~ = (A1, A2, . . .  , An) is not an algebraic variety, i.e. it can 
not be described as the set of common zeros to a system of polynomial equations. 
We have described two different approaches to obtain an algebraic variety. The 
first one is to extend ~n to a multivalued map, defining the image of the focal 
point f / o f  camera i to be the set of points corresponding to the actual epipoles in 
the other images and an arbitrary point in image i. The second one is to restrict 
4~n by removing an epipolar line or a trifocal plane and the corresponding image 
points. Moreover, the closure of this image is equal to the trilinear variety. 

We have shown that for three images the variety defined by the bilinearities 
is reducible and can be written as a union of two irreducible varieties; the variety 
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defined by the trilinearities and a variety corresponding to the trifocal lines. For 
the ideals the situation can be described by saying that  the ideal generated by the 
bilinearities can be written in a primary decomposition as an intersection of two 
prime ideals; the ideal generated by the trilinearities and an ideal corresponding 
to the trifocal lines. 

Finally, if four or more images are available the ideal generated by the bilin- 
earities is the same as the ideal generated by the trilinearities. This means that  
it is possible to use only bilinearities to generate the algebraic variety defined 
by all multilinear forms. We have also shown that  the ideal generated by the 
quadrilinearities is the same as the ideal generated by the trilinearities. 
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